First-Order Model-Checking

Sebastian Siebertz

The Parameterized Complexity Summer School

Vienna, 03.09.2017

Model-checking

The model-checking problem

Let ${\mathcal L}$ be a logic and let ${\mathcal C}$ be a class of structures.

 $\begin{array}{ll} \mathrm{MC}(\mathcal{L},\mathcal{C}) \\ \textit{Input:} & \mathsf{Structure} \ \mathfrak{A} \in \mathcal{C}, \ \mathsf{formula} \ \varphi \in \mathcal{L} \\ \textit{Problem:} & \mathsf{Does} \ \mathfrak{A} \ \mathsf{satisfy} \ \varphi, \ \mathsf{in \ symbols}, \ \mathfrak{A} \models \varphi? \end{array}$

First-order logic FO

• Subgraph isomorphism for pattern graph H (on vertex set $\{1, \ldots, n\}$):

$$\exists x_1 \dots \exists x_n \Big(\bigwedge_{ij \in E(H)} E(x_i, x_j) \land \bigwedge_{ij \notin E(H)} \neg E(x_i, x_j)\Big)$$

• Dominating set of size at most k:

$$\exists x_1 \dots \exists x_k \forall y \Big(\bigvee_{1 \le i \le k} (y = x_i \lor E(y, x_i))\Big)$$

Algorithmic meta-theorems

Many computational problems can be described elegantly in logics.

Algorithmic meta-theorem

Every problem definable in a given logic \mathcal{L} is tractable.

- Provide uniform explanation why problems are tractable.
- Establish general algorithmic techniques for solving them.
- Corresponding intractability results for logics exhibit natural boundaries beyond which these techniques fail.

Complexity of first-order model-checking

- $\Sigma_0 = \Pi_0$: quantifier-free first-order formulas.
- For $t \ge 0$, let Σ_{t+1} be the set of all formulas

 $\exists x_1 \ldots \exists x_k \varphi$, where $\varphi \in \Pi_t$.

• For $t \ge 0$, let Π_{t+1} be the set of all formulas

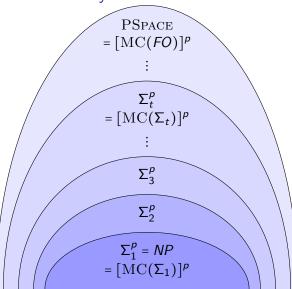
 $\forall x_1 \dots \forall x_k \varphi$, where $\varphi \in \Sigma_t$.

Example

•
$$\exists x_1 \dots \exists x_n (\bigwedge_{ij \in E(H)} E(x_i, x_j) \land \bigwedge_{ij \notin E(H)} \neg E(x_i, x_j)) \in \Sigma_1.$$

• $\exists x_1 \dots \exists x_k \forall y (\bigvee_{1 \le i \le k} (y = x_i \lor E(y, x_i)) \in \Sigma_2.$

Complexity of first-order model-checking – the polynomial hierarchy



Parameterized model-checking

The parameterized model-checking problem

Let ${\mathcal L}$ be a logic and let ${\mathcal C}$ be a class of structures.

 $\begin{array}{ll} \mathrm{MC}(\mathcal{L},\mathcal{C}) \\ & \textit{Input:} & \mathsf{Structure} \ \mathfrak{A} \in \mathcal{C}, \ \mathsf{formula} \ \varphi \in \mathcal{L} \\ & \textit{Parameter:} & |\varphi| \\ & \textit{Problem:} & \mathsf{Does} \ \mathfrak{A} \ \mathsf{satisfy} \ \varphi, \ \mathsf{in \ symbols}, \ \mathfrak{A} \vDash \varphi? \end{array}$

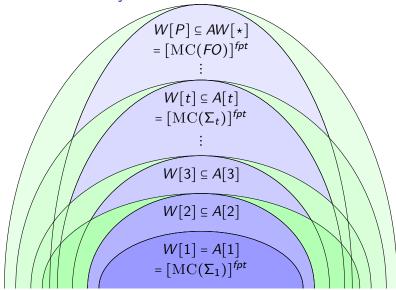
 For t≥1 let Σ_{t,1} be the set of all Σ_t formulas such that all quantifier blocks after the leading existential block have length ≤ 1.

