
Representative Families and Kernels

Fahad Panolan 

Department of Informatics,  
University of Bergen, Norway

1

Parameterized Complexity Summer School 
Vienna, 3 Sep 2017



Outline 

2

1. Vertex Cover, Representative Family, more 
applications, and its generalisation to matrices 

2. Overview of an alternate randomised 
polynomial kernel for Vertex Cover above 
Maximum Matching
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Input: A graph G and an integer k  
Question : Is there a vertex cover of size k
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• Delete all but k(k+1)+1 edges 
• Delete isolated vertices 
• The resulting graph has size O(k2).
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If X is a V.C of G, then X is a 
V.C of H

⇒(     )

(H,k)        (G,k)≡
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…
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• Delete all but k(k+1)+1 edges 
• Delete isolated vertices 
• The resulting graph has size O(k2).

G             H

If X is a V.C of G, then X is a 
V.C of H

Proof:  H is a subgraph of G

⇒(     )

(H,k)        (G,k)≡
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• Delete all but k(k+1)+1 edges 
• Delete isolated vertices 
• The resulting graph has size O(k2).
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Let X be a k size subset of V(H).   
If X is a V.C of H, then X is a V.C 

of G

⇐(    )
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• Delete all but k(k+1)+1 edges 
• Delete isolated vertices 
• The resulting graph has size O(k2).

G             H

  
Let X be a k size subset of V(H).   
If X is a V.C of H, then X is a V.C 

of G

If X is not a V.C of G, then X is 
not a V.C of H

⇐(    )



A Simple Kernel for VC

17

…

>k+1

• Delete all but k(k+1)+1 edges 
• Delete isolated vertices 
• The resulting graph has size O(k2).

G             H

Let X be a k size subset of V(H).   
If X is not a V.C of G, then X is not 

a V.C of H

…

=k+1



A Simple Kernel for VC

18

…

>k+1

• Delete all but k(k+1)+1 edges 
• Delete isolated vertices 
• The resulting graph has size O(k2).

G             H

Let X be a k size subset of V(H).   
If X is not a V.C of G, then X is not 

a V.C of H

G = G0      G1     G2  . . . . Gt      Gt+1=H
…

=k+1
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• Delete all but k(k+1)+1 edges 
• Delete isolated vertices 
• The resulting graph has size O(k2).

G             H

Let X be a k size subset of V(H).   
If X is not a V.C of G, then X is not 

a V.C of H

G = G0      G1     G2  . . . . Gt      Gt+1=H

Let X be a k size subset of V(Gi+1).   
If X is not a V.C of Gi, then X is not a 

V.C of Gi+1

…

=k+1
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G = G0      G1     G2  . . . . Gt      Gt+1=H

Proof:               
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Let X be a k size subset of V(Gi+1).   
If X is not a V.C of Gi, then X is not a 

V.C of Gi+1

• Delete all but k(k+1)+1 edges 
• Delete isolated vertices 
• The resulting graph has size O(k2).
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Proof:              Case 2: Gi      Gi+1 . 

Let e be an edge  in Gi not covered by 
X. If e is in E(Gi+1), then we are done. 

Otherwise, we have deleted some 
edges.   
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Proof:              Case 2: Gi      Gi+1 . 

Let e be an edge  in Gi not covered by 
X. If e is in E(Gi+1), then we are done. 

Otherwise, we have deleted some 
edges. That is, |E(Gi+1)|=k(k+1)+1 and 
max degree of Gi+1 is  k+1.  
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G = G0      G1     G2  . . . . Gt      Gt+1=H

Proof:              Case 2: Gi      Gi+1 . 

Let e be an edge  in Gi not covered by 
X. If e is in E(Gi+1), then we are done. 

Otherwise, we have deleted some 
edges. That is, |E(Gi+1)|=k(k+1)+1 and 
max degree of Gi+1 is  k+1. So X cover 
at most k(k+1) edges. One edge will be 
left uncovered. 

…
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Let X be a k size subset of V(Gi+1).   
If X is not a V.C of Gi, then X is not a 

V.C of Gi+1

• Delete all but k(k+1)+1 edges 
• Delete isolated vertices 
• The resulting graph has size O(k2).
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(G,k)

Polytime Algo

(H ≤ G, k)

• For any k size set X, if  X is 
not a V.C of G, then X is not a 
V.C of H



Summery of VC kernel

30

(G,k) (E(G),k)

(H ≤ G, k)
F=E(H) ⊆ E(G) 

• For any k size set X, if there is an 
edge {u,v} in E(G) such that  
X ∩ {u,v}=∅ then there is an edge 
{u’,v’} in F such that X ∩ {u’,v’}=∅

