Representative Families and Kernels

Fahad Panolan

Department of Informatics, University of Bergen, Norway

Parameterized Complexity Summer School Vienna, 3 Sep 2017

Outline

1. Vertex Cover, Representative Family, more applications, and its generalisation to matrices

2. Overview of an alternate randomised polynomial kernel for Vertex Cover above Maximum Matching

Vertex Cover

Vertex Cover

Vertex Cover

Input: A graph G and an integer k **Question :** Is there a vertex cover of size k

• Delete all but k(k+1)+1 edges

- Delete all but k(k+1)+1 edges
- Delete all isolated vertices

- Delete all but k(k+1)+1 edges
- Delete all isolated vertices
- The resulting graph has size $O(k^2)$.

$(H,k) \equiv (G,k)$

• The resulting graph has size $O(k^2)$.

$(H,k) \equiv (G,k)$

→)

If X is a V.C of G, then X is a V.C of H

- Delete isolated vertices
- The resulting graph has size $O(k^2)$.

$(H,k) \equiv (G,k)$

 \rightarrow

If X is a V.C of G, then X is a V.C of H

Proof: H is a subgraph of G

(\Leftarrow) Let X be a k size subset of V(H). If X is a V.C of H, then X is a V.C of G

(⇐) Let X be a k size subset of V(H). If X is a V.C of H, then X is a V.C of G

If X is not a V.C of G, then X is not a V.C of H

Let X be a k size subset of V(H). If X is not a V.C of G, then X is not a V.C of H

Let X be a k size subset of V(H). If X is not a V.C of G, then X is not a V.C of H

$$G = G_0 \rightarrow G_1 \rightarrow G_2 \dots G_t \rightarrow G_{t+1} = H$$

Let X be a k size subset of V(H). If X is not a V.C of G, then X is not a V.C of H

$$G = G_0 \longrightarrow G_1 \longrightarrow G_2 \ldots G_t \longrightarrow G_{t+1} = H$$

Let X be a k size subset of $V(G_{i+1})$. If X is not a V.C of G_i , then X is not a V.C of G_{i+1}

- Delete isolated vertices
- The resulting graph has size $O(k^2)$.

 $\begin{array}{l} G = G_0 \longrightarrow G_1 \longrightarrow G_2 \quad \dots \quad G_t \longrightarrow G_{t+1} = H \\ \text{Let X be a k size subset of V(G_{i+1}).} \\ \text{If X is not a V.C of } G_i, \text{ then X is not a} \\ \text{V.C of } G_{i+1} \end{array}$

Proof:

$$G = G_0 \rightarrow G_1 \rightarrow G_2 \dots G_t \rightarrow G_{t+1} = H$$

Let X be a k size subset of V(G_{i+1}).
If X is not a V.C of G_i, then X is not a
V.C of G_{i+1}

Proof:

Case 1: $G_i \rightarrow G_{i+1}$.

 $G = G_0 \rightarrow G_1 \rightarrow G_2 \dots G_t \rightarrow G_{t+1} = H$ Let X be a k size subset of V(G_{i+1}). If X is not a V.C of G_i, then X is not a V.C of G_{i+1}

Proof:

Case 1: $G_i \rightarrow G_{i+1}$.

 $G = G_0 \rightarrow G_1 \rightarrow G_2 \dots G_t \rightarrow G_{t+1} = H$ Let X be a k size subset of V(G_{i+1}). If X is not a V.C of G_i, then X is not a V.C of G_{i+1}

Proof:

Case 1: $G_i \rightarrow G_{i+1}$.

 $G = G_0 \rightarrow G_1 \rightarrow G_2 \dots G_t \rightarrow G_{t+1} = H$ Let X be a k size subset of V(G_{i+1}). If X is not a V.C of G_i, then X is not a V.C of G_{i+1}

Proof:

Case 1: $G_i \rightarrow G_{i+1}$.

 $G = G_0 \rightarrow G_1 \rightarrow G_2 \dots G_t \rightarrow G_{t+1} = H$ Let X be a k size subset of V(G_{i+1}). If X is not a V.C of G_i, then X is not a V.C of G_{i+1}

Proof: Case 2

Case 2: $G_i \longrightarrow G_{i+1}$.

