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Integer Linear Programming (ILP)

archetypical problem for
NP-complete optimization
problems

very general and successful
paradigm for solving intractable
optimization problems in practice
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Applications

process scheduling

planning

vehicle routing

packing

. . .
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Problem Formulation: ILP

maximize ~c · ~x
subject to A~x ≤ ~b

~x ∈ Zn

maximize ~c · ~x
subject to A~x = ~b

~l ≤ ~x ≤ ~u; ~x ∈ Zn

(where A ∈ Zm×n, ~b ∈ Zm, and ~c ∈ Zn)
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ILP: Example

maximize
∑

1≤i≤n cixi

a1,1 a1,2 a1,3 · · · a1,n

a2,1 a2,2 a2,3 · · · a2,n

a3,1 a3,2 a3,3 · · · a3,n
...

...
...

. . .
...

am,1 am,2 am,3 · · · am,n


×



x1

x2

x3
...

xn


≤



b1

b2

b3
...

bm


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maximization function; (maximum value ≈ maximum value
of the maximization function for any feasible assignment)
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Variants of ILP

We will distinguish the following variants of ILP:

ILP-feasibility: maximization function is empty

Unary ILP: the coefficients are given in unary encoding and

Mixed ILP: not all variables are required to be integer

combinations of the above
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State-of-the-art

ILP and ILP-feasibility are NP-complete and only very few
tractable cases are known, e.g.,:

totally unimodular matrices (Papadimitriou, Steiglitz 1982),

fixed number of variables (Lenstra 1983),

block matrices (4-block N -fold) with fixed sized blocks and
max coefficient (Hemmecke et al., 2010 and 2013;De Loera et
al., 2013).
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ILP: Structural Restrictions

in this lecture we will focus on the complexity of ILP w.r.t.
structural restrictions on the constraint matrix,

we will represent the structure of the ILP instance in terms of
its primal graph and incidence graph (very similar to the
corresponding graphs for SAT and CSP)

we then analyze the complexity of ILP w.r.t. structural
parameterizations of the primal/incidence graph
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Primal Graph
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Primal Graph

The primal graph of an ILP instance I, denoted by P(I), has:

one vertex for every variable of I,

an edge between two variables x and y iff x and y occur
together in a constraint of I.
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Primal Graph: Example

A :=


1 −1 0 0 0

0 −2 1 0 0

0 0 1 −5 −2


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Decompositional Parameters: Examples

several “out-of-the-box”
decompositions available:

treedepth,

treewidth,

clique-width,

rank-width
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An Algorithm using Treewidth and Domain

Theorem (Jansen and Kratsch, 2015)

ILP is fixed-parameter tractable parameterized by treewidth and
the maximum absolute domain value D of any variable
(O((2D + 1)tw|I|).

Main Idea

dynamic programming algorithm on a tree decomposition of
the primal graph,

For each bag of the tree decomposition store which of the at
most (2D+ 1)tw many assignments of the variables in the bag
can be extended to a feasible assignment for the subinstance
represented by the current subtree.
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Can we avoid the “artificial” bound on the domain?

Theorem (Ganian and O., 2016)

ILP-feasibility is NP-complete even if the primal graph has
treewidth at most 3 and the maximum absolute value of any
coefficient is 2.

the theorem seems to exclude any use for treewidth without
domain,

however, the instances constructed in the reduction all share
the property that they have arbitrary long paths
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Treedepth

a well-known structural parameter more restrictive than
treewidth and pathwidth,

many equivalent characterizations, e.g.:

- treedepth ≈ “length of a longest path”,
- treedepth = cycle-rank,
- treedepth is bounded if and only if there is a bounded width

tree decomposition whose tree has bounded height
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Is Treedepth sufficient on its own?

Theorem (Dvǒrák, Eiben, Ganian, Knop, and O., 2017)

Unary-ILP-feasibility is NP-complete even if the primal graph has
treedepth at most 3.

Hence treedepth on its own is not sufficient.

What about treedepth and the maximum absolute value of any
coefficient (`)?
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An Algorithm using Treedepth

Theorem (Ganian and O., 2016)

ILP-feasibility is fixed-parameter tractable parameterized by the
treedepth of the primal graph and the maximum absolute value of
any coefficient.

Remark
The theorem can be generalized to ILP, however, then one needs
to add the number of variables in the optimization function as an
additional parameter.

