
Representative Families and Kernels

Fahad Panolan

Department of Informatics,
University of Bergen, Norway

1

Parameterized Complexity Summer School
Vienna, 3 Sep 2017

Outline

2

1. Vertex Cover, Representative Family, more
applications, and its generalisation to matrices

2. Overview of an alternate randomised
polynomial kernel for Vertex Cover above
Maximum Matching

Vertex Cover

3

Vertex Cover

4

Vertex Cover

5

Input: A graph G and an integer k
Question : Is there a vertex cover of size k

A Simple Kernel for VC

6

…

>k+1

…

=k+1

A Simple Kernel for VC

7

…

>k+1

…

=k+1

A Simple Kernel for VC

8

…

>k+1

…

=k+1

• Delete all but k(k+1)+1 edges

A Simple Kernel for VC

9

…

>k+1

…

=k+1

• Delete all but k(k+1)+1 edges
• Delete all isolated vertices

A Simple Kernel for VC

10

…

>k+1

…

=k+1

• Delete all but k(k+1)+1 edges
• Delete all isolated vertices
• The resulting graph has size O(k2).

A Simple Kernel for VC

11

…

>k+1

…

=k+1

• Delete all but k(k+1)+1 edges
• Delete isolated vertices
• The resulting graph has size O(k2).

G H

A Simple Kernel for VC

12

…

>k+1

…

=k+1

• Delete all but k(k+1)+1 edges
• Delete isolated vertices
• The resulting graph has size O(k2).

G H

(H,k) (G,k)≡

A Simple Kernel for VC

13

…

>k+1

…

=k+1

• Delete all but k(k+1)+1 edges
• Delete isolated vertices
• The resulting graph has size O(k2).

G H

If X is a V.C of G, then X is a
V.C of H

⇒()

(H,k) (G,k)≡

A Simple Kernel for VC

14

…

>k+1

…

=k+1

• Delete all but k(k+1)+1 edges
• Delete isolated vertices
• The resulting graph has size O(k2).

G H

If X is a V.C of G, then X is a
V.C of H

Proof: H is a subgraph of G

⇒()

(H,k) (G,k)≡

A Simple Kernel for VC

15

…

>k+1

…

=k+1

• Delete all but k(k+1)+1 edges
• Delete isolated vertices
• The resulting graph has size O(k2).

G H

Let X be a k size subset of V(H).
If X is a V.C of H, then X is a V.C

of G

⇐()

A Simple Kernel for VC

16

…

>k+1

…

=k+1

• Delete all but k(k+1)+1 edges
• Delete isolated vertices
• The resulting graph has size O(k2).

G H

Let X be a k size subset of V(H).
If X is a V.C of H, then X is a V.C

of G

If X is not a V.C of G, then X is
not a V.C of H

⇐()

A Simple Kernel for VC

17

…

>k+1

• Delete all but k(k+1)+1 edges
• Delete isolated vertices
• The resulting graph has size O(k2).

G H

Let X be a k size subset of V(H).
If X is not a V.C of G, then X is not

a V.C of H

…

=k+1

A Simple Kernel for VC

18

…

>k+1

• Delete all but k(k+1)+1 edges
• Delete isolated vertices
• The resulting graph has size O(k2).

G H

Let X be a k size subset of V(H).
If X is not a V.C of G, then X is not

a V.C of H

G = G0 G1 G2 Gt Gt+1=H
…

=k+1

A Simple Kernel for VC

19

…

>k+1

• Delete all but k(k+1)+1 edges
• Delete isolated vertices
• The resulting graph has size O(k2).

G H

Let X be a k size subset of V(H).
If X is not a V.C of G, then X is not

a V.C of H

G = G0 G1 G2 Gt Gt+1=H

Let X be a k size subset of V(Gi+1).
If X is not a V.C of Gi, then X is not a

V.C of Gi+1

…

=k+1

A Simple Kernel for VC

20

…

>k+1

G H

G = G0 G1 G2 Gt Gt+1=H

Proof:

…

=k+1
Let X be a k size subset of V(Gi+1).
If X is not a V.C of Gi, then X is not a

V.C of Gi+1

• Delete all but k(k+1)+1 edges
• Delete isolated vertices
• The resulting graph has size O(k2).

A Simple Kernel for VC

21

…

>k+1

G H

G = G0 G1 G2 Gt Gt+1=H

Proof: Case 1: Gi Gi+1 .

…

=k+1
Let X be a k size subset of V(Gi+1).
If X is not a V.C of Gi, then X is not a

V.C of Gi+1

• Delete all but k(k+1)+1 edges
• Delete isolated vertices
• The resulting graph has size O(k2).

A Simple Kernel for VC

22

…

>k+1

G H

G = G0 G1 G2 Gt Gt+1=H

Proof: Case 1: Gi Gi+1 .

Let e be an edge in Gi not covered by
X. If e is in E(Gi+1), then we are done.

…

=k+1
Let X be a k size subset of V(Gi+1).
If X is not a V.C of Gi, then X is not a

V.C of Gi+1

• Delete all but k(k+1)+1 edges
• Delete isolated vertices
• The resulting graph has size O(k2).

A Simple Kernel for VC

23

…

>k+1

…

=k+1

G H

G = G0 G1 G2 Gt Gt+1=H

Proof: Case 1: Gi Gi+1 .