 $G = G_0 \rightarrow G_1 \rightarrow G_2 \quad \dots \quad G_t \rightarrow G_{t+1} = H$ Let X be a k size subset of V(G_{i+1}). If X is not a V.C of G_i, then X is not a V.C of G_{i+1}

Proof: Case

Case 2: $G_i \longrightarrow G_{i+1}$.

Let e be an edge in G_i not covered by X. If e is in $E(G_{i+1})$, then we are done.

Otherwise, we have deleted some edges.

 $G = G_0 \rightarrow G_1 \rightarrow G_2 \quad \dots \quad G_t \rightarrow G_{t+1} = H$ Let X be a k size subset of V(G_{i+1}). If X is not a V.C of G_i, then X is not a V.C of G_{i+1}

Proof: Co

Case 2: $G_i \longrightarrow G_{i+1}$.

Let e be an edge in G_i not covered by X. If e is in $E(G_{i+1})$, then we are done.

Otherwise, we have deleted some edges. That is, $|E(G_{i+1})| = k(k+1)+1$ and max degree of G_{i+1} is k+1.

 $G = G_0 \rightarrow G_1 \rightarrow G_2 \dots G_t \rightarrow G_{t+1} = H$ Let X be a k size subset of V(G_{i+1}). If X is not a V.C of G_i, then X is not a V.C of G_{i+1}

Proof:

Case 2: $G_i \longrightarrow G_{i+1}$.

Let e be an edge in G_i not covered by X. If e is in $E(G_{i+1})$, then we are done.

Otherwise, we have deleted some edges. That is, $|E(G_{i+1})|=k(k+1)+1$ and max degree of G_{i+1} is k+1. So X cover at most k(k+1) edges. One edge will be left uncovered.

 For any k size set X, if X is not a V.C of G, then X is not a V.C of H

 For any k size set X, if X is not a V.C of G, then X is not a V.C of H For any k size set X, if there is an edge $\{u,v\}$ in E(G) such that X $\cap \{u,v\}=\emptyset$ then there is an edge $\{u',v'\}$ in F such that X $\cap \{u',v'\}=\emptyset$

 For any k size set X, if X is not a V.C of G, then X is not a V.C of H For any k size set X, if there is an edge {u,v} in E(G) such that
X ∩ {u,v}=Ø then there is an edge {u',v'} in F such that X ∩ {u',v'}=Ø

F is called k-representative family of E(G)

Representative Family

- $E \subseteq \begin{pmatrix} V \\ 2 \end{pmatrix}$, where V is a set.
- k is a positive integer
- A subfamily $F \subseteq E$ is called a k-representative family if:

for any k-size set X if there is a set $Z \in E$ s.t $X \cap Z = \emptyset$, then there is a set $Z' \in F$ s.t $X \cap Z' = \emptyset$

Representative Family

•
$$E \subseteq \begin{pmatrix} V \\ 2 \end{pmatrix}$$
, where V is a set.

- k is a positive integer
- A subfamily $F \subseteq E$ is called a k-representative family if:

Representative Family

•
$$E \subseteq \begin{pmatrix} V \\ 2 \end{pmatrix}$$
, where V is a set.

- k is a positive integer
- A subfamily $F \subseteq E$ is called a k-representative family if:

Proof: The V.C kernel we have seen.

Representative Family (for family of large subsets)

- $E \subseteq \begin{pmatrix} V \\ p \end{pmatrix}$, where V is a set and p is a positive integer • k is a positive integer
- A subfamily $F \subseteq E$ is called a k-representative family if:

for any k-size set X if there is a set $Z \in E$ s.t $X \cap Z = \emptyset$, then there is a set $Z' \in F$ s.t $X \cap Z' = \emptyset$ Representative Family (for family of large subsets)

- $E \subseteq \begin{pmatrix} V \\ p \end{pmatrix}$, where V is a set and p is a positive integer • k is a positive integer
- A subfamily $F \subseteq E$ is called a k-representative family if:

for any k-size set X if there is a set $Z \in E$ s.t $X \cap Z = \emptyset$, then there is a set $Z' \in F$ s.t $X \cap Z' = \emptyset$

F	Run time	Ref.
$\binom{k+p}{p}$	$O(\binom{k+p}{p}^{w-1} E)$	[Fomin et al. 2013]
Input : A family $E \subseteq \begin{pmatrix} U \\ 5 \end{pmatrix}$ of a set U and an integer k

Qn: Is there a k-size subset of U which hits all set in E

Input : A family $E \subseteq \begin{pmatrix} U \\ 5 \end{pmatrix}$ of a set U and an integer k

Qn: Is there a k-size subset of U which hits all set in E

Compute a k-representative family F of size $\binom{k+5}{5} \leq O(k^5)$. Output (F, k).