Open Problem

Is it possible to get rid of this additional parameter for ILP?
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Treedepth decomposition

Definition
A graph G has treedepth at most k if and only if there is a rooted
tree T on V (G) of height at most k such that every edge in G is
between ancestors and descendants of T .

The tree T is called a treedepth decomposition of G.
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Treedepth decomposition
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Treedepth decomposition

/ / /
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Main Ideas

3x+ 2y + z ≤ 5

−2y − 2z ≤ −4

−3x+ 2z ≤ 3

3x+ 2y + z′ ≤ 5

−2y − 2z′ ≤ −4

−3x+ 2z′ ≤ 3

Observation (1)

If the set of constraints in which two variables occur are equal (up
to renaming one variable into the other), both variables have the
same set of feasible assignments.

Hence, if (at least) one of them does not occur in the optimization
function, then it can be removed from the instance.

The observation can be extended to two disjoint sets of variables
instead of two variables.
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Main Idea

Apply Observation (1) to every level of the treedepth
decomposition.

21 / 50



Main Idea

Apply Observation (1) to every level of the treedepth
decomposition.

21 / 50



Main Idea

Apply Observation (1) to every level of the treedepth
decomposition.

Application of Observation (1) to the bottom level (leaves).

21 / 50



Main Idea

Apply Observation (1) to every level of the treedepth
decomposition.

Application of Observation (1) to the bottom level (leaves).

21 / 50



Main Idea

Apply Observation (1) to every level of the treedepth
decomposition.

Application of Observation (1) to the level above the bottom level.

21 / 50



Main Idea

Apply Observation (1) to every level of the treedepth
decomposition.

Application of Observation (1) to the level above the bottom level.

21 / 50



Main Ideas

One can show that the number of variables that remain after this
preprocessing procedure is bounded in terms of the treedepth of
the primal graph and the maximum value of any coefficient.

Hence, we can solve the reduced ILP instance by applying the
following result.

Theorem (Lenstra 1983)

ILP parameterized by the number of variables is fixed-parameter
tractable.
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Torso-width

Width parameter specifically designed for MILP and ILP with a
mixture of bounded and unbounded domain variables.

Main Algorithmic Idea

use the treewidth algorithm on the part of the instance that
has bounded domain,

use Lenstra’s algorithm for the remaining part.
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Torso-width by Example

Torso-width ≈ max. of the
treewidth of optimal torso and

the max. number of integer
variables in any outside

component

Primal graph of MILP instance:

white: non-integer variables

black: integer variables

green: bounded domain
integer variables

Parts with few integer
variables can be handled
efficiently (by Lenstra’s
algorithm)

Collapse them to obtain a
torso with bounded domains
(Treewidth-based dynamic
programming)
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Algorithm for Torso-width

Solve the ILP instance by:

use the DP-algorithm for treewidth
and domain on the torso and

verify at each node that all
assignments in the records are also
feasible for the attached
components (using Lenstra)
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Torso-width Result

Theorem (Ganian, O., and Ramanujan, 2017)

MILP is FPT parameterized by torso-width.

When to use torso-width instead of treewidth?

MILP

ILP if some (not all) variables have bounded domain
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Summary: Primal Graph

Using structural restrictions of the primal graph leads to three
main tractable cases for ILP:

treewidth and domain,

treedepth, coefficients, and number of variables in the
maximization function,

torso-width.

All other combinations can be shown to be para-NP-hard.

Open Problem

Is it possible to get rid of the parameter “number of variables in
the maximization function” for the treedepth-based algorithm?
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Incidence Graph
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Incidence Graph

The incidence graph of an ILP instance I, denoted by I(I), has:

one vertex for every variable of I,

one vertex for every constraint of I, and

an edge between a variable x and a constraint c iff x occurs
(has a non-zero coefficient) in c.
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Incidence Graph: Example

A :=


* * 0 0 0

0 * * 0 0

0 0 * * *



v1

v2

v3

v4

v5

C1

C2

C3
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Incidence Graph vs. Primal Graph

the incidence graph contains more information about the ILP
instance,

the treewidth of the incidence graph is always at most the
treewidth of the primal graph plus one; but it can be arbitrary
smaller,

the main difference between incidence and primal treewidth is
that incidence treewidth can be small even for instances with
large arity
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Incidence Graph vs. Primal Graph

Theorem
ILP-feasibility is NP-complete even if the incidence treewidth is
one and all variables have binary domain.
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Incidence Graph vs. Primal Graph

Theorem
ILP-feasibility is NP-complete even if the incidence treewidth is
one and all variables have binary domain.