Polytime Algo

• For any k size set X, if  X is 
not a V.C of G, then X is not a 
V.C of H

Polytime Algo
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(G,k) (E(G),k)

(H ≤ G, k)
F=E(H) ⊆ E(G) 

F is called k-representative family of E(G)

Polytime Algo

• For any k size set X, if  X is 
not a V.C of G, then X is not a 
V.C of H

Polytime Algo

• For any k size set X, if there is an 
edge {u,v} in E(G) such that  
X ∩ {u,v}=∅ then there is an edge 
{u’,v’} in F such that X ∩ {u’,v’}=∅
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• E  ⊆          , where V is a set. 
• k is a positive integer  
• A subfamily F ⊆ E is called a k-representative family if: 
  

for any k-size set X if there is a set Z∈E s.t  X ∩ Z = ∅,  
then there is a set Z’∈F s.t  X ∩ Z’ = ∅

(  )V 
2
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• E  ⊆          , where V is a set. 
• k is a positive integer  
• A subfamily F ⊆ E is called a k-representative family if: 
  

for any k-size set X if there is a set Z∈E s.t  X ∩ Z = ∅,  
then there is a set Z’∈F s.t  X ∩ Z’ = ∅|F| Run time

≤ k(k+1)+1 Polynomial in |E|

(  )V 
2
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• E  ⊆          , where V is a set. 
• k is a positive integer  
• A subfamily F ⊆ E is called a k-representative family if: 
  

for any k-size set X if there is a set Z∈E s.t  X ∩ Z = ∅,  
then there is a set Z’∈F s.t  X ∩ Z’ = ∅

Proof: The V.C kernel we have seen.

|F| Run time

≤ k(k+1)+1 Polynomial in |E|

(  )V 
2
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• E  ⊆          , where V is a set and p is a positive integer 
• k is a positive integer  
• A subfamily F ⊆ E is called a k-representative family if: 
  

for any k-size set X if there is a set Z∈E s.t  X ∩ Z = ∅,  
then there is a set Z’∈F s.t  X ∩ Z’ = ∅

(  )V 
p
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• E  ⊆          , where V is a set and p is a positive integer 
• k is a positive integer  
• A subfamily F ⊆ E is called a k-representative family if: 
  

for any k-size set X if there is a set Z∈E s.t  X ∩ Z = ∅,  
then there is a set Z’∈F s.t  X ∩ Z’ = ∅

(  )V 
p

|F| Run time Ref.

O(      |E| )   [Fomin et al. 2013]k + p
p

⎛
⎝⎜

⎞
⎠⎟

k + p
p

⎛
⎝⎜

⎞
⎠⎟
w − 1
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Input : A family E ⊆           of a set U and an integer k 

Qn: Is there a k-size subset of U which hits all set in E  
(  )U 

5
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Compute a k-representative family F of size           ≤ O(k5).  

Output (F , k).  
(  )k+5  

5

Input : A family E ⊆           of a set U and an integer k 

Qn: Is there a k-size subset of U which hits all set in E  
(  )U 

5
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Compute a k-representative family F of size           ≤ O(k5).  

Output (F , k).  
Proof: (    )

(  )k+5  
5

⇒

Input : A family E ⊆           of a set U and an integer k 

Qn: Is there a k-size subset of U which hits all set in E  
(  )U 

5
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Compute a k-representative family F of size           ≤ O(k5).  

Output (F , k).  
Proof: (    )

(  )k+5  
5

⇒

 (E, k) is Yes instance ⇒ (F, k) is Yes instance. 

Input : A family E ⊆           of a set U and an integer k 

Qn: Is there a k-size subset of U which hits all set in E  
(  )U 

5
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Compute a k-representative family F of size           ≤ O(k5).  

Output (F , k).  
Proof: (    )

(  )k+5  
5

⇐

Input : A family E ⊆           of a set U and an integer k 

Qn: Is there a k-size subset of U which hits all set in E  
(  )U 

5
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Compute a k-representative family F of size           ≤ O(k5).  

Output (F , k).  
Proof: (    )

(  )k+5  
5

Suppose (F , k) is Yes instance (X is a hitting set).  
⇐

Input : A family E ⊆           of a set U and an integer k 

Qn: Is there a k-size subset of U which hits all set in E  
(  )U 

5
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Compute a k-representative family F of size           ≤ O(k5).  

Output (F , k).  
Proof: (    )

(  )k+5  
5

Suppose (F , k) is Yes instance (X is a hitting set).  
We claim X is hitting set for E. Suppose not, then there is Y ∈ E 
s.t X ∩ Y = ∅. 

⇐

Input : A family E ⊆           of a set U and an integer k 

Qn: Is there a k-size subset of U which hits all set in E  
(  )U 

5
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Compute a k-representative family F of size           ≤ O(k5).  