Let e be an edge in Gi not covered by
X. If e is in E(Gi+1), then we are done.

…

>k+1

…

=k+1
Let X be a k size subset of V(Gi+1).
If X is not a V.C of Gi, then X is not a

V.C of Gi+1

• Delete all but k(k+1)+1 edges
• Delete isolated vertices
• The resulting graph has size O(k2).

A Simple Kernel for VC

24

…

>k+1

…

=k+1

G H

G = G0 G1 G2 Gt Gt+1=H

Proof: Case 1: Gi Gi+1 .

Let e be an edge in Gi not covered by
X. If e is in E(Gi+1), then we are done.

…

>k+1

…

=k+1
Let X be a k size subset of V(Gi+1).
If X is not a V.C of Gi, then X is not a

V.C of Gi+1

• Delete all but k(k+1)+1 edges
• Delete isolated vertices
• The resulting graph has size O(k2).

A Simple Kernel for VC

25

…

>k+1

G H

G = G0 G1 G2 Gt Gt+1=H

Proof: Case 2: Gi Gi+1 .

Let e be an edge in Gi not covered by
X. If e is in E(Gi+1), then we are done.

…

=k+1
Let X be a k size subset of V(Gi+1).
If X is not a V.C of Gi, then X is not a

V.C of Gi+1

• Delete all but k(k+1)+1 edges
• Delete isolated vertices
• The resulting graph has size O(k2).

A Simple Kernel for VC

26

…

>k+1

G H

G = G0 G1 G2 Gt Gt+1=H

Proof: Case 2: Gi Gi+1 .

Let e be an edge in Gi not covered by
X. If e is in E(Gi+1), then we are done.

Otherwise, we have deleted some
edges.

…

=k+1
Let X be a k size subset of V(Gi+1).
If X is not a V.C of Gi, then X is not a

V.C of Gi+1

• Delete all but k(k+1)+1 edges
• Delete isolated vertices
• The resulting graph has size O(k2).

A Simple Kernel for VC

27

…

>k+1

G H

G = G0 G1 G2 Gt Gt+1=H

Proof: Case 2: Gi Gi+1 .

Let e be an edge in Gi not covered by
X. If e is in E(Gi+1), then we are done.

Otherwise, we have deleted some
edges. That is, |E(Gi+1)|=k(k+1)+1 and
max degree of Gi+1 is k+1.

…

=k+1
Let X be a k size subset of V(Gi+1).
If X is not a V.C of Gi, then X is not a

V.C of Gi+1

• Delete all but k(k+1)+1 edges
• Delete isolated vertices
• The resulting graph has size O(k2).

A Simple Kernel for VC

28

…

>k+1

G H

G = G0 G1 G2 Gt Gt+1=H

Proof: Case 2: Gi Gi+1 .

Let e be an edge in Gi not covered by
X. If e is in E(Gi+1), then we are done.

Otherwise, we have deleted some
edges. That is, |E(Gi+1)|=k(k+1)+1 and
max degree of Gi+1 is k+1. So X cover
at most k(k+1) edges. One edge will be
left uncovered.

…

=k+1
Let X be a k size subset of V(Gi+1).
If X is not a V.C of Gi, then X is not a

V.C of Gi+1

• Delete all but k(k+1)+1 edges
• Delete isolated vertices
• The resulting graph has size O(k2).

Summary of VC kernel

29

(G,k)

Polytime Algo

(H ≤ G, k)

• For any k size set X, if X is
not a V.C of G, then X is not a
V.C of H

Summery of VC kernel

30

(G,k) (E(G),k)

(H ≤ G, k)
F=E(H) ⊆ E(G)

• For any k size set X, if there is an
edge {u,v} in E(G) such that
X ∩ {u,v}=∅ then there is an edge
{u’,v’} in F such that X ∩ {u’,v’}=∅

Polytime Algo

• For any k size set X, if X is
not a V.C of G, then X is not a
V.C of H

Polytime Algo

Summery of VC kernel

31

(G,k) (E(G),k)

(H ≤ G, k)
F=E(H) ⊆ E(G)

F is called k-representative family of E(G)

Polytime Algo

• For any k size set X, if X is
not a V.C of G, then X is not a
V.C of H

Polytime Algo

• For any k size set X, if there is an
edge {u,v} in E(G) such that
X ∩ {u,v}=∅ then there is an edge
{u’,v’} in F such that X ∩ {u’,v’}=∅

Representative Family

32

• E ⊆ , where V is a set.
• k is a positive integer
• A subfamily F ⊆ E is called a k-representative family if:

for any k-size set X if there is a set Z∈E s.t X ∩ Z = ∅,
then there is a set Z’∈F s.t X ∩ Z’ = ∅

()V
2

Representative Family

33

• E ⊆ , where V is a set.
• k is a positive integer
• A subfamily F ⊆ E is called a k-representative family if:

for any k-size set X if there is a set Z∈E s.t X ∩ Z = ∅,
then there is a set Z’∈F s.t X ∩ Z’ = ∅|F| Run time