Example

•
$$\exists x_1 \dots \exists x_n (\bigwedge_{ij \in E(H)} E(x_i, x_j) \land \bigwedge_{ij \notin E(H)} \neg E(x_i, x_j)) \in \Sigma_{1,1} = \Sigma_1.$$

• $\exists x_1 \ldots \exists x_k \forall y (\bigvee_{1 \le i \le k} (y = x_i \lor E(y, x_i)) \in \Sigma_{2,1}.$

Parameterized complexity of first-order model-checking – *W*- and *A*-hierarchy



Parameterized complexity of first-order model-checking

DOMINATING SET is W[2]-hard.

DOMINATING SET Input: Graph G and $k \in \mathbb{N}$ Parameter: k Problem: Do there exist k vertices which dominate G?

CLIQUE-DOMINATING SET is A[2]-hard.

CLIQUE-DOMINATING SET		
Input:	Graph G and $k, \ell \in \mathbb{N}$	
Parameter:	$k + \ell$	
Problem:	Do there exist k vertices which dominate every clique of size ℓ ?	

Algorithmic meta-theorems

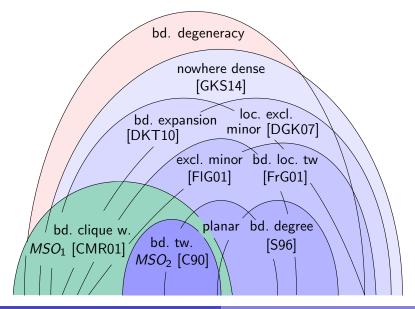
• Many computational problems can be described elegantly in logics.

Algorithmic meta-theorem

Every problem definable in a given logic \mathcal{L} is tractable on every class of structures satisfying a certain property.

- Provide a uniform explanation why natural classes of problems are tractable on a certain class of structures (which may be sufficient for practical applications).
- Establish general algorithmic techniques for solving them.
- Corresponding intractability results for logics exhibit natural boundaries beyond which these techniques fail.

Sparse graph classes with fpt model-checking



Sparse graph classes with fpt model-checking

Theorem [Grohe, Kreutzer, S. 14]

If C is nowhere dense, then MC(FO) can be solved in time $f(|\varphi|) \cdot n^{1+\varepsilon}$ on every *n*-vertex graph $G \in C$.

Theorem [Kreutzer 09], [Dvořák, Král', Thomas 11]

If C is somewhere dense and closed under taking subgraphs, then MC(FO) on C is $AW[\star]$ -complete.

Corollary (assuming FPT = AW[*])

If C is closed under taking subgraphs, then MC(FO) on C is fpt if and only if C is nowhere dense.

Methods for sparse graphs

Theorem [Grohe, Kreutzer, S., 14]

If C is nowhere dense, then MC(FO) can be solved in time $f(|\varphi|) \cdot n^{1+\varepsilon}$ on every *n*-vertex graph $G \in C$.

Methods

 Gaifman's theorem: φ(x) equivalent to Boolean combination of local formulas and basic local formulas

$$\exists x_1 \ldots \exists x_k \bigwedge_{i \neq j} dist(x_i, x_j) > 2r \land \bigwedge_i \psi^{(r)}(x_i)$$

- Find *r*-neighbourhoods in which ψ is true (*r* only depends on φ).
- Solve distance-2r independent set problem (k depends only on φ).
- Evaluate Boolean combination.

Lower bounds on somewhere dense graphs

Theorem

Let C be somewhere dense and closed under taking subgraphs. Then there exists $p \in \mathbb{N}$ such that for every graph H we have $H^p \in C$, where H^p is the *p*-subdivision of H.

Proposition

Model checking on H^p is just as hard as on H.

Model-checking beyond sparse graphs

Corollary (assuming $FPT \neq AW[*]$)

If C is closed under taking subgraphs, then MC(FO) on C is fpt if and only if C is nowhere dense.

Research program

Find the most general classes (which are not closed under taking subgraphs) which admit fpt model-checking.

- Efficient FO-model checking on specific dense graph classes.
 - Model-checking on certain interval graphs is fpt [Ganian et al. 13].
 - Model-checking on bounded width posets is fpt [Gajarský et al. 15].

 \rightarrow There is no clear candidate for a *most general* dense class with tractable model-checking.