Output (F , k).  
Proof: (    )

(  )k+5  
5

Suppose (F , k) is Yes instance (X is a hitting set).  
We claim X is hitting set for E. Suppose not, then there is Y ∈ E 
s.t X ∩ Y = ∅. This implies there is Y’∈F s.t X ∩ Y’ =∅.  

contradiction!

⇐

Input : A family E ⊆           of a set U and an integer k 

Qn: Is there a k-size subset of U which hits all set in E  
(  )U 

5



3-Set Packing

45

Input : A family E ⊆           of a set U and an integer k 

Qn: Are there k sets in E which are pairwise disjoint  

U 
3(  )
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Compute a (3k-3)-representative family F of size        ≤ O(k3).  

Output (F , k). 
( )3k 

3

Input : A family E ⊆           of a set U and an integer k 

Qn: Are there k sets in E which are pairwise disjoint  

U 
3(  )
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Compute a (3k-3)-representative family F of size        ≤ O(k3).  

Output (F , k). 

Proof: (     )

( )3k 
3

Input : A family E ⊆           of a set U and an integer k 

Qn: Are there k sets in E which are pairwise disjoint  

U 
3(  )

⇒
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Compute a (3k-3)-representative family F of size        ≤ O(k3).  

Output (F , k). 

Proof: (     )

( )3k 
3

Input : A family E ⊆           of a set U and an integer k 

Qn: Are there k sets in E which are pairwise disjoint  

U 
3(  )

⇒
Let S={Y1,…,Yk} is a solution such that  |S∩F| is maximised.   
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Compute a (3k-3)-representative family F of size        ≤ O(k3).  

Output (F , k). 

Proof: (     )

( )3k 
3

Input : A family E ⊆           of a set U and an integer k 

Qn: Are there k sets in E which are pairwise disjoint  

U 
3(  )

⇒
Let S={Y1,…,Yk} is a solution such that  |S∩F| is maximised.   

If S ⊆ F, then we are done.  
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Compute a (3k-3)-representative family F of size        ≤ O(k3).  

Output (F , k). 

Proof: (     )

( )3k 
3

Input : A family E ⊆           of a set U and an integer k 

Qn: Are there k sets in E which are pairwise disjoint  

U 
3(  )

⇒
Let S={Y1,…,Yk} is a solution such that  |S∩F| is maximised.   

If S ⊆ F, then we are done. Otherwise let Y∈ S \ F.   

Let X=(Y1∪Y2…∪Yk)\Y.   
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Compute a (3k-3)-representative family F of size        ≤ O(k3).  

Output (F , k). 

Proof: (     )

( )3k 
3

Input : A family E ⊆           of a set U and an integer k 

Qn: Are there k sets in E which are pairwise disjoint  

U 
3(  )

⇒
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Compute a (3k-3)-representative family F of size        ≤ O(k3).  

Output (F , k). 

Proof: (     )
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Compute a (3k-3)-representative family F of size        ≤ O(k3).  

Output (F , k). 

Proof: (     )

( )3k 
3

Input : A family E ⊆           of a set U and an integer k 

Qn: Are there k sets in E which are pairwise disjoint  

U 
3(  )

⇒
Let S={Y1,…,Yk} is a solution such that  |S∩F| is maximised.   

If S ⊆ F, then we are done. Otherwise let Y∈ S \ F.   

Let X=(Y1∪Y2…∪Yk)\Y. Notice that |X|=3k-3 and X ∩ Y = ∅.  

This implies there is Y’∈F s.t X ∩ Y’ =∅. Then by replacing Y with Y’  

in S, we get a solution S’ s.t |S’∩F|> |S∩F|.    
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Compute a (3k-3)-representative family F of size        ≤ O(k3).  

Output (F , k). 

Proof: (     )

( )3k 
3

Input : A family E ⊆           of a set U and an integer k 

Qn: Are there k sets in E which are pairwise disjoint  

U 
3(  )

⇒
Let S={Y1,…,Yk} is a solution such that  |S∩F| is maximised.   

If S ⊆ F, then we are done. Otherwise let Y∈ S \ F.   

Let X=(Y1∪Y2…∪Yk)\Y. Notice that |X|=3k-3 and X ∩ Y = ∅.  

This implies there is Y’∈F s.t X ∩ Y’ =∅. Then by replacing Y with Y’  

in S, we get a solution S’ s.t |S’∩F|> |S∩F|.    Contradiction! 
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Compute a (3k-3)-representative family F of size        ≤ O(k3).  

Output (F , k). 

Proof: (     )

( )3k 
3

Input : A family E ⊆           of a set U and an integer k 

Qn: Are there k sets in E which are pairwise disjoint  

U 
3(  )

⇐
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Compute a (3k-3)-representative family F of size        ≤ O(k3).  