Input : A family $E \subseteq \begin{pmatrix} U \\ 5 \end{pmatrix}$ of a set U and an integer k

Qn: Is there a k-size subset of U which hits all set in E

Compute a k-representative family F of size $\binom{k+5}{5} \leq O(k^5)$. Output (F , k). Proof: (\Rightarrow)

Input : A family $E \subseteq \begin{pmatrix} U \\ 5 \end{pmatrix}$ of a set U and an integer k

Qn: Is there a k-size subset of U which hits all set in E

Compute a k-representative family F of size $\binom{k+5}{5} \leq O(k^5)$. Output (F , k). Proof: (\Rightarrow)

(E, k) is Yes instance \Rightarrow (F, k) is Yes instance.

Input : A family $E \subseteq \begin{pmatrix} U \\ 5 \end{pmatrix}$ of a set U and an integer k

Qn: Is there a k-size subset of U which hits all set in E

Compute a k-representative family F of size $\binom{k+5}{5} \leq O(k^5)$. Output (F , k). Proof: (\Leftarrow)

Input : A family $E \subseteq \begin{pmatrix} U \\ 5 \end{pmatrix}$ of a set U and an integer k Qn: Is there a k-size subset of U which hits all set in E

Compute a k-representative family F of size $\binom{k+5}{5} \leq O(k^5)$. Output (F, k). Proof: (\Leftarrow) Suppose (F, k) is Versionstance (X is a hitting set)

Suppose (F , k) is Yes instance (X is a hitting set).

Input : A family $E \subseteq \begin{pmatrix} U \\ 5 \end{pmatrix}$ of a set U and an integer k Qn: Is there a k-size subset of U which hits all set in E

Compute a k-representative family F of size $\binom{k+5}{5} \leq O(k^5)$. Output (F , k).

Proof: (⇐)

Suppose (F , k) is Yes instance (X is a hitting set). We claim X is hitting set for E. Suppose not, then there is $Y \in E$ s.t X $\cap Y = \emptyset$.

Input : A family $E \subseteq \begin{pmatrix} U \\ 5 \end{pmatrix}$ of a set U and an integer k Qn: Is there a k-size subset of U which hits all set in E

Compute a k-representative family F of size $\binom{k+5}{5} \leq O(k^5)$.

- Output (F, k).
- Proof: (⇐)

Suppose (F , k) is Yes instance (X is a hitting set).

We claim X is hitting set for E. Suppose not, then there is $Y \in E$

s.t $X \cap Y = \emptyset$. This implies there is $Y' \in F$ s.t $X \cap Y' = \emptyset$.

contradiction!

Input: A family $E \subseteq \begin{pmatrix} U \\ 3 \end{pmatrix}$ of a set U and an integer k

Input : A family $E \subseteq \begin{pmatrix} U \\ 3 \end{pmatrix}$ of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

Compute a (3k-3)-representative family F of size $\binom{3k}{3} \leq O(k^3)$. Output (F , k).

Input : A family $E \subseteq \begin{pmatrix} U \\ 3 \end{pmatrix}$ of a set U and an integer k Qn: Are there k sets in E which are pairwise disjoint

Compute a (3k-3)-representative family F of size $\binom{3k}{3} \leq O(k^3)$. Output (F , k). Proof: (\Rightarrow)

Input : A family $E \subseteq \begin{pmatrix} U \\ 3 \end{pmatrix}$ of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

Compute a (3k-3)-representative family F of size $\binom{3k}{3} \leq O(k^3)$. Output (F , k). Proof: (\Rightarrow)

Let $S=\{Y_1,...,Y_k\}$ is a solution such that $|S \cap F|$ is maximised.

