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Model-checking

The model-checking problem
Let £ be a logic and let C be a class of structures.
MC(L,C)

Input:  Structure 2 € C, formula ¢ € £
Problem: Does 2 satisfy ¢, in symbols, 2 = ©?

First-order logic FO

@ Subgraph isomorphism for pattern graph H (on vertex set {1,...,n}):

Ixq ... Elx,,( AN E(i,x)A A ﬁE(x,-,xJ-))
ijeE(H) ij¢E(H)
@ Dominating set of size at most k:

Hxl...EIXkVy( \/ (y=xiv E(%Xi))

1<i<k

Sebastian Siebertz FO model-checking

2/38




Algorithmic meta-theorems

@ Many computational problems can be described elegantly in logics.

Algorithmic meta-theorem
Every problem definable in a given logic L is tractable. J

@ Provide uniform explanation why problems are tractable.
o Establish general algorithmic techniques for solving them.

o Corresponding intractability results for logics exhibit natural
boundaries beyond which these techniques fail.
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Complexity of first-order model-checking

@ 2o =[p: quantifier-free first-order formulas.

@ For t >0, let X;,1 be the set of all formulas

Ixq...3Ixkp, where @ ell;.

@ For t >0, let [;;1 be the set of all formulas

Vx1...Yxkp, where peX;.

Example
@ Ixy... Hxn(/\;jeE(H) E(xi,xj) A Nijge(H) —|E(x,-,xj-)) €Xy.
® Ix1... I Vy(Vicick(y = x; v E(y, x7)) € Za.
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Complexity of first-order model-checking —
the polynomial hierarchy
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Parameterized model-checking

The parameterized model-checking problem
Let £ be a logic and let C be a class of structures.
MC(L,C)

Input:  Structure A € C, formula ¢ € £
Parameter:  |y|

Problem: Does 2 satisfy ¢, in symbols, 2 = ¢?

@ For t > 1 let X1 be the set of all X; formulas such that all quantifier
blocks after the leading existential block have length < 1.

Example

@ dxy... E|X,,( /\ijEE(H) E(X,',Xj) N /\ij¢E(H) —|E(X,',Xj)) € 21,1 = ):1.
o Ix... Elkay( Vicick(y =x v E(y,x,-)) €.
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Parameterized complexity of first-order model-checking —
W- and A-hierarchy

W([P] < AW[]
= [MC(FO)]%



Parameterized complexity of first-order model-checking

DOMINATING SET is W[2]-hard.

DOMINATING SET
Input:  Graph G and ke N
Parameter: k

Problem: Do there exist k vertices which dominate G?

CLIQUE-DOMINATING SET is A[2]-hard.

CLIQUE-DOMINATING SET
Input:  Graph G and k,/ €N
Parameter: k+/

clique of size ¢?

Problem: Do there exist k vertices which dominate every
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Algorithmic meta-theorems

@ Many computational problems can be described elegantly in logics.

Algorithmic meta-theorem

Every problem definable in a given logic L is tractable on every class of
structures satisfying a certain property.

@ Provide a uniform explanation why natural classes of problems are
tractable on a certain class of structures (which may be sufficient for
practical applications).

@ Establish general algorithmic techniques for solving them.

@ Corresponding intractability results for logics exhibit natural
boundaries beyond which these techniques fail.
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Sparse graph classes with fpt model-checking

bd. degeneracy

nowhere dense
[GKS14]

loc. excl.

bd. expansion minor [DGK07]

[DKT10]

excl. minor bd. loc. tw
[FIGO1] [FrGO1]

bd. clique w.
MSO; [CMRO1]

%

planar bd. degree
bd. tw. [S96]
MSO, [C90]

| |
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Sparse graph classes with fpt model-checking

Theorem [Grohe, Kreutzer, S. 14]

If C is nowhere dense, then MC(FO) can be solved in time f(|¢]|) - n**¢
every n-vertex graph G €C.

on

V.

Theorem [Kreutzer 09], [Dvotak, Krél', Thomas 11]

If C is somewhere dense and closed under taking subgraphs, then
MC(FO) on C is AW[]-complete.

Corollary (assuming FPT = AW[«])

If C is closed under taking subgraphs, then MC(FO) on C is fpt if and
only if C is nowhere dense.
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Methods for sparse graphs

Theorem [Grohe, Kreutzer, S., 14]

If C is nowhere dense, then MC(FO) can be solved in time f(|¢|) - n** on
every n-vertex graph G eC.