Output (F , k). 

Proof: (     )

( )3k 
3

Input : A family E ⊆           of a set U and an integer k 

Qn: Are there k sets in E which are pairwise disjoint  

U 
3(  )

⇐

F is a subset of E
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Generalization to Matrices
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[ ]…

   v1  v2  ….  vn{
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[ ]…

   v1  v2  ….  vn{
C

{r1 
r2 
… 
rm

R

Definitions from Linear Algebra
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[ ]…

   v1  v2  ….  vn{
C

{r1 
r2 
… 
rm

R
A set of vectors v1,…,vt is linearly 
independent if there is no scalars 
a1,…,at, not all equal to 0 such that 

∑ aivi = 0

Definitions from Linear Algebra
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[ ]…

   v1  v2  ….  vn{
C

{r1 
r2 
… 
rm

R

∑ aivi = 0

• Basis of C is a set of maximum no. of L.I vectors in C 
• rank(C) = max. no. L.I vectors in C = size of a basis of C 

Definitions from Linear Algebra

A set of vectors v1,…,vt is linearly 
independent if there is no scalars 
a1,…,at, not all equal to 0 such that 
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[ ]…

   v1  v2  ….  vn{
C
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r2 
… 
rm
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∑ aivi = 0

• Basis of C is a set of maximum no. of L.I vectors in C 
• rank(C) = max. no. L.I vectors in C = size of a basis of C 
• rank(C) = rank(R) 

Definitions from Linear Algebra

A set of vectors v1,…,vt is linearly 
independent if there is no scalars 
a1,…,at, not all equal to 0 such that 
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[ ]…

   v1  v2  ….  vn{
C

{r1 
r2 
… 
rm

R

∑ aivi = 0

• Basis of C is a set of maximum no. of L.I vectors in C 
• rank(C) = max. no. L.I vectors in C = size of a basis of C 
• rank(C) = rank(R) 
• span(C) = set of all vectors which are linear combinations of C 

Definitions from Linear Algebra

A set of vectors v1,…,vt is linearly 
independent if there is no scalars 
a1,…,at, not all equal to 0 such that 
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[ ]…

   v1  v2  ….  vn{
C

{r1 
r2 
… 
rm

R

∑ aivi = 0

• Basis of C is a set of maximum no. of L.I vectors in C 
• rank(C) = max. no. L.I vectors in C = size of a basis of C 
• rank(C) = rank(R) 
• span(C) = set of all vectors which are linear combinations of C 
• rank(span(C))=rank(C) 

Definitions from Linear Algebra

A set of vectors v1,…,vt is linearly 
independent if there is no scalars 
a1,…,at, not all equal to 0 such that 
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[ ]…

   v1  v2  ….  vn{
V

• E := a family of subsets of V, where 
each set size is p 

• k is a postive integer   

• A subfamily F ⊆ E is called a k-representative family if: 

for any k-size set X if there is a set Z∈E s.t X ∪ Z is L.I, 
then there is a set Z’ in F s.t X ∪ Z’ is L.I. 
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[ ]…

   v1  v2  ….  vn{
V

• E := a family of subsets of V, where 
each set size is p 

• k is a postive integer   

• A subfamily F ⊆ E is called a k-representative family if: 

for any k-size set X if there is a set Z∈E s.t X ∪ Z is L.I, 
then there is a set Z’ in F s.t X ∪ Z’ is L.I. 

|F| Run time Ref.

            |E| nO(1)    [Lokshtanov et al. 2013]k + p
p

⎛
⎝⎜

⎞
⎠⎟

k + p
p

⎛
⎝⎜

⎞
⎠⎟
w − 1
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v1

v2

v4

v3

v5 v8

v6

v7 [ ]1 
0 
0 
0 
1

1 
0 
0 
0 
1

1 
0 
0 
0 
1

1 
0 
0 
0 
1

1 
0 
0 
0 
1

0 
1 
0 
0 
1

0 
0 
0 
1 
1

0 
0 
1 
0 
1
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v1

v2

v4

v3

v5 v8

v6

v7 [ ]1 
0 
0 
0 
1

1 
0 
0 
0 
1

1 
0 
0 
0 
1

1 
0 
0 
0 
1

1 
0 
0 
0 
1

0 
1 
0 
0 
1

0 
0 
0 
1 
1

0 
0 
1 
0 
1

rank({v3,v4,v5,v6}) = Max no. L.I vectors in it = 4
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v1

v2

v4

v3

v5 v8

v6

v7 [ ]1 
0 
0 
0 
1

1 
0 
0 
0 
1

1 
0 
0 
0 
1

1 
0 
0 
0 
1

1 
0 
0 
0 
1

0 
1 
0 
0 
1

0 
0 
0 
1 
1

0 
0 
1 
0 
1

rank({v1,v2,v3,v6,v7,v8}) = Max no. L.I vectors in it = 2
rank({v3,v4,v5,v6}) = Max no. L.I vectors in it = 4