The main idea is a reduction from Subset Sum:

Subset Sum
Input: A set S = {s1, . . . , sn} of natural numbers and a target
number t.
Question: Is there a subset S′ of S such that

∑
s∈S′ s = t?
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The Reduction

Given an instance S = ({s1, . . . , sn}, t) of Subset Sum, then the
ILP instance I with n binary variables x1, . . . , xn and the
constraint: ∑

1≤i≤n
sixi = t

is equivalent to S.

Moreover, the incidence treewidth of I is at most 1 and all
variables are binary.
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An Algorithm using Treewidth and Domain (Main Idea)

Question?
Which information do we need to
store for feasible assignments τ
of I(t)?

Answer:

For the variables in X(t) it is
again sufficient to store their
assignments since ”future”
constraints only share the
variables in X(t) with V (t).

However, since the
constraints in X(t) can be
over variables both inside
and outside of V (t), we
need to know all possible
values they can evaluate to.

T(t)
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An Algorithm using Incidence Treewidth

Definition
For a constraint C and a (partial) assignment τ of (some of) the
variables of C, let C(τ) denote the evaluation of C under τ .

Example

Let C = 2x1 + 3x2 + 5x3 = 8 and let τ(x1) = 5 and τ(x3) = 2,
then:

C(τ) = 2τ(x1) + 5τ(x3) = 2 · 5 + 5 · 2 = 20

Definition
Let Γ(I) be the maximum absolute value C(τ) over any constraint
C of I and any feasible partial assignment τ of I.
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C(τ) = 2τ(x1) + 5τ(x3) = 2 · 5 + 5 · 2 = 20

Definition
Let Γ(I) be the maximum absolute value C(τ) over any constraint
C of I and any feasible partial assignment τ of I.
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Discussion of the Algorithm

Theorem (Ganian, O., and Ramanujan, 2017)

An ILP instance I with n variables and m constraints can be
solved in time:

O(Γ(I)tw(I)(n+m))

Remark
Because Γ(I) ≤ `A ×D × n, it follows that ILP can be solved in
polynomial-time for bounded incidence treewidth provided that
both ` and D are polynomially bounded in the input size.

Remark
Our previous hardness results for primal treewidth shows that ILP
becomes NP-complete again if only one of ` or D are allowed to
grow exponentially in the input size.
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Discussion of the Algorithm

Remark
If we want to find an fpt-algorithm parameterized by ` and some
additional structural parameter of the incidence graph, we need to
employ a more restrictive parameter than treewidth.

A natural candidate would be treedepth, however, at this
point it remains open whether ILP is fixed-parameter tractable
parameterized by treedepth and `.

Nevertheless, we can show such a result for a slightly more
restrictive parameter than treedepth, which we call the
fracture number.
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Fracture Number

Definition
The fracture number of a graph G is the minimum number k
such that G has a deletion set D of at most k vertices such that
every component of G \D has size at most k.

D

C1 C2 Cp−1 Cp

Remark
The treedepth/treewidth is at most two times the fracture number.
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Fracture Number for ILP

D ∩ V C1 ∩ V C2 ∩ V · · · Cp ∩ V

D ∩ C

C1 ∩ C

C2 ∩ C
...

Cp ∩ C



∗ ∗ ∗ · · · ∗

∗ ∗ 0 · · · 0

∗ 0 ∗ · · · 0
...

...
...

. . .
...

∗ 0 0 · · · ∗


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Finding a Fracture Deletion Set

We distinguish three types of fracture deletion sets (FDS), namely:

variable FDS are only allowed to contain (global) variables,

constraint FDS are only allowed to contain (global)
constraints,

mixed FDS are allowed to contain both.

Theorem (Dvǒrák, Eiben, Ganian, Knop, and O., 2017)

Finding a variable/constraint/mixed FDS of size k is NP-hard, but
FPT parameterized by k.
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Solving ILP using a small Fracture Deletion Set
Our algorithm for solving ILP using a small fracture deletion set is
inspired by block matrices:

 A B

C D


N

=



A B B · · · B

C D 0 · · · 0

C 0 D · · · 0

...
...