Methods

e Gaifman'’s theorem: ¢(x) equivalent to Boolean combination of local
formulas and basic local formulas

Ix ... 3x A\ dist(xi, ) > 2r A A0 (7).

i#j i

@ Find r-neighbourhoods in which % is true (r only depends on ¢).

@ Solve distance-2r independent set problem (k depends only on ¢).
o Evaluate Boolean combination.
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Lower bounds on somewhere dense graphs

Theorem

Let C be somewhere dense and closed under taking subgraphs. Then there

exists p € N such that for every graph H we have HP € C, where HP is the
p-subdivision of H.

Proposition

Model checking on HP is just as hard as on H.
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Model-checking beyond sparse graphs

Corollary (assuming FPT = AW[*])

If C is closed under taking subgraphs, then MC(FO) on C is fpt if and
only if C is nowhere dense.

Research program

Find the most general classes (which are not closed under taking
subgraphs) which admit fpt model-checking.

o Efficient FO-model checking on specific dense graph classes.
» Model-checking on certain interval graphs is fpt [Ganian et al. 13].
» Model-checking on bounded width posets is fpt [Gajarsky et al. 15].

— There is no clear candidate for a most general dense class with
tractable model-checking.
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Model-checking beyond sparse graphs — Interpretations

@ Assume C is a class with MC(FO,C) € FPT.
e For a graph G let G be its complement and let C = {G : G € C}.

Proposition
Model-checking on C is fpt. J

Proof.

@ Given G ¢C and g € FO, let ¢’ be obtained from ¢ by replacing each
atom E(x,y) by —=E(x,y).

@ Then GEp = GEY'.

e G and ¢’ are efficiently computable from G and ¢.
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Model-checking beyond sparse graphs — Interpretations

e A simple interpretation J, is a formula ¢(x,y).

e For a graph G = (V/, E) define

Tp(G) = (V. {uv: G Ep(u,v) ve(v,u)}).

Example

On the previous slide we had ¢ = ~E(x,y) and J,(G) = G.

Interpretation Lemma

Replace in a formula 1) every occurrence of E(x,y) by (¢(x,y) Vv o(y,x))
to obtain J,(v). Then for every graph G

Tp(G) E Y = G E Jp(¥).
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Model-checking beyond sparse graphs — Interpretations

@ Let C be a class with efficient model-checking.
o Let ¢(x,y) be a formula and J,(C) = {J,(G) : G €C}.
» Oninput H =7,(G) € 7,(C) and -
» Compute J,(v).
» We have HE ¢ <= G = J,(¥).
» G E J, (1) can be decided efficiently.

Problem: We do not know how to compute G from J,(G).
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Sparse graph classes with fpt model-checking

bd. degeneracy

nowhere dense
[GKS14]

loc. excl.

bd. expansion minor [DGK07]

[DKT10]
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Model-checking beyond sparse graphs — Interpretations

Theorem

@ C has bounded clique-width <= C is an MSO;-interpretation of a
class of colored trees.
= an interpretation of a bounded clique-width graph has again
bounded clique-width.

@ A clique-decomposition of the input graph can be
computed/approximated efficiently.

@ MSO;/FO model-checking on interpretations of bounded clique-width
classes is fpt.

v
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Sparse graph classes with fpt model-checking
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Sparse graph classes with fpt model-checking

bd. degeneracy

nowhere dense
[GKS14]

loc. excl.

bd. expansion minor [DGK07]

[DKT10]

excl. minor bd. loc. tw
[FIGO1] [FrGO1]

bd. clique w. planar bd. degree
MSO; [CMRo1] 7/ bd. tw. [S96]
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Model-checking beyond sparse graphs — Interpretations

Definition
A class C of graphs is near uniform with parameter k if it satisfies certain
conditions on the near-k-twin relation defined by

un~gv<=|N(u) s N(v)|<k.

Theorem [Gajarsky et al. 16]

@ C near-uniform < C interpretation of a bounded degree class.

@ A bounded degree pre-image and an interpretation producing the
input graph can be computed efficiently from a near uniform input
graph.

@ Consequently, model-checking on near uniform graphs is fpt.
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Sparse graph classes with fpt model-checking
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Work in progress

bd. degeneracy

nowhere dense
[GKS14]

bd. clique w.
MSO; [CMRO1]

%

MSO, [C90]

|
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Open problem

Open problem
@ Let C be nowhere dense,
@ p(x,y) € FO, and
o H=JJ,(G).
@ Does there exist for every p € N and every € > 0 a coloring of V(H)

with g(p,¢e) - n° colors such that the subgraph of H induced
by any p color classes has clique-width /shrub-depth at most f(p)?
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Model-checking beyond sparse graphs — Model-theory

Question

Could tractability of FO on nowhere dense classes be merely an artifact of
tractability of FO on a much larger class which happens to coincide with
nowhere dense classes if closed under subgraphs?