Rank Vertex Cover

70

v1

v2

v4

v3

v5 v8

v6

v7 [ ]1 
0 
0 
0 
1

1 
0 
0 
0 
1

1 
0 
0 
0 
1

1 
0 
0 
0 
1

1 
0 
0 
0 
1

0 
1 
0 
0 
1

0 
0 
0 
1 
1

0 
0 
1 
0 
1

rank({v1,v2,v3,v6,v7,v8}) = Max no. L.I vectors in it = 2
rank({v3,v4,v5,v6}) = Max no. L.I vectors in it = 4

Input: A graph G, a matrix M, and an integer k  
Question : Is there a vertex cover of rank k
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• G has a V.C of size k iff (G,M) has V.C of rank k

v

v

v

v

v v

v
v

, k ≤(          )v

v

v

v

v v

v
v

, k , [ ]1
1

…
1

10
0

(                     )
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[ ]…

   v1  v2  ….  vn

G, k, M=(                )
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[ ]…

   v1  v2  ….  vn

G, k, M=

[ ]M

M0

0
Q=

u u’

(                )
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[ ]…

   v1  v2  ….  vn

G, k, M=

[ ]M

M0

0
Q=

For any edge {u,v} create a set {u,v’} 
of two vectors in Q

u u’

(                )
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[ ]…

   v1  v2  ….  vn

G, k, M=

[ ]M

M0

0
Q=

For any edge {u,v} create a set {u,v’} 
of two vectors in Q

u u’

E is the collection of sets of 
vectors created

(                )
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[ ]M

M0

0
Q=

u u’

E={{u,v’} : {u,v} in E(G)}
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[ ]M

M0

0
Q=

u u’

E={{u,v’} : {u,v} in E(G)}

• Compute 2k-representative family F of E (|F|=O(k2))  
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[ ]M

M0

0
Q=

u u’

E={{u,v’} : {u,v} in E(G)}

• Compute 2k-representative family F of E (|F|=O(k2))  
• Delete all edges which are not  part of F in G 
• Delete isolated vertices from G and M  
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[ ]M

M0

0
Q=

u u’

E={{u,v’} : {u,v} in E(G)}

• Compute 2k-representative family F of E (|F|=O(k2))  
• Delete all edges which are not  part of F in G 
• Delete isolated vertices from G and M  
• Call the new instance (G’,M’,k) 
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[ ]M

M0

0
Q=

u u’

E={{u,v’} : {u,v} in E(G)}

• Compute 2k-representative family F of E (|F|=O(k2))  
• Delete all edges which are not  part of F in G 
• Delete isolated vertices from G and M  
• Call the new instance (G’,M’,k) 
• Size of G’ is O(k2)  
• No. of columns in M’ is O(k2)  
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[ ]M

M0

0
Q=

u u’

E={{u,v’} : {u,v} in E(G)}

• Compute 2k-representative family F of E (|F|=O(k2))  
• Delete all edges which are not  part of F in G 
• Delete isolated vertices from G and M  
• Call the new instance (G’,M’,k) 
• Size of G’ is O(k2)  
• No. of columns in M’ is O(k2)  
• The number of no. of rows in M’ is not bounded   
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[ ]M

M0

0
Q=

u u’

E={{u,v’} : {u,v} in E(G)}

• Compute 2k-representative family F of E (|F|=O(k2))  
• Delete all edges which are not  part of F in G 
• Delete isolated vertices from G and M  
• Call the new instance (G’,M’,k) 
• Size of G’ is O(k2)  
• No. of columns in M’ is O(k2)  
• The number of no. of rows in M’ is not bounded   

Just see the correctness proof of this reduction
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• G’ is a subgraph of G 
• M’ is obtained by deleting some columns from M 
• If X is V.C of rank k in G, then X ∩ V(G’) is a V.C of rank k 

in G’ 
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• Let X’ is a V.C of G’ and rank(X’)=k 

  

 Proof: Reverse direction
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• Let X’ is a V.C of G’ and rank(X’)=k 
• We claim X=span(X’)∩M is a V.C of G. 