... . . . ...

C 0 0 · · · D


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... . . . ...

C 0 0 · · · D


Theorem (Hemmecke et al., 2010)

ILP is XP parameterized by `A and the max. number of
rows/columns in A,B,C,D.
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Theorem (De Loera et al., 2013)

If A and C are omitted, then ILP is FPT parameterized by `A and
the max. number of rows/columns in B,D.
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Solving ILP using a small Fracture Deletion Set
Our algorithm for solving ILP using a small fracture deletion set is
inspired by block matrices:

 A B

C D


N

=



A B B · · · B

C D 0 · · · 0

C 0 D · · · 0

...
...

... . . . ...

C 0 0 · · · D


Essentially, these are ILPs with few global variables and/or global
constraints that interact uniformly with the rest.

Several applications (e.g. Knop, Kouteck, Mnich, 2017).
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From Fracture Number to Block Matrices

D ∩ V C1 ∩ V C2 ∩ V · · · Cp ∩ V

D ∩ C

C1 ∩ C

C2 ∩ C
...

Cp ∩ C



∗ ∗ ∗ · · · ∗

∗ ∗ 0 · · · 0

∗ 0 ∗ · · · 0
...

...
...

. . .
...

∗ 0 0 · · · ∗


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From Fracture Number to Block Matrices
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A B1 B2 · · · Bp
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...
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. . .
...

Cp 0 0 · · · Dp


?⇒
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A B B · · · B
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Equivalent Components

We say ”components” Ci and Cj are equivalent (Ci ∼ Cj), if we
can obtain  ∗ Bi

Ci Di

 from

 ∗ Bj

Cj Dj


by rearranging columns and rows of the local part.

Lemma
The equivalence ∼ has at most (2`A + 1)2k

2

equivalence classes,
where k is the size of the fracture backdoor.

Idea: We can group one component of each type into a single
block.
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Grouping of Components

Assume we have k component types given by
the matrices Bi, Ci, and Di.

 ∗ Bi

Ci Di



By grouping one component of
each type into a block, we obtain
a block with a bounded number
of columns and rows.



∗ B1 B2 · · · Bk

C1 D1 0 · · · 0

C2 0 D2 · · · 0
...

...
...

. . .
...

Ck 0 0 · · · Dk


We can now repeat this block as many times as the maximum
number of components of any type to obtain our block matrix.

Caveat: We do not have the same number of components for every
component type.
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Solution to the Caveat

We extend each type ∗ Bi

Ci Di

 
 ∗ Bi0

Ci DiDi


and we add fresh copies of each type.

Using domain restrictions on single variables, we then turn a
component:

ON by forcing the copied variables to be 0 and

OFF by forcing the original variables to be 0.
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Summary: Fracture Number

`A Variable Constraint Mixed

param. FPT FPT XP

unary para-NP XP, W[1]-h para-NP

arbitrary para-NP para-NP para-NP

Open Problem

Is ILP in FPT for mixed backdoor sets?

The corresponding problem for N-fold 4-block matrices is a
long-standing and prominent open problem for ILP.
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Summary: Fracture Number

`A Variable Constraint Mixed

param. FPT FPT XP

unary para-NP XP, W[1]-h para-NP

arbitrary para-NP para-NP para-NP

Remark
The XP result for Unary ILP involves two main steps:

employs a classical proof technique from (Papadimitriou,
1981) adapted to the restricted structure of our matrix to
show that the domain D is bounded by a polynomial in the
input size,

it then employs the result on bounded incidence treewidth.

Open Problem

Is ILP in FPT for mixed backdoor sets?

The corresponding problem for N-fold 4-block matrices is a
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Summary: Incidence Graph

In contrast to the primal graph algorithms for the incidence
graph also allow us to solve instances with high arity.

The results on the fracture number provide a natural
generalization on the known meta-theorems on block matrices.

Open Problems

Is ILP in FPT for mixed backdoor sets?

Can the results for fracture number be lifted to treedepth?
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Summary and Conclusions

great potential for novel meta-theorems for NP-complete
optimization problems.

the study of ILP w.r.t. to structural restrictions on the
constraint matrix is still in its infancy,

many interesting directions remain to explore, e.g., combining
structural parameterizations with properties of the coefficients
(some form of “signed incidence clique-width”),
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(. . . see you at the ALGO
Welcome Reception!)
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