Theorem [Adler, Adler 14]

Let C be a class of graphs which is closed under taking subgraphs. The
following are equivalent.

@ C is nowhere dense.
o C is stable.

@ C does not have the independence property (is NIP).
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The model-theoretic notions

NIP

stable
nowhere dense

loc. excl.

bd. expansion .
minor

excl. minor bd. loc. tw

bd. clique w.
planar bd. degree
bd. tw.
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Stability

Research program

There is a huge number of combinatorial results which wait to be carried
from infinite model theory to the finite.

Definition
A class C of graphs is stable if for every first-order formula ¢(X,y) there is

a constant c such that the interpretation of G € C by ¢ excludes a ladder
of length ¢ as an induced subgraph.
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Stability and Ramsey-type problems

Definition
Let (X, <) be a linearly ordered set. Let

[(X,<)]* = {(x, -, xk) € X, x; < x; for i < j}.

Let f:[(X,<)]k - Z.

A subordering (Y, <) is f-indiscernible if f is constant on [(Y,<)]¥,

f(3) = f(b) for all increasing k-tuples from Y.

i.e.,

ai a by bo as b3

f(a1,a2,a3) = f(by, by, b3)
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Stability and Ramsey-type problems

Example
Let G = (V, E) be a graph, let < be an arbitrary order of V and let

1 ifuveE(G)
0 otherwise.

fe  [(V, )P > {0,1}=uv»{

(Y,<) is fe-indiscernible if Y induces an edgeless graph or a complete
graph in G.
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Stability and Ramsey-type problems

Finite Ramsey Theorem

For all k, m,n e N there exists £ € N such that
l— (m)ﬁa

i.e., for every (X, <) of cardinality £ and f: [(X,<)]¥ = {1,...,n} there
exists a subordering (Y, <) of cardinality m which is f-indiscernible.

Example (continued)

Number ¢ such that £ - (m)3 (as required for the function fg) satisfies

m—1

JTm’

(1+0(1))— e M om2 ¢ pe(1+ 0(1))
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Stability and Ramsey-type problems

Definition

Let 2 be a structure with universe A, < a linear order on A and let ¢ be a
set of formulas. A subordering (Y, <) of (A, <) is ®-indiscernible if for
every o(x1,...,xx) € ® and every pair 3, b € [(A,<)]* we have

AE (3) < A= p(b).

We write
E - (m)q;,

if for every (X, <) of cardinality ¢ there exists a subordering (Y, <) of
cardinality m which is ®-indiscernible.

Theorem
If C is stable, then for all finite ® € FO there exists t € N such that ¢ with
¢ — (m)g satisfies £ < m".
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Algorithmic results based on stability

@ We have not been able to apply these facts algorithmically on stable

graphs, however,

@ we have results for nowhere dense and K; j-free graph classes using

stability related methods:

Exemplaric results
@ Let C be nowhere dense. Then for every r € N the distance-r
dominating set problem admits a polynomial kernel on C
[Kreutzer, Rabinovich, S. 16] and in fact an almost linear kernel
[Eickmeyer et al. 17].

o Let C={G:K;jj¢ G}. Then the dominating set problem is

fixed-parameter tractable on C (a super simple proof for a result of

Philip et al. 12).
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The model-theoretic notions

NIP

stable
nowhere dense

loc. excl.

bd. expansion .
minor

excl. minor bd. loc. tw

bd. clique w.
planar bd. degree
bd. tw.
Sebastian Siebertz FO model-checking

35/38



NIP

Definition
A class C of graphs is NIP if for every first-order formula ¢(x,y) there is a
constant ¢ such that the interpretation of G € C by ¢ has VC-dimension

bounded by c.

36/38
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Methods for graphs of bounded VC-dimension

Sauer-Shelah Lemma (for graphs)
If G has VC-dimension c, then for all Ac V(G)

IN(V)NA:ve V(G)Y < |AF.
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Conclusion

@ Many computational problems can be described elegantly in logics.

@ In general, the model-checking problem for first-order logic is
intractable.

@ We search for the most general graph classes on which it is tractable.
@ The classification for sparse (subgraph closed) classes is complete.

@ The methods of interpretations is a strong method to generalize
model-checking results. How far can we get?

@ The notions of stability and NIP may be very useful in this context.

» Remark: NIP classes are not the limit...
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