- Assume C is a class with $MC(FO, C) \in FPT$.
- For a graph G let \overline{G} be its complement and let $\overline{C} = \{\overline{G} : G \in C\}$.

Proposition

Model-checking on $\bar{\mathcal{C}}$ is fpt.

Proof.

- Then $\bar{G} \vDash \varphi \iff G \vDash \varphi'$.
- G and φ' are efficiently computable from \overline{G} and φ .

- A simple interpretation \mathcal{J}_{φ} is a formula $\varphi(x, y)$.
- For a graph G = (V, E) define

$$\mathcal{J}_{\varphi}(G) = (V, \{uv : G \vDash \varphi(u, v) \lor \varphi(v, u)\}).$$

Example

On the previous slide we had $\varphi = \neg E(x, y)$ and $\mathcal{J}_{\varphi}(G) = \overline{G}$.

Interpretation Lemma

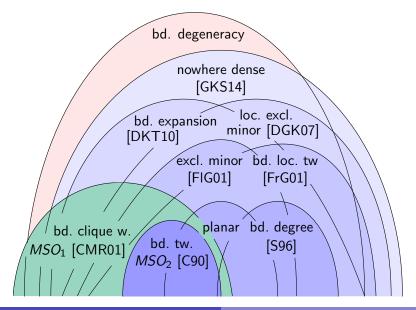
Replace in a formula ψ every occurrence of E(x, y) by $(\varphi(x, y) \lor \varphi(y, x))$ to obtain $\mathcal{J}_{\varphi}(\psi)$. Then for every graph G

$$\mathcal{J}_{\varphi}(G) \vDash \psi \Longleftrightarrow G \vDash \mathcal{J}_{\varphi}(\psi).$$

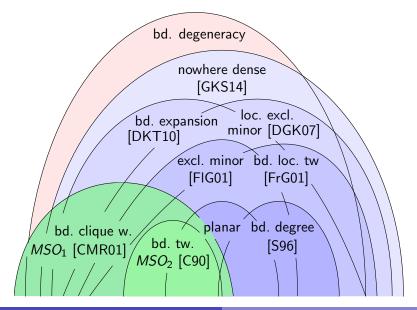
- \bullet Let ${\mathcal C}$ be a class with efficient model-checking.
- Let $\varphi(x, y)$ be a formula and $\mathcal{J}_{\varphi}(\mathcal{C}) = \{\mathcal{J}_{\varphi}(\mathcal{G}) : \mathcal{G} \in \mathcal{C}\}.$
 - On input $H = \mathcal{J}_{\varphi}(G) \in \mathcal{J}_{\varphi}(\mathcal{C})$ and ψ :
 - Compute $\mathcal{J}_{\varphi}(\psi)$.
 - We have $H \vDash \psi \iff G \vDash \mathcal{J}_{\varphi}(\psi)$.
 - $\mathcal{G} \vDash \mathcal{J}_{\varphi}(\psi)$ can be decided efficiently.

Problem: We do not know how to compute G from $\mathcal{J}_{\varphi}(G)$.

Sparse graph classes with fpt model-checking



Sparse graph classes with fpt model-checking



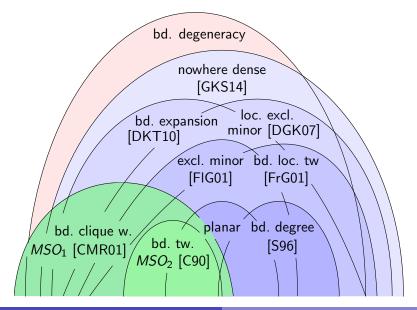
Theorem

• C has bounded clique-width $\iff C$ is an MSO_1 -interpretation of a class of colored trees.

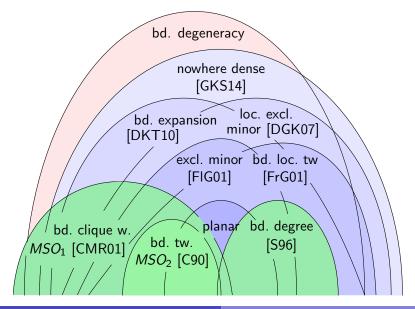
 \Rightarrow an interpretation of a bounded clique-width graph has again bounded clique-width.