Input : A family $E \subseteq \begin{pmatrix} U \\ 3 \end{pmatrix}$ of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

Compute a (3k-3)-representative family F of size $\binom{3k}{3} \leq O(k^3)$. Output (F, k). Proof: (\Rightarrow)

Let $S=\{Y_1,...,Y_k\}$ is a solution such that $|S \cap F|$ is maximised.

If $S \subseteq F$, then we are done.

Input : A family $E \subseteq \begin{pmatrix} U \\ 3 \end{pmatrix}$ of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

- Compute a (3k-3)-representative family F of size $\binom{3k}{3} \leq O(k^3)$. Output (F , k).
- Proof: (\Rightarrow)

Let $S=\{Y_1,...,Y_k\}$ is a solution such that $|S \cap F|$ is maximised.

If $S \subseteq F$, then we are done. Otherwise let $Y \in S \setminus F$.

Let $X=(Y_1\cup Y_2...\cup Y_k)\setminus Y$.

Input : A family $E \subseteq \begin{pmatrix} U \\ 3 \end{pmatrix}$ of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

- Compute a (3k-3)-representative family F of size $\binom{3k}{3} \leq O(k^3)$. Output (F , k).
- Proof: (\Rightarrow)

Let $S=\{Y_1,...,Y_k\}$ is a solution such that $|S \cap F|$ is maximised.

If $S \subseteq F$, then we are done. Otherwise let $Y \in S \setminus F$.

Let $X=(Y_1\cup Y_2...\cup Y_k)\setminus Y$. Notice that |X|=3k-3 and $X \cap Y = \emptyset$.

Input : A family $E \subseteq \begin{pmatrix} U \\ 3 \end{pmatrix}$ of a set U and an integer k

- Compute a (3k-3)-representative family F of size $\binom{3k}{3} \leq O(k^3)$. Output (F , k).
- $\mathsf{Proof}: (\Longrightarrow)$
- Let $S=\{Y_1,...,Y_k\}$ is a solution such that $|S \cap F|$ is maximised.
- If $S \subseteq F$, then we are done. Otherwise let $Y \in S \setminus F$.
- Let $X=(Y_1\cup Y_2...\cup Y_k)\setminus Y$. Notice that |X|=3k-3 and $X \cap Y = \emptyset$.
- This implies there is $Y' \in F$ s.t $X \cap Y' = \emptyset$.

Input : A family $E \subseteq \begin{pmatrix} U \\ 3 \end{pmatrix}$ of a set U and an integer k

- Compute a (3k-3)-representative family F of size $\binom{3k}{3} \leq O(k^3)$. Output (F , k).
- $\mathsf{Proof:} (\Longrightarrow)$
- Let $S=\{Y_1,...,Y_k\}$ is a solution such that $|S \cap F|$ is maximised.
- If $S \subseteq F$, then we are done. Otherwise let $Y \in S \setminus F$.
- Let $X=(Y_1\cup Y_2...\cup Y_k)\setminus Y$. Notice that |X|=3k-3 and $X \cap Y = \emptyset$.
- This implies there is $Y' \in F$ s.t $X \cap Y' = \emptyset$. Then by replacing Y with Y' in S, we get a solution S' s.t $|S' \cap F| > |S \cap F|$.

Input : A family $E \subseteq \begin{pmatrix} U \\ 3 \end{pmatrix}$ of a set U and an integer k

- Compute a (3k-3)-representative family F of size $\binom{3k}{3} \leq O(k^3)$. Output (F , k).
- $\mathsf{Proof:} (\Longrightarrow)$
- Let $S=\{Y_1,...,Y_k\}$ is a solution such that $|S \cap F|$ is maximised.
- If $S \subseteq F$, then we are done. Otherwise let $Y \in S \setminus F$.
- Let $X=(Y_1\cup Y_2...\cup Y_k)\setminus Y$. Notice that |X|=3k-3 and $X \cap Y = \emptyset$.
- This implies there is $Y' \in F$ s.t $X \cap Y' = \emptyset$. Then by replacing Y with Y'
- in S, we get a solution S' s.t |S'nF|> |SnF|. Contradiction!