≤ k(k+1)+1 Polynomial in |E|

()V
2

Representative Family

34

• E ⊆ , where V is a set.
• k is a positive integer
• A subfamily F ⊆ E is called a k-representative family if:

for any k-size set X if there is a set Z∈E s.t X ∩ Z = ∅,
then there is a set Z’∈F s.t X ∩ Z’ = ∅

Proof: The V.C kernel we have seen.

|F| Run time

≤ k(k+1)+1 Polynomial in |E|

()V
2

Representative Family
(for family of large subsets)

35

• E ⊆ , where V is a set and p is a positive integer
• k is a positive integer
• A subfamily F ⊆ E is called a k-representative family if:

for any k-size set X if there is a set Z∈E s.t X ∩ Z = ∅,
then there is a set Z’∈F s.t X ∩ Z’ = ∅

()V
p

Representative Family
(for family of large subsets)

36

• E ⊆ , where V is a set and p is a positive integer
• k is a positive integer
• A subfamily F ⊆ E is called a k-representative family if:

for any k-size set X if there is a set Z∈E s.t X ∩ Z = ∅,
then there is a set Z’∈F s.t X ∩ Z’ = ∅

()V
p

|F| Run time Ref.

O(|E|) [Fomin et al. 2013]k + p
p

⎛
⎝⎜

⎞
⎠⎟

k + p
p

⎛
⎝⎜

⎞
⎠⎟
w − 1

5-Hitting Set

37

Input : A family E ⊆ of a set U and an integer k

Qn: Is there a k-size subset of U which hits all set in E
()U

5

5-Hitting Set

38

Compute a k-representative family F of size ≤ O(k5).

Output (F , k).  
()k+5

5

Input : A family E ⊆ of a set U and an integer k

Qn: Is there a k-size subset of U which hits all set in E
()U

5

5-Hitting Set

39

Compute a k-representative family F of size ≤ O(k5).

Output (F , k).  
Proof: ()

()k+5
5

⇒

Input : A family E ⊆ of a set U and an integer k

Qn: Is there a k-size subset of U which hits all set in E
()U

5

5-Hitting Set

40

Compute a k-representative family F of size ≤ O(k5).

Output (F , k).  
Proof: ()

()k+5
5

⇒

 (E, k) is Yes instance ⇒ (F, k) is Yes instance.

Input : A family E ⊆ of a set U and an integer k

Qn: Is there a k-size subset of U which hits all set in E
()U

5

5-Hitting Set

41

Compute a k-representative family F of size ≤ O(k5).

Output (F , k).  
Proof: ()

()k+5
5

⇐

Input : A family E ⊆ of a set U and an integer k

Qn: Is there a k-size subset of U which hits all set in E
()U

5

5-Hitting Set

42

Compute a k-representative family F of size ≤ O(k5).

Output (F , k).  
Proof: ()

()k+5
5

Suppose (F , k) is Yes instance (X is a hitting set).  
⇐

Input : A family E ⊆ of a set U and an integer k

Qn: Is there a k-size subset of U which hits all set in E
()U

5

5-Hitting Set

43

Compute a k-representative family F of size ≤ O(k5).

Output (F , k).  
Proof: ()

()k+5
5

Suppose (F , k) is Yes instance (X is a hitting set).  
We claim X is hitting set for E. Suppose not, then there is Y ∈ E
s.t X ∩ Y = ∅.

⇐

Input : A family E ⊆ of a set U and an integer k

Qn: Is there a k-size subset of U which hits all set in E
()U

5

5-Hitting Set

44

Compute a k-representative family F of size ≤ O(k5).

Output (F , k).  
Proof: ()

()k+5
5

Suppose (F , k) is Yes instance (X is a hitting set).  
We claim X is hitting set for E. Suppose not, then there is Y ∈ E
s.t X ∩ Y = ∅. This implies there is Y’∈F s.t X ∩ Y’ =∅.

contradiction!

⇐

Input : A family E ⊆ of a set U and an integer k

Qn: Is there a k-size subset of U which hits all set in E
()U

5

3-Set Packing

45

Input : A family E ⊆ of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

U
3()

3-Set Packing

46

Compute a (3k-3)-representative family F of size ≤ O(k3).

Output (F , k).
()3k

3

Input : A family E ⊆ of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

U
3()

3-Set Packing

47

Compute a (3k-3)-representative family F of size ≤ O(k3).

Output (F , k).

Proof: ()

()3k
3

Input : A family E ⊆ of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

U
3()

⇒

3-Set Packing

48

Compute a (3k-3)-representative family F of size ≤ O(k3).

Output (F , k).

Proof: ()

()3k
3

Input : A family E ⊆ of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

U
3()

⇒
Let S={Y1,…,Yk} is a solution such that |S∩F| is maximised.

3-Set Packing

49

Compute a (3k-3)-representative family F of size ≤ O(k3).

Output (F , k).

Proof: ()

()3k
3

Input : A family E ⊆ of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

U
3()

⇒
Let S={Y1,…,Yk} is a solution such that |S∩F| is maximised.

If S ⊆ F, then we are done.

3-Set Packing

50

Compute a (3k-3)-representative family F of size ≤ O(k3).

Output (F , k).

Proof: ()

()3k
3

Input : A family E ⊆ of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

U
3()

⇒
Let S={Y1,…,Yk} is a solution such that |S∩F| is maximised.

If S ⊆ F, then we are done. Otherwise let Y∈ S \ F.

