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Model-checking

The model-checking problem

Let L be a logic and let C be a class of structures.

MC(L,C)
Input: Structure A ∈ C, formula ϕ ∈ L

Problem: Does A satisfy ϕ, in symbols, A ⊧ ϕ?

First-order logic FO

Subgraph isomorphism for pattern graph H (on vertex set {1, . . . ,n}):

∃x1 . . .∃xn( ⋀
ij∈E(H)

E(xi , xj) ∧ ⋀
ij/∈E(H)

¬E(xi , xj))

Dominating set of size at most k :

∃x1 . . .∃xk∀y( ⋁
1≤i≤k

(y = xi ∨ E(y , xi))
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Algorithmic meta-theorems

Many computational problems can be described elegantly in logics.

Algorithmic meta-theorem

Every problem definable in a given logic L is tractable.

Provide uniform explanation why problems are tractable.

Establish general algorithmic techniques for solving them.

Corresponding intractability results for logics exhibit natural
boundaries beyond which these techniques fail.
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Complexity of first-order model-checking

Σ0 = Π0: quantifier-free first-order formulas.

For t ≥ 0, let Σt+1 be the set of all formulas

∃x1 . . .∃xkϕ, where ϕ ∈ Πt .

For t ≥ 0, let Πt+1 be the set of all formulas

∀x1 . . .∀xkϕ, where ϕ ∈ Σt .

Example

∃x1 . . .∃xn(⋀ij∈E(H) E(xi , xj) ∧ ⋀ij/∈E(H) ¬E(xi , xj)) ∈ Σ1.

∃x1 . . .∃xk∀y(⋁1≤i≤k(y = xi ∨ E(y , xi)) ∈ Σ2.
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Complexity of first-order model-checking –
the polynomial hierarchy

PSpace
= [MC(FO)]p

⋮

Σp
t

= [MC(Σt)]p

⋮

Σp
3

Σp
2

Σp
1 = NP

= [MC(Σ1)]p
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Parameterized model-checking

The parameterized model-checking problem

Let L be a logic and let C be a class of structures.

MC(L,C)
Input: Structure A ∈ C, formula ϕ ∈ L

Parameter: ∣ϕ∣
Problem: Does A satisfy ϕ, in symbols, A ⊧ ϕ?

For t ≥ 1 let Σt,1 be the set of all Σt formulas such that all quantifier
blocks after the leading existential block have length ≤ 1.

Example

∃x1 . . .∃xn(⋀ij∈E(H) E(xi , xj) ∧ ⋀ij/∈E(H) ¬E(xi , xj)) ∈ Σ1,1 = Σ1.

∃x1 . . .∃xk∀y(⋁1≤i≤k(y = xi ∨ E(y , xi)) ∈ Σ2,1.
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Parameterized complexity of first-order model-checking –
W - and A-hierarchy

W [P]

⋮

W [t]
= [MC(Σt,1)]fpt

⋮

W [3]

W [2]

W [1]
= [MC(Σ1,1)]fpt

W [P] ⊆ AW [⋆]
= [MC(FO)]fpt

⋮

W [t] ⊆ A[t]
= [MC(Σt)]fpt

⋮

W [3] ⊆ A[3]

W [2] ⊆ A[2]

W [1] = A[1]
= [MC(Σ1)]fpt
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Parameterized complexity of first-order model-checking

Dominating Set is W [2]-hard.

Dominating Set
Input: Graph G and k ∈ N

Parameter: k
Problem: Do there exist k vertices which dominate G?

Clique-Dominating Set is A[2]-hard.

Clique-Dominating Set
Input: Graph G and k , ` ∈ N

Parameter: k + `
Problem: Do there exist k vertices which dominate every

clique of size `?
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Algorithmic meta-theorems

Many computational problems can be described elegantly in logics.

Algorithmic meta-theorem

Every problem definable in a given logic L is tractable on every class of
structures satisfying a certain property.

Provide a uniform explanation why natural classes of problems are
tractable on a certain class of structures (which may be sufficient for
practical applications).

Establish general algorithmic techniques for solving them.

Corresponding intractability results for logics exhibit natural
boundaries beyond which these techniques fail.
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Sparse graph classes with fpt model-checking

bd. degeneracy

nowhere dense
[GKS14]

bd. expansion
[DKT10]

loc. excl.
minor [DGK07]

excl. minor
[FlG01]

bd. loc. tw
[FrG01]

bd. degree

[S96]

planar
bd. tw.

MSO2 [C90]

bd. clique w.

MSO1 [CMR01]
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Sparse graph classes with fpt model-checking

Theorem [Grohe, Kreutzer, S. 14]

If C is nowhere dense, then MC(FO) can be solved in time f (∣ϕ∣) ⋅ n1+ε on
every n-vertex graph G ∈ C.

Theorem [Kreutzer 09], [Dvǒrák, Král’, Thomas 11]

If C is somewhere dense and closed under taking subgraphs, then
MC(FO) on C is AW [⋆]-complete.

