Representative Families and Kernels

Fahad Panolan

> Department of Informatics, University of Bergen, Norway

Parameterized Complexity Summer School
Vienna, 3 Sep 2017

Outline

1. Vertex Cover, Representative Family, more applications, and its generalisation to matrices
2. Overview of an alternate randomised polynomial kernel for Vertex Cover above Maximum Matching

Vertex Cover

Vertex Cover

Vertex Cover

Input: A graph G and an integer k
Question: Is there a vertex cover of size k

A Simple Kernel for VC

A Simple Kernel for VC

A Simple Kernel for VC

- Delete all but $k(k+1)+1$ edges

A Simple Kernel for VC

- Delete all but $k(k+1)+1$ edges
- Delete all isolated vertices

A Simple Kernel for VC

- Delete all but $k(k+1)+1$ edges
- Delete all isolated vertices
- The resulting graph has size $O\left(k^{2}\right)$.

A Simple Kernel for VC

- Delete all but $k(k+1)+1$ edges
- Delete isolated vertices
- The resulting graph has size $O\left(\mathrm{k}^{2}\right)$.
$G \longrightarrow H$

A Simple Kernel for VC

$(H, k) \equiv(G, k)$

- Delete all but $k(k+1)+1$ edges
- Delete isolated vertices
- The resulting graph has size $O\left(\mathrm{k}^{2}\right)$.
$G \longrightarrow H$

A Simple Kernel for VC

$$
(H, k) \equiv(G, k)
$$

$$
(\Rightarrow)
$$

If X is a V.C of G, then X is a V.C of H

- Delete all but $k(k+1)+1$ edges
- Delete isolated vertices
- The resulting graph has size $O\left(k^{2}\right)$.
$G \longrightarrow H$

A Simple Kernel for VC

$$
(H, k) \equiv(G, k)
$$

$$
(\Rightarrow)
$$

If X is a V.C of G, then X is a V.C of H

Proof: H is a subgraph of G

- Delete all but $k(k+1)+1$ edges
- Delete isolated vertices
- The resulting graph has size $O\left(\mathrm{k}^{2}\right)$.

$$
G \longrightarrow H
$$

A Simple Kernel for VC

(\Leftarrow)
Let X be a k size subset of $V(H)$. If X is a V.C of H, then X is a V.C of G

- Delete all but $k(k+1)+1$ edges
- Delete isolated vertices
- The resulting graph has size $O\left(k^{2}\right)$.
$G \longrightarrow H$

A Simple Kernel for VC

Let X be a k size subset of $V(H)$. If X is a V.C of H, then X is a V.C of G

If X is not a $V . C$ of G, then X is not a V.C of H

- Delete all but $k(k+1)+1$ edges
- Delete isolated vertices
- The resulting graph has size $O\left(k^{2}\right)$.
$G \longrightarrow H$

A Simple Kernel for VC

A Simple Kernel for VC

A Simple Kernel for VC

Let X be a k size subset of $V(H)$.
If X is not a V.C of G, then X is not a V.C of H
$G=G_{0} \rightarrow G_{1} \rightarrow G_{2} \ldots G_{+} \rightarrow G_{++1}=H$

- Delete all but $k(k+1)+1$ edges
- Delete isolated vertices
- The resulting graph has size $O\left(k^{2}\right)$.
$G \longrightarrow H$

A Simple Kernel for VC

$G=G_{0} \rightarrow G_{1} \rightarrow G_{2} \ldots G_{+} \rightarrow G_{++1}=H$ Let X be a k size subset of $V\left(G_{i+1}\right)$. If X is not a V.C of G_{i}, then X is not a

$$
\text { V.C of } G_{i+1}
$$

Proof:

- Delete all but $k(k+1)+1$ edges
- Delete isolated vertices
- The resulting graph has size $O\left(k^{2}\right)$.
$G \longrightarrow H$

A Simple Kernel for VC

$G=G_{0} \rightarrow G_{1} \rightarrow G_{2} \ldots G_{t} \rightarrow G_{++1}=H$ Let X be a k size subset of $V\left(G_{i+1}\right)$. If X is not a V.C of G_{i}, then X is not a V.C of G_{i+1}

Proof: Case 1: $G_{i} \rightarrow G_{i+1}$.