Let X=(Y1∪Y2…∪Yk)\Y.

3-Set Packing

51

Compute a (3k-3)-representative family F of size ≤ O(k3).

Output (F , k).

Proof: ()

()3k
3

Input : A family E ⊆ of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

U
3()

⇒
Let S={Y1,…,Yk} is a solution such that |S∩F| is maximised.

If S ⊆ F, then we are done. Otherwise let Y∈ S \ F.

Let X=(Y1∪Y2…∪Yk)\Y. Notice that |X|=3k-3 and X ∩ Y = ∅.

3-Set Packing

52

Compute a (3k-3)-representative family F of size ≤ O(k3).

Output (F , k).

Proof: ()

()3k
3

Input : A family E ⊆ of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

U
3()

⇒
Let S={Y1,…,Yk} is a solution such that |S∩F| is maximised.

If S ⊆ F, then we are done. Otherwise let Y∈ S \ F.

Let X=(Y1∪Y2…∪Yk)\Y. Notice that |X|=3k-3 and X ∩ Y = ∅.

This implies there is Y’∈F s.t X ∩ Y’ =∅.

3-Set Packing

53

Compute a (3k-3)-representative family F of size ≤ O(k3).

Output (F , k).

Proof: ()

()3k
3

Input : A family E ⊆ of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

U
3()

⇒
Let S={Y1,…,Yk} is a solution such that |S∩F| is maximised.

If S ⊆ F, then we are done. Otherwise let Y∈ S \ F.

Let X=(Y1∪Y2…∪Yk)\Y. Notice that |X|=3k-3 and X ∩ Y = ∅.

This implies there is Y’∈F s.t X ∩ Y’ =∅. Then by replacing Y with Y’

in S, we get a solution S’ s.t |S’∩F|> |S∩F|.

3-Set Packing

54

Compute a (3k-3)-representative family F of size ≤ O(k3).

Output (F , k).

Proof: ()

()3k
3

Input : A family E ⊆ of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

U
3()

⇒
Let S={Y1,…,Yk} is a solution such that |S∩F| is maximised.

If S ⊆ F, then we are done. Otherwise let Y∈ S \ F.

Let X=(Y1∪Y2…∪Yk)\Y. Notice that |X|=3k-3 and X ∩ Y = ∅.

This implies there is Y’∈F s.t X ∩ Y’ =∅. Then by replacing Y with Y’

in S, we get a solution S’ s.t |S’∩F|> |S∩F|. Contradiction!

3-Set Packing

55

Compute a (3k-3)-representative family F of size ≤ O(k3).

Output (F , k).

Proof: ()

()3k
3

Input : A family E ⊆ of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

U
3()

⇐

3-Set Packing

56

Compute a (3k-3)-representative family F of size ≤ O(k3).

Output (F , k).

Proof: ()

()3k
3

Input : A family E ⊆ of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

U
3()

⇐

F is a subset of E

57

Generalization to Matrices

Definitions from Linear Algebra

58

[]…

 v1 v2 …. vn{
C

59

[]…

 v1 v2 …. vn{
C

{r1
r2
…
rm

R

Definitions from Linear Algebra

60

[]…

 v1 v2 …. vn{
C

{r1
r2
…
rm

R
A set of vectors v1,…,vt is linearly
independent if there is no scalars
a1,…,at, not all equal to 0 such that

∑ aivi = 0

Definitions from Linear Algebra

61

[]…

 v1 v2 …. vn{
C

{r1
r2
…
rm

R

∑ aivi = 0

• Basis of C is a set of maximum no. of L.I vectors in C
• rank(C) = max. no. L.I vectors in C = size of a basis of C

Definitions from Linear Algebra

A set of vectors v1,…,vt is linearly
independent if there is no scalars
a1,…,at, not all equal to 0 such that

62

[]…

 v1 v2 …. vn{
C

{r1
r2
…
rm

R

∑ aivi = 0

• Basis of C is a set of maximum no. of L.I vectors in C
• rank(C) = max. no. L.I vectors in C = size of a basis of C
• rank(C) = rank(R)

Definitions from Linear Algebra

A set of vectors v1,…,vt is linearly
independent if there is no scalars
a1,…,at, not all equal to 0 such that

63

[]…

 v1 v2 …. vn{
C

{r1
r2
…
rm

R

∑ aivi = 0

• Basis of C is a set of maximum no. of L.I vectors in C
• rank(C) = max. no. L.I vectors in C = size of a basis of C
• rank(C) = rank(R)
• span(C) = set of all vectors which are linear combinations of C

Definitions from Linear Algebra

A set of vectors v1,…,vt is linearly
independent if there is no scalars
a1,…,at, not all equal to 0 such that

64

[]…

 v1 v2 …. vn{
C

{r1
r2
…
rm

R

∑ aivi = 0

• Basis of C is a set of maximum no. of L.I vectors in C
• rank(C) = max. no. L.I vectors in C = size of a basis of C
• rank(C) = rank(R)
• span(C) = set of all vectors which are linear combinations of C
• rank(span(C))=rank(C)

Definitions from Linear Algebra

A set of vectors v1,…,vt is linearly
independent if there is no scalars
a1,…,at, not all equal to 0 such that

Representative Family on Matrices

65

[]…

 v1 v2 …. vn{
V

• E := a family of subsets of V, where
each set size is p

• k is a postive integer

• A subfamily F ⊆ E is called a k-representative family if:

for any k-size set X if there is a set Z∈E s.t X ∪ Z is L.I,
then there is a set Z’ in F s.t X ∪ Z’ is L.I.