- A clique-decomposition of the input graph can be computed/approximated efficiently.
- *MSO*₁/*FO* model-checking on interpretations of bounded clique-width classes is fpt.

Sparse graph classes with fpt model-checking



Sparse graph classes with fpt model-checking



Definition

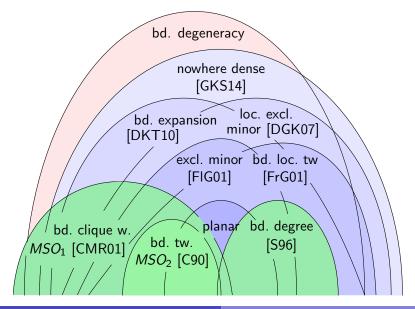
A class C of graphs is *near uniform* with parameter k if it satisfies certain conditions on the *near-k-twin relation* defined by

$$u \sim_k v \iff |\mathcal{N}(u) \bigtriangleup \mathcal{N}(v)| \le k.$$

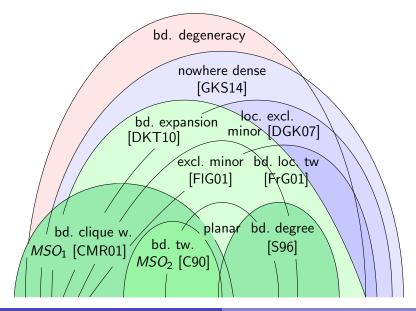
Theorem [Gajarský et al. 16]

- C near-uniform $\iff C$ interpretation of a bounded degree class.
- A bounded degree pre-image and an interpretation producing the input graph can be computed efficiently from a near uniform input graph.
- Consequently, model-checking on near uniform graphs is fpt.

Sparse graph classes with fpt model-checking



Work in progress



Open problem

Open problem

- Let $\ensuremath{\mathcal{C}}$ be nowhere dense,
- $\varphi(x,y) \in FO$, and
- $H = \mathcal{J}_{\varphi}(G)$.
- Does there exist for every p∈ N and every ε > 0 a coloring of V(H) with g(p,ε) ⋅ n^ε colors such that the subgraph of H induced by any p color classes has clique-width/shrub-depth at most f(p)?

Model-checking beyond sparse graphs - Model-theory

Question

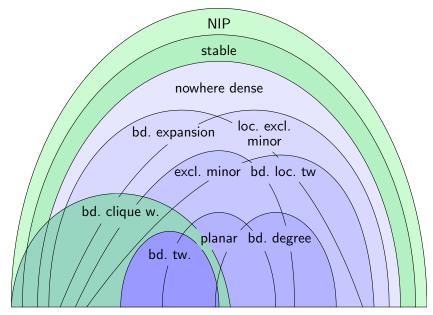
Could tractability of FO on nowhere dense classes be merely an artifact of tractability of FO on a much larger class which happens to coincide with nowhere dense classes if closed under subgraphs?

Theorem [Adler, Adler 14]

Let ${\mathcal C}$ be a class of graphs which is closed under taking subgraphs. The following are equivalent.

- \mathcal{C} is nowhere dense.
- $\mathcal C$ is stable.
- C does not have the independence property (is NIP).

The model-theoretic notions



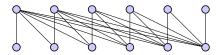
Stability

Research program

There is a huge number of combinatorial results which wait to be carried from infinite model theory to the finite.

Definition

A class C of graphs is *stable* if for every first-order formula $\varphi(\overline{x}, \overline{y})$ there is a constant c such that the interpretation of $G \in C$ by φ excludes a *ladder* of length c as an induced subgraph.



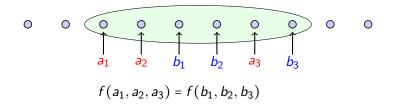
Definition

Let (X, <) be a linearly ordered set. Let

$$[(X, <)]^{k} = \{(x_{1}, \ldots, x_{k}) \in X^{k}, x_{i} < x_{j} \text{ for } i < j\}.$$

Let $f: [(X, <)]^k \to Z$.

A subordering (Y, <) is *f*-indiscernible if *f* is constant on $[(Y, <)]^k$, i.e., $f(\bar{a}) = f(\bar{b})$ for all increasing *k*-tuples from *Y*.