Corollary (assuming FPT ≠ AW [⋆])

If C is closed under taking subgraphs, then MC(FO) on C is fpt if and
only if C is nowhere dense.
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Methods for sparse graphs

Theorem [Grohe, Kreutzer, S., 14]

If C is nowhere dense, then MC(FO) can be solved in time f (∣ϕ∣) ⋅ n1+ε on
every n-vertex graph G ∈ C.

Methods

Gaifman’s theorem: ϕ(x) equivalent to Boolean combination of local
formulas and basic local formulas

∃x1 . . .∃xk⋀
i≠j

dist(xi , xj) > 2r ∧⋀
i

ψ(r)(xi).

Find r -neighbourhoods in which ψ is true (r only depends on ϕ).
Solve distance-2r independent set problem (k depends only on ϕ).
Evaluate Boolean combination.
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Lower bounds on somewhere dense graphs

Theorem

Let C be somewhere dense and closed under taking subgraphs. Then there
exists p ∈ N such that for every graph H we have Hp ∈ C, where Hp is the
p-subdivision of H.

Proposition

Model checking on Hp is just as hard as on H.
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Model-checking beyond sparse graphs

Corollary (assuming FPT ≠ AW [⋆])

If C is closed under taking subgraphs, then MC(FO) on C is fpt if and
only if C is nowhere dense.

Research program

Find the most general classes (which are not closed under taking
subgraphs) which admit fpt model-checking.

Efficient FO-model checking on specific dense graph classes.

▸ Model-checking on certain interval graphs is fpt [Ganian et al. 13].

▸ Model-checking on bounded width posets is fpt [Gajarský et al. 15].

→ There is no clear candidate for a most general dense class with
tractable model-checking.
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Model-checking beyond sparse graphs – Interpretations

Assume C is a class with MC(FO,C) ∈ FPT.

For a graph G let Ḡ be its complement and let C̄ = {Ḡ ∶ G ∈ C}.

Proposition

Model-checking on C̄ is fpt.

Proof.

Given Ḡ ∈ C̄ and ϕ ∈ FO, let ϕ′ be obtained from ϕ by replacing each
atom E(x , y) by ¬E(x , y).

Then Ḡ ⊧ ϕ⇐⇒ G ⊧ ϕ′.

G and ϕ′ are efficiently computable from Ḡ and ϕ.
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Model-checking beyond sparse graphs – Interpretations

A simple interpretation Jϕ is a formula ϕ(x , y).

For a graph G = (V ,E) define

Jϕ(G) = (V ,{uv ∶ G ⊧ ϕ(u, v) ∨ ϕ(v ,u)}).

Example

On the previous slide we had ϕ = ¬E(x , y) and Jϕ(G) = Ḡ .

Interpretation Lemma

Replace in a formula ψ every occurrence of E(x , y) by (ϕ(x , y) ∨ ϕ(y , x))
to obtain Jϕ(ψ). Then for every graph G

Jϕ(G) ⊧ ψ⇐⇒ G ⊧ Jϕ(ψ).
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Model-checking beyond sparse graphs – Interpretations

Let C be a class with efficient model-checking.

Let ϕ(x , y) be a formula and Jϕ(C) = {Jϕ(G) ∶ G ∈ C}.

▸ On input H = Jϕ(G) ∈ Jϕ(C) and ψ:

▸ Compute Jϕ(ψ).

▸ We have H ⊧ ψ⇐⇒ G ⊧ Jϕ(ψ).

▸ G ⊧ Jϕ(ψ) can be decided efficiently.

Problem: We do not know how to compute G from Jϕ(G).
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Sparse graph classes with fpt model-checking
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[DKT10]
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Model-checking beyond sparse graphs – Interpretations

Theorem

C has bounded clique-width ⇐⇒ C is an MSO1-interpretation of a
class of colored trees.
⇒ an interpretation of a bounded clique-width graph has again
bounded clique-width.

A clique-decomposition of the input graph can be
computed/approximated efficiently.

MSO1/FO model-checking on interpretations of bounded clique-width
classes is fpt.
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Model-checking beyond sparse graphs – Interpretations

Definition

A class C of graphs is near uniform with parameter k if it satisfies certain
conditions on the near-k-twin relation defined by

u ∼k v ⇐⇒ ∣N(u) △N(v)∣ ≤ k .

Theorem [Gajarský et al. 16]

C near-uniform ⇐⇒ C interpretation of a bounded degree class.

A bounded degree pre-image and an interpretation producing the
input graph can be computed efficiently from a near uniform input
graph.

Consequently, model-checking on near uniform graphs is fpt.
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Work in progress
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Open problem

Open problem

Let C be nowhere dense,

ϕ(x , y) ∈ FO, and

H = Jϕ(G).

Does there exist for every p ∈ N and every ε > 0 a coloring of V (H)
with g(p, ε) ⋅ nε colors such that the subgraph of H induced
by any p color classes has clique-width/shrub-depth at most f (p)?
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Model-checking beyond sparse graphs – Model-theory

Question

Could tractability of FO on nowhere dense classes be merely an artifact of
tractability of FO on a much larger class which happens to coincide with
nowhere dense classes if closed under subgraphs?