Representative Family on Matrices

66

[]…

 v1 v2 …. vn{
V

• E := a family of subsets of V, where
each set size is p

• k is a postive integer

• A subfamily F ⊆ E is called a k-representative family if:

for any k-size set X if there is a set Z∈E s.t X ∪ Z is L.I,
then there is a set Z’ in F s.t X ∪ Z’ is L.I.

|F| Run time Ref.

 |E| nO(1) [Lokshtanov et al. 2013]k + p
p

⎛
⎝⎜

⎞
⎠⎟

k + p
p

⎛
⎝⎜

⎞
⎠⎟
w − 1

Rank Vertex Cover

67

v1

v2

v4

v3

v5 v8

v6

v7 []1
0
0
0
1

1
0
0
0
1

1
0
0
0
1

1
0
0
0
1

1
0
0
0
1

0
1
0
0
1

0
0
0
1
1

0
0
1
0
1

Rank Vertex Cover

68

v1

v2

v4

v3

v5 v8

v6

v7 []1
0
0
0
1

1
0
0
0
1

1
0
0
0
1

1
0
0
0
1

1
0
0
0
1

0
1
0
0
1

0
0
0
1
1

0
0
1
0
1

rank({v3,v4,v5,v6}) = Max no. L.I vectors in it = 4

Rank Vertex Cover

69

v1

v2

v4

v3

v5 v8

v6

v7 []1
0
0
0
1

1
0
0
0
1

1
0
0
0
1

1
0
0
0
1

1
0
0
0
1

0
1
0
0
1

0
0
0
1
1

0
0
1
0
1

rank({v1,v2,v3,v6,v7,v8}) = Max no. L.I vectors in it = 2
rank({v3,v4,v5,v6}) = Max no. L.I vectors in it = 4

Rank Vertex Cover

70

v1

v2

v4

v3

v5 v8

v6

v7 []1
0
0
0
1

1
0
0
0
1

1
0
0
0
1

1
0
0
0
1

1
0
0
0
1

0
1
0
0
1

0
0
0
1
1

0
0
1
0
1

rank({v1,v2,v3,v6,v7,v8}) = Max no. L.I vectors in it = 2
rank({v3,v4,v5,v6}) = Max no. L.I vectors in it = 4

Input: A graph G, a matrix M, and an integer k
Question : Is there a vertex cover of rank k

V.C ≤ Rank V.C

71

• G has a V.C of size k iff (G,M) has V.C of rank k

v

v

v

v

v v

v
v

, k ≤()v

v

v

v

v v

v
v

, k , []1
1

…
1

10
0

()

Kernel for Rank Vertex Cover

72

[]…

 v1 v2 …. vn

G, k, M=()

Kernel for Rank Vertex Cover

73

[]…

 v1 v2 …. vn

G, k, M=

[]M

M0

0
Q=

u u’

()

Kernel for Rank Vertex Cover

74

[]…

 v1 v2 …. vn

G, k, M=

[]M

M0

0
Q=

For any edge {u,v} create a set {u,v’}
of two vectors in Q

u u’

()

Kernel for Rank Vertex Cover

75

[]…

 v1 v2 …. vn

G, k, M=

[]M

M0

0
Q=

For any edge {u,v} create a set {u,v’}
of two vectors in Q

u u’

E is the collection of sets of
vectors created

()

Kernel for Rank Vertex Cover

76

[]M

M0

0
Q=

u u’

E={{u,v’} : {u,v} in E(G)}

Kernel for Rank Vertex Cover

77

[]M

M0

0
Q=

u u’

E={{u,v’} : {u,v} in E(G)}

• Compute 2k-representative family F of E (|F|=O(k2))

Kernel for Rank Vertex Cover

78

[]M

M0

0
Q=

u u’

E={{u,v’} : {u,v} in E(G)}

• Compute 2k-representative family F of E (|F|=O(k2))
• Delete all edges which are not part of F in G
• Delete isolated vertices from G and M

Kernel for Rank Vertex Cover

79

[]M

M0

0
Q=

u u’

E={{u,v’} : {u,v} in E(G)}

• Compute 2k-representative family F of E (|F|=O(k2))
• Delete all edges which are not part of F in G
• Delete isolated vertices from G and M
• Call the new instance (G’,M’,k)

Kernel for Rank Vertex Cover

80

[]M

M0

0
Q=

u u’

E={{u,v’} : {u,v} in E(G)}

• Compute 2k-representative family F of E (|F|=O(k2))
• Delete all edges which are not part of F in G
• Delete isolated vertices from G and M
• Call the new instance (G’,M’,k)
• Size of G’ is O(k2)
• No. of columns in M’ is O(k2)

Kernel for Rank Vertex Cover

81

[]M

M0

0
Q=

u u’