Input : A family $E \subseteq \begin{pmatrix} U \\ 3 \end{pmatrix}$ of a set U and an integer k Qn: Are there k sets in E which are pairwise disjoint

Compute a (3k-3)-representative family F of size $\binom{3k}{3} \leq O(k^3)$. Output (F , k). Proof: (\leftarrow)

Input : A family $E \subseteq \begin{pmatrix} U \\ 3 \end{pmatrix}$ of a set U and an integer k Qn: Are there k sets in E which are pairwise disjoint

Compute a (3k-3)-representative family F of size $\binom{3k}{3} \leq O(k^3)$. Output (F , k). Proof: (\Leftarrow)

F is a subset of E

Generalization to Matrices

A set of vectors $v_1,...,v_t$ is linearly independent if there is no scalars $a_1,...,a_t$, not all equal to 0 such that

$$\sum a_i v_i = 0$$

A set of vectors $v_1,...,v_t$ is linearly independent if there is no scalars $a_1,...,a_t$, not all equal to 0 such that

$$\sum a_i v_i = 0$$

• Basis of C is a set of maximum no. of L.I vectors in C

rank(C) = max. no. L.I vectors in C = size of a basis of C

A set of vectors $v_1,...,v_t$ is linearly independent if there is no scalars $a_1,...,a_t$, not all equal to 0 such that

$$\sum a_i v_i = 0$$

Basis of C is a set of maximum no. of L.I vectors in C

- rank(C) = max. no. L.I vectors in C = size of a basis of C
- rank(C) = rank(R)

A set of vectors $v_1,...,v_t$ is linearly independent if there is no scalars $a_1,...,a_t$, not all equal to 0 such that

- $\sum a_i v_i = 0$
- Basis of C is a set of maximum no. of L.I vectors in C
- rank(C) = max. no. L.I vectors in C = size of a basis of C
- rank(C) = rank(R)
- span(C) = set of all vectors which are linear combinations of C

A set of vectors $v_1, ..., v_t$ is linearly independent if there is no scalars $a_1, ..., a_t$, not all equal to 0 such that

$$\sum a_i v_i = 0$$

- Basis of C is a set of maximum no. of L.I vectors in C
- rank(C) = max. no. L.I vectors in C = size of a basis of C
- rank(C) = rank(R)
- \cdot span(C) = set of all vectors which are linear combinations of C
- rank(span(C))=rank(C)

Representative Family on Matrices

• A subfamily $F \subseteq E$ is called a k-representative family if:

for any k-size set X if there is a set $Z \in E$ s.t X $\cup Z$ is L.I. then there is a set Z' in F s.t X \cup Z' is L.I.

Representative Family on Matrices

- E := a family of subsets of V, where
 each set size is p
 k is a postive integer

for any k-size set X if there is a set $Z \in E$ s.t X $\cup Z$ is L.I. then there is a set Z' in F s.t X \cup Z' is L.I.

 $rank(\{v_3, v_4, v_5, v_6\}) = Max no. L.I vectors in it = 4$

rank($\{v_3, v_4, v_5, v_6\}$) = Max no. L.I vectors in it = 4 rank($\{v_1, v_2, v_3, v_6, v_7, v_8\}$) = Max no. L.I vectors in it = 2

 $rank(\{v_3, v_4, v_5, v_6\}) = Max no. L.I vectors in it = 4$ $rank(\{v_1, v_2, v_3, v_6, v_7, v_8\}) = Max no. L.I vectors in it = 2$

Input: A graph G, a matrix M, and an integer k **Question :** Is there a vertex cover of rank k

• G has a V.C of size k iff (G,M) has V.C of rank k

Kernel for Rank Vertex Cover

For any edge {u,v} create a set {u,v'} of two vectors in Q

E is the collection of sets of vectors created

E={{u,v'} : {u,v} in E(G)}

• Compute 2k-representative family F of E ($|F|=O(k^2)$)

- Compute 2k-representative family F of E ($|F|=O(k^2)$)
- \cdot Delete all edges which are not part of F in G
- Delete isolated vertices from G and M