  

 Proof: Reverse direction
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• Let X’ is a V.C of G’ and rank(X’)=k 
• We claim X=span(X’)∩M is a V.C of G. 
• Suppose not. Let {u,v} be an edge not covered by X  

  

 Proof: Reverse direction
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• Let X’ is a V.C of G’ and rank(X’)=k 
• We claim X=span(X’)∩M is a V.C of G. 
• Suppose not. Let {u,v} be an edge not covered by X  
• Let B be a basis of X  

  

 Proof: Reverse direction
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• Let X’ is a V.C of G’ and rank(X’)=k 
• We claim X=span(X’)∩M is a V.C of G. 
• Suppose not. Let {u,v} be an edge not covered by X  
• Let B be a basis of X  
• |B|=k  

 Proof: Reverse direction
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• Let X’ is a V.C of G’ and rank(X’)=k 
• We claim X=span(X’)∩M is a V.C of G. 
• Suppose not. Let {u,v} be an edge not covered by X  
• Let B be a basis of X  
• |B|=k  
• B ∪ {u}, B ∪ {v} are L.I

 Proof: Reverse direction
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• Let X’ is a V.C of G’ and rank(X’)=k 
• We claim X=span(X’)∩M is a V.C of G. 
• Suppose not. Let {u,v} be an edge not covered by X  
• Let B be a basis of X  
• |B|=k 
• B ∪ {u}, B ∪ {v} are L.I

[ ]B

B0

0
u

Q= …

v’

B1 B2

…

 Proof: Reverse direction
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• Let X’ is a V.C of G’ and rank(X’)=k 
• We claim X=span(X’)∩M is a V.C of G. 
• Suppose not. Let {u,v} be an edge not covered by X  
• Let B be a basis of X  
• |B|=k  
• B ∪ {u}, B ∪ {v} are L.I

[ ]B

B0

0
u

Q= …

v’

• B1 ∪ {u} is L.I 
• B2 ∪ {v’} is L.I 

B1 B2

…

 Proof: Reverse direction



92

• Let X’ is a V.C of G’ and rank(X’)=k 
• We claim X=span(X’)∩M is a V.C of G. 
• Suppose not. Let {u,v} be an edge not covered by X  
• Let B be a basis of X  
• |B|=k  
• B ∪ {u}, B ∪ {v} are L.I

[ ]B

B0

0
u

Q= …

v’

• B1 ∪ {u} is L.I 
• B2 ∪ {v’} is L.I 
• B1 ∪ B2 ∪ {u,v’} is L.I 

B1 B2

…

 Proof: Reverse direction
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• Let X’ is a V.C of G’ and rank(X’)=k 
• We claim X=span(X’)∩M is a V.C of G. 
• Suppose not. Let {u,v} be an edge not covered by X  
• Let B be a basis of X  
• |B|=k  
• B ∪ {u}, B ∪ {v} are L.I

[ ]B

B0

0
u

Q= …

v’

• B1 ∪ {u} is L.I 
• B2 ∪ {v’} is L.I 
• B1 ∪ B2 ∪ {u,v’} is L.I 
• |B1 ∪ B2 |=2k 

B1 B2

…

 Proof: Reverse direction
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• Let X’ is a V.C of G’ and rank(X’)=k 
• We claim X=span(X’)∩M is a V.C of G. 
• Suppose not. Let {u,v} be an edge not covered by X  
• Let B be a basis of X  
• |B|=k  
• B ∪ {u}, B ∪ {v} are L.I

[ ]B

B0

0
u

Q= …

v’

• B1 ∪ {u} is L.I 
• B2 ∪ {v’} is L.I 
• B1 ∪ B2 ∪ {u,v’} is L.I 
• |B1 ∪ B2 |=2k 
• From the def. of rep. family 

there is {w,z’} in F s.t.  
B1∪B2∪{w,z’} is L.I 

B1 B2

…

 Proof: Reverse direction
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• Let X’ is a V.C of G’ and rank(X’)=k 
• We claim X=span(X’)∩M is a V.C of G. 
• Suppose not. Let {u,v} be an edge not covered by X  
• Let B be a basis of X  
• |B|=k  
• B ∪ {u}, B ∪ {v} are L.I

[ ]B

B0

0
u

Q= …

v’

• B1 ∪ {u} is L.I 
• B2 ∪ {v’} is L.I 
• B1 ∪ B2 ∪ {u,v’} is L.I 
• |B1 ∪ B2 |=2k 
• From the def. of rep. family 

there is {w,z’} in F s.t.  
B1∪B2∪{w,z’} is L.I 

• B ∪ {w}, B ∪ {z} are L.I 

B1 B2

…

 Proof: Reverse direction
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• Let X’ is a V.C of G’ and rank(X’)=k 
• We claim X=span(X’)∩M is a V.C of G. 
• Suppose not. Let {u,v} be an edge not covered by X  
• Let B be a basis of X  
• |B|=k  
• B ∪ {u}, B ∪ {v} are L.I

[ ]B

B0

0
u

Q= …

v’