E={{u,v’} : {u,v} in E(G)}

• Compute 2k-representative family F of E (|F|=O(k2))
• Delete all edges which are not part of F in G
• Delete isolated vertices from G and M
• Call the new instance (G’,M’,k)
• Size of G’ is O(k2)
• No. of columns in M’ is O(k2)
• The number of no. of rows in M’ is not bounded

Kernel for Rank Vertex Cover

82

[]M

M0

0
Q=

u u’

E={{u,v’} : {u,v} in E(G)}

• Compute 2k-representative family F of E (|F|=O(k2))
• Delete all edges which are not part of F in G
• Delete isolated vertices from G and M
• Call the new instance (G’,M’,k)
• Size of G’ is O(k2)
• No. of columns in M’ is O(k2)
• The number of no. of rows in M’ is not bounded

Just see the correctness proof of this reduction

 Proof: Forward direction

83

• G’ is a subgraph of G
• M’ is obtained by deleting some columns from M
• If X is V.C of rank k in G, then X ∩ V(G’) is a V.C of rank k

in G’

84

• Let X’ is a V.C of G’ and rank(X’)=k

 Proof: Reverse direction

85

• Let X’ is a V.C of G’ and rank(X’)=k
• We claim X=span(X’)∩M is a V.C of G.

 Proof: Reverse direction

86

• Let X’ is a V.C of G’ and rank(X’)=k
• We claim X=span(X’)∩M is a V.C of G.
• Suppose not. Let {u,v} be an edge not covered by X

 Proof: Reverse direction

87

• Let X’ is a V.C of G’ and rank(X’)=k
• We claim X=span(X’)∩M is a V.C of G.
• Suppose not. Let {u,v} be an edge not covered by X
• Let B be a basis of X

 Proof: Reverse direction

88

• Let X’ is a V.C of G’ and rank(X’)=k
• We claim X=span(X’)∩M is a V.C of G.
• Suppose not. Let {u,v} be an edge not covered by X
• Let B be a basis of X
• |B|=k

 Proof: Reverse direction

89

• Let X’ is a V.C of G’ and rank(X’)=k
• We claim X=span(X’)∩M is a V.C of G.
• Suppose not. Let {u,v} be an edge not covered by X
• Let B be a basis of X
• |B|=k
• B ∪ {u}, B ∪ {v} are L.I

 Proof: Reverse direction

90

• Let X’ is a V.C of G’ and rank(X’)=k
• We claim X=span(X’)∩M is a V.C of G.
• Suppose not. Let {u,v} be an edge not covered by X
• Let B be a basis of X
• |B|=k
• B ∪ {u}, B ∪ {v} are L.I

[]B

B0

0
u

Q= …

v’

B1 B2

…

 Proof: Reverse direction

91

• Let X’ is a V.C of G’ and rank(X’)=k
• We claim X=span(X’)∩M is a V.C of G.
• Suppose not. Let {u,v} be an edge not covered by X
• Let B be a basis of X
• |B|=k
• B ∪ {u}, B ∪ {v} are L.I

[]B

B0

0
u

Q= …

v’

• B1 ∪ {u} is L.I
• B2 ∪ {v’} is L.I

B1 B2

…

 Proof: Reverse direction

92

• Let X’ is a V.C of G’ and rank(X’)=k
• We claim X=span(X’)∩M is a V.C of G.
• Suppose not. Let {u,v} be an edge not covered by X
• Let B be a basis of X
• |B|=k
• B ∪ {u}, B ∪ {v} are L.I

[]B

B0

0
u

Q= …

v’

• B1 ∪ {u} is L.I
• B2 ∪ {v’} is L.I
• B1 ∪ B2 ∪ {u,v’} is L.I

B1 B2

…

 Proof: Reverse direction

93

• Let X’ is a V.C of G’ and rank(X’)=k
• We claim X=span(X’)∩M is a V.C of G.
• Suppose not. Let {u,v} be an edge not covered by X
• Let B be a basis of X
• |B|=k
• B ∪ {u}, B ∪ {v} are L.I

[]B

B0

0
u

Q= …

v’

• B1 ∪ {u} is L.I
• B2 ∪ {v’} is L.I
• B1 ∪ B2 ∪ {u,v’} is L.I
• |B1 ∪ B2 |=2k

B1 B2

…

 Proof: Reverse direction

94

• Let X’ is a V.C of G’ and rank(X’)=k
• We claim X=span(X’)∩M is a V.C of G.
• Suppose not. Let {u,v} be an edge not covered by X
• Let B be a basis of X
• |B|=k
• B ∪ {u}, B ∪ {v} are L.I

[]B

B0

0
u

Q= …

v’

• B1 ∪ {u} is L.I
• B2 ∪ {v’} is L.I
• B1 ∪ B2 ∪ {u,v’} is L.I
• |B1 ∪ B2 |=2k
• From the def. of rep. family

there is {w,z’} in F s.t.
B1∪B2∪{w,z’} is L.I

B1 B2

…

 Proof: Reverse direction

95

• Let X’ is a V.C of G’ and rank(X’)=k
• We claim X=span(X’)∩M is a V.C of G.
• Suppose not. Let {u,v} be an edge not covered by X
• Let B be a basis of X
• |B|=k
• B ∪ {u}, B ∪ {v} are L.I

[]B

B0

0
u

Q= …

v’