- Compute 2k-representative family F of E ($|F|=O(k^2)$)
- \cdot Delete all edges which are not part of F in G
- \cdot Delete isolated vertices from G and M
- Call the new instance (G',M',k)

- Compute 2k-representative family F of E ($|F|=O(k^2)$)
- \cdot Delete all edges which are not part of F in G
- \cdot Delete isolated vertices from G and M
- Call the new instance (G',M',k)
- Size of G' is $O(k^2)$
- No. of columns in M' is $O(k^2)$

- Compute 2k-representative family F of E ($|F|=O(k^2)$)
- \cdot Delete all edges which are not part of F in G
- \cdot Delete isolated vertices from G and M
- Call the new instance (G',M',k)
- Size of G' is $O(k^2)$
- No. of columns in M' is $O(k^2)$
- $\boldsymbol{\cdot}$ The number of no. of rows in \boldsymbol{M}' is not bounded

E={{u,v'} : {u,v} in E(G)}

- Compute 2k-representative family F of E ($|F|=O(k^2)$)
- \cdot Delete all edges which are not part of F in G
- \cdot Delete isolated vertices from G and M
- Call the new instance (G',M',k)
- Size of G' is $O(k^2)$
- No. of columns in M' is $O(k^2)$
- \cdot The number of no. of rows in M' is not bounded

Just see the correctness proof of this reduction

Proof: Forward direction

- \cdot G' is a subgraph of G
- \cdot M' is obtained by deleting some columns from M
- If X is V.C of rank k in G, then X \cap V(G') is a V.C of rank k in G'

Let X' is a V.C of G' and rank(X')=k

- Let X' is a V.C of G' and rank(X')=k
- We claim $X=span(X')\cap M$ is a V.C of G.

- Let X' is a V.C of G' and rank(X')=k
- We claim $X=span(X')\cap M$ is a V.C of G.
- Suppose not. Let {u,v} be an edge not covered by X

- Let X' is a V.C of G' and rank(X')=k
- We claim $X=span(X')\cap M$ is a V.C of G.
- Suppose not. Let {u,v} be an edge not covered by X
- \cdot Let B be a basis of X

- Let X' is a V.C of G' and rank(X')=k
- We claim $X=span(X')\cap M$ is a V.C of G.
- Suppose not. Let {u,v} be an edge not covered by X
- $\boldsymbol{\cdot}$ Let B be a basis of X
- |B|=k

- Let X' is a V.C of G' and rank(X')=k
- We claim $X=span(X')\cap M$ is a V.C of G.
- Suppose not. Let {u,v} be an edge not covered by X
- \cdot Let B be a basis of X
- |B|=k
- $B \cup \{u\}, B \cup \{v\} \text{ are } L.I$

- Let X' is a V.C of G' and rank(X')=k
- We claim $X=span(X')\cap M$ is a V.C of G.
- Suppose not. Let {u,v} be an edge not covered by X
- \cdot Let B be a basis of X
- |B|=k
- $B \cup \{u\}, B \cup \{v\} \text{ are } L.I$

- Let X' is a V.C of G' and rank(X')=k
- We claim $X=span(X')\cap M$ is a V.C of G.
- Suppose not. Let {u,v} be an edge not covered by X
- Let B be a basis of X
- |B|=k
- $B \cup \{u\}, B \cup \{v\} \text{ are } L.I$

- $B_1 \cup \{u\}$ is L.I
- $B_2 \cup \{v'\}$ is L.I

- Let X' is a V.C of G' and rank(X')=k
- We claim $X=span(X')\cap M$ is a V.C of G.
- Suppose not. Let {u,v} be an edge not covered by X
- Let B be a basis of X
- |B|=k
- $B \cup \{u\}, B \cup \{v\} \text{ are } L.I$

- $B_1 \cup \{u\}$ is L.I
- $B_2 \cup \{v'\}$ is L.I
- $B_1 \cup B_2 \cup \{u,v'\}$ is L.I

- Let X' is a V.C of G' and rank(X')=k
- We claim $X=span(X')\cap M$ is a V.C of G.
- Suppose not. Let {u,v} be an edge not covered by X
- Let B be a basis of X
- |B|=k
- $B \cup \{u\}, B \cup \{v\} \text{ are } L.I$