- Delete all but $k(k+1)+1$ edges
- Delete isolated vertices
- The resulting graph has size $O\left(k^{2}\right)$.
$G \longrightarrow H$

A Simple Kernel for VC

$G=G_{0} \rightarrow G_{1} \rightarrow G_{2} \ldots G_{t} \rightarrow G_{t+1}=H$ Let X be a k size subset of $V\left(G_{i+1}\right)$. If X is not a V.C of G_{i}, then X is not a

$$
\text { V.C of } G_{i+1}
$$

Proof: Case 1: $G_{i} \rightarrow G_{i+1}$.

- Delete all but $k(k+1)+1$ edges
- Delete isolated vertices
- The resulting graph has size $O\left(k^{2}\right)$.

$G \longrightarrow H$

A Simple Kernel for VC

$G=G_{0} \rightarrow G_{1} \rightarrow G_{2} \ldots G_{t} \rightarrow G_{++1}=H$ Let X be a k size subset of $V\left(G_{i+1}\right)$. If X is not a V.C of G_{i}, then X is not a

$$
\text { V.C of } G_{i+1}
$$

Proof: Case 1: $G_{i} \rightarrow G_{i+1}$.

- Delete all but $k(k+1)+1$ edges
- Delete isolated vertices
- The resulting graph has size $O\left(k^{2}\right)$.

Let e be an edge in G_{i} not covered by X. If e is in $E\left(G_{i+1}\right)$, then we are done.

A Simple Kernel for VC

$G=G_{0} \rightarrow G_{1} \rightarrow G_{2} \ldots G_{t} \rightarrow G_{++1}=H$ Let X be a k size subset of $V\left(G_{i+1}\right)$. If X is not a V.C of G_{i}, then X is not a

$$
\text { V.C of } G_{i+1}
$$

Proof: Case 1: $G_{i} \rightarrow G_{i+1}$.

- Delete all but $k(k+1)+1$ edges
- Delete isolated vertices
- The resulting graph has size $O\left(k^{2}\right)$.

Let e be an edge in G_{i} not covered by X. If e is in $E\left(G_{i+1}\right)$, then we are done.

A Simple Kernel for VC

$G=G_{0} \rightarrow G_{1} \rightarrow G_{2} \ldots G_{t} \rightarrow G_{++1}=H$ Let X be a k size subset of $V\left(G_{i+1}\right)$. If X is not a V.C of G_{i}, then X is not a

$$
\text { V.C of } G_{i+1}
$$

Proof: \quad Case 2: $\boldsymbol{G}_{\mathrm{i}} \rightarrow \boldsymbol{G}_{\mathrm{i}+1}$.

- Delete all but $k(k+1)+1$ edges
- Delete isolated vertices
- The resulting graph has size $O\left(k^{2}\right)$.

$G \longrightarrow H$

A Simple Kernel for VC

$G=G_{0} \rightarrow G_{1} \rightarrow G_{2} \ldots G_{t} \rightarrow G_{++1}=H$ Let X be a k size subset of $V\left(G_{i+1}\right)$. If X is not a V.C of G_{i}, then X is not a

$$
\text { V.C of } G_{i+1}
$$

Proof: \quad Case 2: $\boldsymbol{G}_{\mathrm{i}} \rightarrow \boldsymbol{G}_{\mathrm{i}+1}$.

- Delete all but $k(k+1)+1$ edges
- Delete isolated vertices
- The resulting graph has size $O\left(k^{2}\right)$.

$G \longrightarrow H$

A Simple Kernel for VC

$G=G_{0} \rightarrow G_{1} \rightarrow G_{2} \ldots G_{+} \rightarrow G_{++1}=H$ Let X be a k size subset of $V\left(G_{i+1}\right)$. If X is not a V.C of G_{i}, then X is not a

$$
\text { V.C of } G_{i+1}
$$

Proof: \quad Case 2: $\boldsymbol{G}_{\mathrm{i}} \rightarrow \boldsymbol{G}_{\mathrm{i}+1}$.

- Delete all but $k(k+1)+1$ edges
- Delete isolated vertices
- The resulting graph has size $O\left(k^{2}\right)$.