Example

Let G = (V, E) be a graph, let < be an arbitrary order of V and let

$$f_E : [(V, <)]^2 \to \{0, 1\} : uv \mapsto \begin{cases} 1 & \text{if } uv \in E(G) \\ 0 & \text{otherwise.} \end{cases}$$

(Y, <) is f_E -indiscernible if Y induces an edgeless graph or a complete graph in G.

Finite Ramsey Theorem

For all $k, m, n \in \mathbb{N}$ there exists $\ell \in \mathbb{N}$ such that

$$\ell \to (m)_n^k,$$

i.e., for every (X, <) of cardinality ℓ and $f : [(X, <)]^k \to \{1, ..., n\}$ there exists a subordering (Y, <) of cardinality m which is f-indiscernible.

Example (continued)

Number ℓ such that $\ell \to (m)_2^2$ (as required for the function f_E) satisfies

$$(1+o(1))\frac{m}{\sqrt{2}e}2^{m/2} \le \ell \le (1+o(1))\frac{4^{m-1}}{\sqrt{\pi}m}.$$

Definition

Let \mathfrak{A} be a structure with universe A, < a linear order on A and let Φ be a set of formulas. A subordering (Y, <) of (A, <) is Φ -*indiscernible* if for every $\varphi(x_1, \ldots, x_k) \in \Phi$ and every pair $\bar{a}, \bar{b} \in [(A, <)]^k$ we have

$$\mathfrak{A}\vDash\varphi(\bar{a})\Longleftrightarrow\mathfrak{A}\vDash\varphi(\bar{b}).$$

We write

$$\ell \to (m)_{\Phi},$$

if for every (X, <) of cardinality ℓ there exists a subordering (Y, <) of cardinality *m* which is Φ -indiscernible.

Theorem

If \mathcal{C} is stable, then for all finite $\Phi \subseteq FO$ there exists $t \in \mathbb{N}$ such that ℓ with $\ell \to (m)_{\Phi}$ satisfies $\ell \leq m^t$.

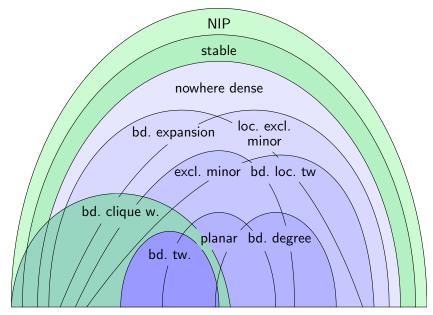
Algorithmic results based on stability

- We have not been able to apply these facts algorithmically on stable graphs, however,
- we have results for nowhere dense and $K_{i,j}$ -free graph classes using stability related methods:

Exemplaric results

- Let C be nowhere dense. Then for every r ∈ N the distance-r dominating set problem admits a polynomial kernel on C [Kreutzer, Rabinovich, S. 16] and in fact an almost linear kernel [Eickmeyer et al. 17].
- Let $C = \{G : K_{i,j} \notin G\}$. Then the dominating set problem is fixed-parameter tractable on C (a super simple proof for a result of Philip et al. 12).

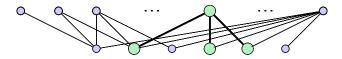
The model-theoretic notions



NIP

Definition

A class C of graphs is *NIP* if for every first-order formula $\varphi(\overline{x}, \overline{y})$ there is a constant c such that the interpretation of $G \in C$ by φ has VC-dimension bounded by c.

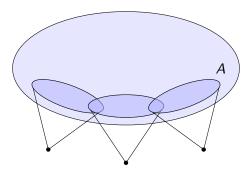


Methods for graphs of bounded VC-dimension

Sauer-Shelah Lemma (for graphs)

If G has VC-dimension c, then for all $A \subseteq V(G)$

 $|\{N(v) \cap A : v \in V(G)\}| \leq |A|^c.$



Conclusion

- Many computational problems can be described elegantly in logics.
- In general, the model-checking problem for first-order logic is intractable.
- We search for the most general graph classes on which it is tractable.
- The classification for sparse (subgraph closed) classes is complete.
- The methods of interpretations is a strong method to generalize model-checking results. How far can we get?
- The notions of stability and NIP may be very useful in this context.
 - Remark: NIP classes are not the limit...