- $B_1 \cup \{u\}$ is L.I
- $B_2 \cup \{v'\}$ is L.I
- $B_1 \cup B_2 \cup \{u,v'\}$ is L.I
- $|B_1 \cup B_2|=2k$

- Let X' is a V.C of G' and rank(X')=k
- We claim $X=span(X')\cap M$ is a V.C of G.
- Suppose not. Let {u,v} be an edge not covered by X
- Let B be a basis of X
- |B|=k
- $B \cup \{u\}, B \cup \{v\} \text{ are } L.I$

- $B_1 \cup \{u\}$ is L.I
- $B_2 \cup \{v'\}$ is L.I
- $B_1 \cup B_2 \cup \{u,v'\} \text{ is } L.I$
- $|B_1 \cup B_2|=2k$
- From the def. of rep. family there is {w,z'} in F s.t.
 B1UB2U{w,z'} is L.I

- Let X' is a V.C of G' and rank(X')=k
- We claim $X=span(X')\cap M$ is a V.C of G.
- Suppose not. Let {u,v} be an edge not covered by X
- Let B be a basis of X
- |B|=k
- $B \cup \{u\}, B \cup \{v\} \text{ are } L.I$

- $B_1 \cup \{u\}$ is L.I
- $B_2 \cup \{v'\}$ is L.I
- $B_1 \cup B_2 \cup \{u,v'\} \text{ is } L.I$
- $|B_1 \cup B_2|=2k$
- From the def. of rep. family there is {w,z'} in F s.t.
 B1UB2U{w,z'} is L.I
- $B \cup \{w\}, B \cup \{z\} \text{ are } L.I$

- Let X' is a V.C of G' and rank(X')=k
- We claim $X=span(X')\cap M$ is a V.C of G.
- Suppose not. Let {u,v} be an edge not covered by X
- Let B be a basis of X
- |B|=k
- $B \cup \{u\}, B \cup \{v\} \text{ are } L.I$

- $B_1 \cup \{u\}$ is L.I
- $B_2 \cup \{v'\}$ is L.I
- $B_1 \cup B_2 \cup \{u,v'\} \text{ is } L.I$
- $|B_1 \cup B_2|=2k$
- From the def. of rep. family there is {w,z'} in F s.t.
 B1UB2U{w,z'} is L.I
- $B \cup \{w\}, B \cup \{z\} \text{ are } L.I$
- That is, X' will not cover the edge {w,z} in G'

- Let X' is a V.C of G' and rank(X')=k
- We claim $X=span(X')\cap M$ is a V.C of G.
- Suppose not. Let {u,v} be an edge not covered by X
- Let B be a basis of X
- |B|=k
- $B \cup \{u\}, B \cup \{v\} \text{ are } L.I$

- $B_1 \cup \{u\}$ is L.I
- $B_2 \cup \{v'\}$ is L.I
- $B_1 \cup B_2 \cup \{u,v'\}$ is L.I
- $|B_1 \cup B_2|=2k$
- From the def. of rep. family there is {w,z'} in E s.t.
 B1UB2U{w,z'} is L.I
- $B \cup \{w\}, B \cup \{z\} \text{ are } L.I$
- That is, X' will not cover the edge {w,z} in G'
 - Contradiction!

• We got (G',M',k), where size of G' and no. columns in M' is $O(k^2)$.

- We got (G',M',k), where size of G' and no. columns in M' is $O(k^2)$.
- To bound the number of rows, we delete all rows except row vectors in a basis.

- We got (G',M',k), where size of G' and no. columns in M' is $O(k^2)$.
- To bound the number of rows, we delete all rows except row vectors in a basis.
- Row rank = column rank implies that the size of row basis is $O(k^2)$.

- We got (G',M',k), where size of G' and no. columns in M' is $O(k^2)$.
- To bound the number of rows, we delete all rows except row vectors in a basis.
- Row rank = column rank implies that the size of row basis is $O(k^2)$.

Proof omitted (uses elementary operations)

V.C above Max matching

V.C above Max matching

- Size of a V.C is at least the size a max. matching.
- Max. matching can be computed in polynomial time

V.C above Max matching

• Size of a V.C is at least the size a max. matching.