• B1 ∪ {u} is L.I 
• B2 ∪ {v’} is L.I 
• B1 ∪ B2 ∪ {u,v’} is L.I 
• |B1 ∪ B2 |=2k 
• From the def. of rep. family 

there is {w,z’} in F s.t.  
B1∪B2∪{w,z’} is L.I 

• B ∪ {w}, B ∪ {z} are L.I 
• That is, X’ will not cover the 

edge {w,z} in G’
B1 B2

…

 Proof: Reverse direction
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• Let X’ is a V.C of G’ and rank(X’)=k 
• We claim X=span(X’)∩M is a V.C of G. 
• Suppose not. Let {u,v} be an edge not covered by X  
• Let B be a basis of X  
• |B|=k 
• B ∪ {u}, B ∪ {v} are L.I

[ ]B

B0

0
u

Q= …

v’

• B1 ∪ {u} is L.I 
• B2 ∪ {v’} is L.I 
• B1 ∪ B2 ∪ {u,v’} is L.I 
• |B1 ∪ B2 |=2k 
• From the def. of rep. family 

there is {w,z’} in E s.t.  
B1∪B2∪{w,z’} is L.I 

• B ∪ {w}, B ∪ {z} are L.I 
• That is, X’ will not cover the 

edge {w,z} in G’
B1 B2

…

Contradiction!

 Proof: Reverse direction
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• We got (G’,M’,k), where size of G’ and no. columns in M’ is 
O(k2). 

   

Bound on no. of rows 
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• We got (G’,M’,k), where size of G’ and no. columns in M’ is 
O(k2). 

• To bound the number of rows, we delete all rows except 
row vectors in a basis.  
   

Bound on no. of rows 



100

• We got (G’,M’,k), where size of G’ and no. columns in M’ is 
O(k2). 

• To bound the number of rows, we delete all rows except 
row vectors in a basis.  

•  Row rank = column rank implies that the size of row basis is 
O(k2).

Bound on no. of rows 
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• We got (G’,M’,k), where size of G’ and no. columns in M’ is 
O(k2). 

• To bound the number of rows, we delete all rows except 
row vectors in a basis.  

•  Row rank = column rank implies that the size of row basis is 
O(k2).

Bound on no. of rows 

Proof omitted 
(uses elementary operations)
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V.C above Max matching
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• Size of a V.C is at least the size a max. matching.  
• Max. matching can be computed in polynomial time



V.C above Max matching
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• Size of a V.C is at least the size a max. matching.  
• Max. matching can be computed in polynomial time

Input: A graph G and an integer k  
Question : Is there a vertex cover of size  mm(G)+k
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• G has a V.C of size mm(G)+k iff (G,M) has V.C of rank mm(G)+k

v

v

v

v

v v

v
v

, k ≤(          )v

v

v

v

v v

v
v

, mm+k , [ ]1
1

…
1

10
0

(                     )
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v

v

v

v

v v

v
v , mm+k , [ ]1

1
…

1
10

0(                         )
Rand. polynomial Time

(G’, k’=O(k3/2),  M’)
Each entry is on poly(k) bits
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(G,k) of V.C above MM

(G,mm+k,In) of Rank V.C
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(G,k) of V.C above MM

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.CMatrix entry bounded in poly(k)
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(G,k) of V.C above MM

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(G’’,O(k3/2),M’’) of Rank V.CSize bounded in poly(k)

Matrix entry bounded in poly(k)
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(G,k) of V.C above MM

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(G’’,O(k3/2),M’’) of Rank V.CSize bounded in poly(k)

(H,k’’) of V.C above MMSize bounded in poly(k)

Matrix entry bounded in poly(k)

(G,k) of V.C above MM

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(G’’,O(k3/2),M’’) of Rank V.C

Matrix entry bounded in poly(k)

Size bounded in poly(k)
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(G,k) of V.C above MM

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(G’’,O(k3/2),M’’) of Rank V.CSize bounded in poly(k)

(H,k’’) of V.C above MMSize bounded in poly(k)

in NP

is NP-hard

Matrix entry bounded in poly(k)

(G,k) of V.C above MM

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(G’’,O(k3/2),M’’) of Rank V.C

Matrix entry bounded in poly(k)

Size bounded in poly(k)
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(G,k) of V.C above MM

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(G’’,O(k3/2),M’’) of Rank V.CSize bounded in poly(k)

(H,k’’) of V.C above MMSize bounded in poly(k)

Matrix entry bounded in poly(k)

(G,k) of V.C above MM

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(G’’,O(k3/2),M’’) of Rank V.C

Matrix entry bounded in poly(k)

Size bounded in poly(k)

in NP

is NP-hard
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• Co-loop is a column vector which is part of any basis. 