• B1 ∪ {u} is L.I
• B2 ∪ {v’} is L.I
• B1 ∪ B2 ∪ {u,v’} is L.I
• |B1 ∪ B2 |=2k
• From the def. of rep. family

there is {w,z’} in F s.t.
B1∪B2∪{w,z’} is L.I

• B ∪ {w}, B ∪ {z} are L.I

B1 B2

…

 Proof: Reverse direction

96

• Let X’ is a V.C of G’ and rank(X’)=k
• We claim X=span(X’)∩M is a V.C of G.
• Suppose not. Let {u,v} be an edge not covered by X
• Let B be a basis of X
• |B|=k
• B ∪ {u}, B ∪ {v} are L.I

[]B

B0

0
u

Q= …

v’

• B1 ∪ {u} is L.I
• B2 ∪ {v’} is L.I
• B1 ∪ B2 ∪ {u,v’} is L.I
• |B1 ∪ B2 |=2k
• From the def. of rep. family

there is {w,z’} in F s.t.
B1∪B2∪{w,z’} is L.I

• B ∪ {w}, B ∪ {z} are L.I
• That is, X’ will not cover the

edge {w,z} in G’
B1 B2

…

 Proof: Reverse direction

97

• Let X’ is a V.C of G’ and rank(X’)=k
• We claim X=span(X’)∩M is a V.C of G.
• Suppose not. Let {u,v} be an edge not covered by X
• Let B be a basis of X
• |B|=k
• B ∪ {u}, B ∪ {v} are L.I

[]B

B0

0
u

Q= …

v’

• B1 ∪ {u} is L.I
• B2 ∪ {v’} is L.I
• B1 ∪ B2 ∪ {u,v’} is L.I
• |B1 ∪ B2 |=2k
• From the def. of rep. family

there is {w,z’} in E s.t.
B1∪B2∪{w,z’} is L.I

• B ∪ {w}, B ∪ {z} are L.I
• That is, X’ will not cover the

edge {w,z} in G’
B1 B2

…

Contradiction!

 Proof: Reverse direction

98

• We got (G’,M’,k), where size of G’ and no. columns in M’ is
O(k2).

Bound on no. of rows

99

• We got (G’,M’,k), where size of G’ and no. columns in M’ is
O(k2).

• To bound the number of rows, we delete all rows except
row vectors in a basis.

Bound on no. of rows

100

• We got (G’,M’,k), where size of G’ and no. columns in M’ is
O(k2).

• To bound the number of rows, we delete all rows except
row vectors in a basis.

• Row rank = column rank implies that the size of row basis is
O(k2).

Bound on no. of rows

101

• We got (G’,M’,k), where size of G’ and no. columns in M’ is
O(k2).

• To bound the number of rows, we delete all rows except
row vectors in a basis.

• Row rank = column rank implies that the size of row basis is
O(k2).

Bound on no. of rows

Proof omitted
(uses elementary operations)

V.C above Max matching

102

V.C above Max matching

103

• Size of a V.C is at least the size a max. matching.
• Max. matching can be computed in polynomial time

V.C above Max matching

104

• Size of a V.C is at least the size a max. matching.
• Max. matching can be computed in polynomial time

Input: A graph G and an integer k
Question : Is there a vertex cover of size mm(G)+k

V.C above mm ≤ Rank V.C

105

• G has a V.C of size mm(G)+k iff (G,M) has V.C of rank mm(G)+k

v

v

v

v

v v

v
v

, k ≤()v

v

v

v

v v

v
v

, mm+k , []1
1

…
1

10
0

()

Rank Reduction

106

v

v

v

v

v v

v
v , mm+k , []1

1
…

1
10

0()
Rand. polynomial Time

(G’, k’=O(k3/2), M’)
Each entry is on poly(k) bits

How to get a Kernel for V.C above MM

107

(G,k) of V.C above MM

(G,mm+k,In) of Rank V.C

How to get a Kernel for V.C above MM

108

(G,k) of V.C above MM

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.CMatrix entry bounded in poly(k)

How to get a Kernel for V.C above MM

109

(G,k) of V.C above MM

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(G’’,O(k3/2),M’’) of Rank V.CSize bounded in poly(k)

Matrix entry bounded in poly(k)

How to get a Kernel for V.C above MM

110

(G,k) of V.C above MM

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(G’’,O(k3/2),M’’) of Rank V.CSize bounded in poly(k)

(H,k’’) of V.C above MMSize bounded in poly(k)

Matrix entry bounded in poly(k)

(G,k) of V.C above MM

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(G’’,O(k3/2),M’’) of Rank V.C

Matrix entry bounded in poly(k)

Size bounded in poly(k)

How to get a Kernel for V.C above MM

111

(G,k) of V.C above MM

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(G’’,O(k3/2),M’’) of Rank V.CSize bounded in poly(k)

(H,k’’) of V.C above MMSize bounded in poly(k)

in NP

is NP-hard

Matrix entry bounded in poly(k)

(G,k) of V.C above MM

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(G’’,O(k3/2),M’’) of Rank V.C

Matrix entry bounded in poly(k)

Size bounded in poly(k)

How to get a Kernel for V.C above MM

112

(G,k) of V.C above MM

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(G’’,O(k3/2),M’’) of Rank V.CSize bounded in poly(k)

(H,k’’) of V.C above MMSize bounded in poly(k)

Matrix entry bounded in poly(k)

(G,k) of V.C above MM

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(G’’,O(k3/2),M’’) of Rank V.C

Matrix entry bounded in poly(k)

Size bounded in poly(k)

in NP

is NP-hard

Co-loop in a matrix

113

• Co-loop is a column vector which is part of any basis.