• Max. matching can be computed in polynomial time

Input: A graph G and an integer k **Question :** Is there a vertex cover of size mm(G)+k

V.C above mm \leq Rank V.C $\begin{pmatrix} & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ &$

• G has a V.C of size mm(G)+k iff (G,M) has V.C of rank mm(G)+k

How to get a Kernel for V.C above MM

(G,k) of V.C above MM

(G,mm+k,In) of Rank V.C

Co-loop in a matrix

• Co-loop is a column vector which is part of any basis.

(H, p, N) of Rank V.C and a co-loop v in N

(in Rand. Polynomial time)

(H\u, p-2, N') of Rank V.C

• Co-loops in (N $\ N(v)$) \subseteq Co-loops in N'

(H, p, N) of Rank V.C and a co-loop u in N

(in Rand. Polynomial time)

(H\u, p-2, N') of Rank V.C

• Co-loops in N\N(v) \subseteq Co-loops in N'

(G,mm+k,In) of Rank V.C ↓ (G',O(k^{3/2}),M') of Rank V.C

• Recall that (G,mm+k,In) is the input instance of Rank V.C

- Recall that (G,mm+k,In) is the input instance of Rank V.C
- Run the algorithm by Misra et al., 2011 on (G,k) and if it outputs Yes/No, we are done.

- Recall that (G,mm+k,In) is the input instance of Rank V.C
- Run the algorithm by Misra et al., 2011 on (G,k) and if it outputs Yes/No, we are done.
- Otherwise the output is an independent set S of size n-(mm+ck^{3/2})

- Recall that (G,mm+k,In) is the input instance of Rank V.C
- Run the algorithm by Misra et al., 2011 on (G,k) and if it outputs Yes/No, we are done.
- Otherwise the output is an independent set S of size n-(mm+ck^{3/2})
- All elements of S in I_n are co-loops

- Recall that (G,mm+k,In) is the input instance of Rank V.C
- Run the algorithm by Misra et al., 2011 on (G,k) and if it outputs Yes/No, we are done.
- Otherwise the output is an independent set S of size n-(mm+ck^{3/2})
- All elements of S in In are co-loops
- The neighbourhood of any element in S is in $V(G) \setminus S$

- Recall that (G,mm+k,In) is the input instance of Rank V.C
- Run the algorithm by Misra et al., 2011 on (G,k) and if it outputs Yes/No, we are done.
- Otherwise the output is an independent set S of size n-(mm+ck^{3/2})
- All elements of S in In are co-loops
- The neighbourhood of any element in S is in $V(G) \setminus S$
- We apply the above reduction rule one by one on S.

- Recall that (G,mm+k,In) is the input instance of Rank V.C
- Run the algorithm by Misra et al., 2011 on (G,k) and if it outputs Yes/No, we are done.
- Otherwise the output is an independent set S of size $n-(mm+ck^{3/2})$
- All elements of S in In are co-loops
- The neighbourhood of any element in S is in $V(G) \setminus S$
- We apply the above reduction rule one by one on S.

 $rank(M')=n-2|S|=n-2(n-mm-ck^{3/2}) \le -n+2mm+2ck^{3/2} \le 2ck^{3/2}$

Conclusion

Kernelization: V.C above MM, V.C above LP, Almost 2SAT, Multiway Cut with deletable terminals, Subset FVS, etc Open problems: deterministic polynomial kernels for the above problems?

FPT: k-Matroid Parity, k-Path, k-Tree, Connectivity problems on graphs of bounded tree-width, Long Cycle, k-MLD, etc

Exact Exponential Time algorithms : Min. Equivalent digraph, Minimum Weight λ -connected Spanning Subgraph.

Conclusion

Kernelization: V.C above MM, V.C above LP, Almost 2SAT, Multiway Cut with deletable terminals, Subset FVS, etc Open problems: deterministic polynomial kernels for the above problems?

FPT: k-Matroid Parity, k-Path, k-Tree, Connectivity problems on graphs of bounded tree-width, Long Cycle, k-MLD, etc

Exact Exponential Time algorithms : Min. Equivalent digraph, Minimum Weight λ -connected Spanning Subgraph.

Thank you for your attention!