Theorem [Adler, Adler 14]

Let C be a class of graphs which is closed under taking subgraphs. The
following are equivalent.

C is nowhere dense.

C is stable.

C does not have the independence property (is NIP).

Sebastian Siebertz FO model-checking 27/38



The model-theoretic notions

NIP

stable

nowhere dense

bd. expansion loc. excl.
minor

excl. minor bd. loc. tw

bd. degreeplanar
bd. tw.

bd. clique w.
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Stability

Research program

There is a huge number of combinatorial results which wait to be carried
from infinite model theory to the finite.

Definition

A class C of graphs is stable if for every first-order formula ϕ(x , y) there is
a constant c such that the interpretation of G ∈ C by ϕ excludes a ladder
of length c as an induced subgraph.
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Stability and Ramsey-type problems

Definition

Let (X ,<) be a linearly ordered set. Let

[(X ,<)]k = {(x1, . . . , xk) ∈ X k , xi < xj for i < j}.

Let f ∶ [(X ,<)]k → Z .

A subordering (Y ,<) is f -indiscernible if f is constant on [(Y ,<)]k , i.e.,
f (ā) = f (b̄) for all increasing k-tuples from Y .

a1 a2 a3b1 b2 b3

f (a1, a2, a3) = f (b1,b2,b3)
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Stability and Ramsey-type problems

Example

Let G = (V ,E) be a graph, let < be an arbitrary order of V and let

fE ∶ [(V ,<)]2 → {0,1} ∶ uv ↦
⎧⎪⎪⎨⎪⎪⎩

1 if uv ∈ E(G)
0 otherwise.

.

(Y ,<) is fE -indiscernible if Y induces an edgeless graph or a complete
graph in G .

Sebastian Siebertz FO model-checking 31/38



Stability and Ramsey-type problems

Finite Ramsey Theorem

For all k ,m,n ∈ N there exists ` ∈ N such that

`→ (m)kn ,

i.e., for every (X ,<) of cardinality ` and f ∶ [(X ,<)]k → {1, . . . ,n} there
exists a subordering (Y ,<) of cardinality m which is f -indiscernible.

Example (continued)

Number ` such that `→ (m)2
2 (as required for the function fE ) satisfies

(1 + o(1)) m√
2e

2m/2 ≤ ` ≤ (1 + o(1)) 4m−1

√
πm

.
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Stability and Ramsey-type problems

Definition

Let A be a structure with universe A, < a linear order on A and let Φ be a
set of formulas. A subordering (Y ,<) of (A,<) is Φ-indiscernible if for
every ϕ(x1, . . . , xk) ∈ Φ and every pair ā, b̄ ∈ [(A,<)]k we have

A ⊧ ϕ(ā) ⇐⇒ A ⊧ ϕ(b̄).

We write
`→ (m)Φ,

if for every (X ,<) of cardinality ` there exists a subordering (Y ,<) of
cardinality m which is Φ-indiscernible.

Theorem

If C is stable, then for all finite Φ ⊆ FO there exists t ∈ N such that ` with
`→ (m)Φ satisfies ` ≤ mt .
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Algorithmic results based on stability

We have not been able to apply these facts algorithmically on stable
graphs, however,

we have results for nowhere dense and Ki ,j -free graph classes using
stability related methods:

Exemplaric results

Let C be nowhere dense. Then for every r ∈ N the distance-r
dominating set problem admits a polynomial kernel on C
[Kreutzer, Rabinovich, S. 16] and in fact an almost linear kernel
[Eickmeyer et al. 17].

Let C = {G ∶ Ki ,j /⊆ G}. Then the dominating set problem is
fixed-parameter tractable on C (a super simple proof for a result of
Philip et al. 12).
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The model-theoretic notions

NIP

stable

nowhere dense

bd. expansion loc. excl.
minor

excl. minor bd. loc. tw

bd. degreeplanar
bd. tw.

bd. clique w.
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NIP

Definition

A class C of graphs is NIP if for every first-order formula ϕ(x , y) there is a
constant c such that the interpretation of G ∈ C by ϕ has VC-dimension
bounded by c .

. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .
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Methods for graphs of bounded VC-dimension

Sauer-Shelah Lemma (for graphs)

If G has VC-dimension c , then for all A ⊆ V (G)

∣{N(v) ∩A ∶ v ∈ V (G)}∣ ≤ ∣A∣c .

A
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Conclusion

Many computational problems can be described elegantly in logics.

In general, the model-checking problem for first-order logic is
intractable.

We search for the most general graph classes on which it is tractable.

The classification for sparse (subgraph closed) classes is complete.

The methods of interpretations is a strong method to generalize
model-checking results. How far can we get?

The notions of stability and NIP may be very useful in this context.

▸ Remark: NIP classes are not the limit...
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