M=[ ]…

   v1  v2  ….  vn
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(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop v in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C

• Co-loops in (N \ N(v))  ⊆  Co-loops in N’ 
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(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop u in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C
• Co-loops in N\N(v)  ⊆  Co-loops in N’
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(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop u in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C
• Co-loops in N\N(v)  ⊆  Co-loops in N’

Rand. poly time 
algorithm 

[Misra et al., 2011]

V.C above MM

(G,k) 

Yes/No

a V.C of size mm+ck3/2
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(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop u in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C
• Co-loops in N\N(v)  ⊆  Co-loops in N’

Rand. poly time 
algorithm 

[Misra et al., 2011]

V.C above MM

(G,k) 

Yes/No

a V.C of size mm+ck3/2

an Independent set of size 
n-(mm+ck3/2)
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(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop u in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C
• Co-loops in N\N(v)  ⊆  Co-loops in N’

• Recall that (G,mm+k,In) is the input instance of Rank V.C 
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(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop u in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C
• Co-loops in N\N(v)  ⊆  Co-loops in N’

• Recall that (G,mm+k,In) is the input instance of Rank V.C 
• Run the  algorithm by Misra et al., 2011 on (G,k) and if it outputs 

Yes/No, we are done.  
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(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop u in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C
• Co-loops in N\N(v)  ⊆  Co-loops in N’

• Recall that (G,mm+k,In) is the input instance of Rank V.C 
• Run the  algorithm by Misra et al., 2011 on (G,k) and if it outputs 

Yes/No, we are done.  
•  Otherwise the output is an independent set S of size n-(mm+ck3/2) 

  
  
 



Rank Reduction

121

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop u in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C
• Co-loops in N\N(v)  ⊆  Co-loops in N’

• Recall that (G,mm+k,In) is the input instance of Rank V.C 
• Run the  algorithm by Misra et al., 2011 on (G,k) and if it outputs 

Yes/No, we are done.  
•  Otherwise the output is an independent set S of size n-(mm+ck3/2) 
•  All elements of S in In are co-loops 
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(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop u in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C
• Co-loops in N\N(v)  ⊆  Co-loops in N’

• Recall that (G,mm+k,In) is the input instance of Rank V.C 
• Run the  algorithm by Misra et al., 2011 on (G,k) and if it outputs 

Yes/No, we are done.  
•  Otherwise the output is an independent set S of size n-(mm+ck3/2) 
•  All elements of S in In are co-loops 
•  The neighbourhood of any element in S is in V(G)\S 
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(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop u in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C
• Co-loops in N\N(v)  ⊆  Co-loops in N’

• Recall that (G,mm+k,In) is the input instance of Rank V.C 
• Run the  algorithm by Misra et al., 2011 on (G,k) and if it outputs 

Yes/No, we are done.  
•  Otherwise the output is an independent set S of size n-(mm+ck3/2) 
•  All elements of S in In are co-loops 
•  The neighbourhood of any element in S is in V(G)\S 
•  We apply the above reduction rule one by one on S.
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(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop u in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C
• Co-loops in N\N(v)  ⊆  Co-loops in N’

• Recall that (G,mm+k,In) is the input instance of Rank V.C 
• Run the  algorithm by Misra et al., 2011 on (G,k) and if it outputs 

Yes/No, we are done.  
•  Otherwise the output is an independent set S of size n-(mm+ck3/2) 
•  All elements of S in In are co-loops 
•  The neighbourhood of any element in S is in V(G)\S 
•  We apply the above reduction rule one by one on S.

rank(M’)=n-2|S|=n-2(n-mm-ck3/2) ≤-n+2mm+2ck3/2 ≤ 2ck3/2
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Kernelization: V.C above MM, V.C above LP, Almost 2SAT, 
Multiway Cut with deletable terminals, Subset FVS, etc 
Open problems: deterministic polynomial kernels for the 
above problems ? 

λ

FPT: k-Matroid Parity, k-Path, k-Tree, Connectivity problems 
on graphs of bounded tree-width, Long Cycle, k-MLD, etc

Exact Exponential Time algorithms : Min. Equivalent digraph,  
Minimum Weight   -connected Spanning Subgraph.
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Kernelization: V.C above MM, V.C above LP, Almost 2SAT, 
Multiway Cut with deletable terminals, Subset FVS, etc 
Open problems: deterministic polynomial kernels for the 
above problems ? 

λ

FPT: k-Matroid Parity, k-Path, k-Tree, Connectivity problems 
on graphs of bounded tree-width, Long Cycle, k-MLD, etc

Exact Exponential Time algorithms : Min. Equivalent digraph,  
Minimum Weight   -connected Spanning Subgraph.

Thank you for your attention!