M=[]…

 v1 v2 …. vn

Rank Reduction

114

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop v in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C

• Co-loops in (N \ N(v)) ⊆ Co-loops in N’

Rank Reduction

115

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop u in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C
• Co-loops in N\N(v) ⊆ Co-loops in N’

Rank Reduction

116

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop u in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C
• Co-loops in N\N(v) ⊆ Co-loops in N’

Rand. poly time
algorithm

[Misra et al., 2011]

V.C above MM

(G,k)

Yes/No

a V.C of size mm+ck3/2

Rank Reduction

117

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop u in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C
• Co-loops in N\N(v) ⊆ Co-loops in N’

Rand. poly time
algorithm

[Misra et al., 2011]

V.C above MM

(G,k)

Yes/No

a V.C of size mm+ck3/2

an Independent set of size
n-(mm+ck3/2)

Rank Reduction

118

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop u in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C
• Co-loops in N\N(v) ⊆ Co-loops in N’

• Recall that (G,mm+k,In) is the input instance of Rank V.C

Rank Reduction

119

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop u in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C
• Co-loops in N\N(v) ⊆ Co-loops in N’

• Recall that (G,mm+k,In) is the input instance of Rank V.C
• Run the algorithm by Misra et al., 2011 on (G,k) and if it outputs

Yes/No, we are done.

Rank Reduction

120

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop u in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C
• Co-loops in N\N(v) ⊆ Co-loops in N’

• Recall that (G,mm+k,In) is the input instance of Rank V.C
• Run the algorithm by Misra et al., 2011 on (G,k) and if it outputs

Yes/No, we are done.
• Otherwise the output is an independent set S of size n-(mm+ck3/2)

Rank Reduction

121

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop u in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C
• Co-loops in N\N(v) ⊆ Co-loops in N’

• Recall that (G,mm+k,In) is the input instance of Rank V.C
• Run the algorithm by Misra et al., 2011 on (G,k) and if it outputs

Yes/No, we are done.
• Otherwise the output is an independent set S of size n-(mm+ck3/2)
• All elements of S in In are co-loops

Rank Reduction

122

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop u in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C
• Co-loops in N\N(v) ⊆ Co-loops in N’

• Recall that (G,mm+k,In) is the input instance of Rank V.C
• Run the algorithm by Misra et al., 2011 on (G,k) and if it outputs

Yes/No, we are done.
• Otherwise the output is an independent set S of size n-(mm+ck3/2)
• All elements of S in In are co-loops
• The neighbourhood of any element in S is in V(G)\S

Rank Reduction

123

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop u in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C
• Co-loops in N\N(v) ⊆ Co-loops in N’

• Recall that (G,mm+k,In) is the input instance of Rank V.C
• Run the algorithm by Misra et al., 2011 on (G,k) and if it outputs

Yes/No, we are done.
• Otherwise the output is an independent set S of size n-(mm+ck3/2)
• All elements of S in In are co-loops
• The neighbourhood of any element in S is in V(G)\S
• We apply the above reduction rule one by one on S.

Rank Reduction

124

(G,mm+k,In) of Rank V.C

(G’,O(k3/2),M’) of Rank V.C

(H, p, N) of Rank V.C and a co-loop u in N

(in Rand. Polynomial time)

(H\u, p-2, N’) of Rank V.C
• Co-loops in N\N(v) ⊆ Co-loops in N’

• Recall that (G,mm+k,In) is the input instance of Rank V.C
• Run the algorithm by Misra et al., 2011 on (G,k) and if it outputs

Yes/No, we are done.
• Otherwise the output is an independent set S of size n-(mm+ck3/2)
• All elements of S in In are co-loops
• The neighbourhood of any element in S is in V(G)\S
• We apply the above reduction rule one by one on S.

rank(M’)=n-2|S|=n-2(n-mm-ck3/2) ≤-n+2mm+2ck3/2 ≤ 2ck3/2

Conclusion

125

Kernelization: V.C above MM, V.C above LP, Almost 2SAT,
Multiway Cut with deletable terminals, Subset FVS, etc
Open problems: deterministic polynomial kernels for the
above problems ?

λ

FPT: k-Matroid Parity, k-Path, k-Tree, Connectivity problems
on graphs of bounded tree-width, Long Cycle, k-MLD, etc

Exact Exponential Time algorithms : Min. Equivalent digraph,
Minimum Weight -connected Spanning Subgraph.

Conclusion

126

Kernelization: V.C above MM, V.C above LP, Almost 2SAT,
Multiway Cut with deletable terminals, Subset FVS, etc
Open problems: deterministic polynomial kernels for the
above problems ?

λ

FPT: k-Matroid Parity, k-Path, k-Tree, Connectivity problems
on graphs of bounded tree-width, Long Cycle, k-MLD, etc

Exact Exponential Time algorithms : Min. Equivalent digraph,
Minimum Weight -connected Spanning Subgraph.

Thank you for your attention!