A Simple Kernel for VC

$G=G_{0} \rightarrow G_{1} \rightarrow G_{2} \ldots G_{t} \rightarrow G_{++1}=H$ Let X be a k size subset of $V\left(G_{i+1}\right)$. If X is not a V.C of G_{i}, then X is not a

$$
\text { V.C of } G_{i+1}
$$

Proof: \quad Case $2: G_{i} \rightarrow \mathcal{G}_{i+1}$.

- Delete all but $k(k+1)+1$ edges
- Delete isolated vertices
- The resulting graph has size $O\left(k^{2}\right)$.

Summary of VC kernel

- For any k size set X, if X is not a V.C of G, then X is not a V.C of H

Summery of VC kernel

- For any k size set X, if there is an edge $\{u, v\}$ in $E(G)$ such that $X \cap\{u, v\}=\varnothing$ then there is an edge $\left\{u^{\prime}, v^{\prime}\right\}$ in F such that $X \cap\left\{u^{\prime}, v^{\prime}\right\}=\varnothing$

Summery of VC kernel

- For any k size set X, if X is not a V.C of G, then X is not a V.C of H

- For any k size set X, if there is an edge $\{u, v\}$ in $E(G)$ such that $X \cap\{u, v\}=\varnothing$ then there is an edge $\left\{u^{\prime}, v^{\prime}\right\}$ in F such that $X \cap\left\{u^{\prime}, v^{\prime}\right\}=\varnothing$
F is called k-representative family of $E(G)$

Representative Family

$\cdot E \subseteq\binom{V}{2}$, where V is a set.

- k is a positive integer
- A subfamily $F \subseteq E$ is called a k-representative family if:
for any k-size set X if there is a set $Z \in E$ s.t $X \cap Z=\varnothing$, then there is a set $Z^{\prime} \in F$ s.t $X \cap Z^{\prime}=\varnothing$

Representative Family

- $E \subseteq\binom{V}{2}$, where V is a set.
- k is a positive integer
- A subfamily $\mathrm{F} \subseteq E$ is called a k-representative family if:

Representative Family

- $E \subseteq\binom{V}{2}$, where V is a set.
- k is a positive integer
- A subfamily $F \subseteq E$ is called a k-representative family if:

Proof: The V.C kernel we have seen.

Representative Family (for family of large subsets)

- $E \subseteq\binom{V}{p}$, where V is a set and p is a positive integer
- k is a positive integer
- A subfamily $\mathrm{F} \subseteq E$ is called a k-representative family if:
for any k-size set X if there is a set $Z \in E$ s.t $X \cap Z=\varnothing$, then there is a set $Z^{\prime} \in F$ s.t $X \cap Z^{\prime}=\varnothing$

Representative Family (for family of large subsets)

- $E \subseteq\binom{V}{p}$, where V is a set and p is a positive integer
- k is a positive integer
- A subfamily $\mathrm{F} \subseteq E$ is called a k-representative family if:
for any k-size set X if there is a set $Z \in E$ s.t $X \cap Z=\varnothing$, then there is a set $Z^{\prime} \in F$ s.t $X \cap Z^{\prime}=\varnothing$

IFI	Run time	Ref.
$\binom{k+p}{p}$	$\left.\mathbf{O}\binom{k+p}{p}^{w-1}\|\mathrm{E}\|\right)$	[Fomin et al. 2013]

5-Hitting Set

Input : A family $E \subseteq\binom{U}{5}$ of a set U and an integer k Qn: Is there a k-size subset of U which hits all set in E

5-Hitting Set

Input : A family $E \subseteq\binom{U}{5}$ of a set U and an integer k
Qn: Is there a k-size subset of U which hits all set in E

Compute a k-representative family F of size $\binom{k+5}{5} \leq O\left(k^{5}\right)$. Output (F, k).

5-Hitting Set

Input : A family $E \subseteq\binom{U}{5}$ of a set U and an integer k
Qn: Is there a k-size subset of U which hits all set in E

Compute a k-representative family F of size $\binom{k+5}{5} \leq O\left(k^{5}\right)$. Output (F, k).
Proof: (\Rightarrow)

5-Hitting Set

Input : A family $E \subseteq\binom{U}{5}$ of a set U and an integer k Qn: Is there a k-size subset of U which hits all set in E

Compute a k-representative family F of size $\binom{k+5}{5} \leq O\left(k^{5}\right)$. Output (F, k).
Proof: (\Rightarrow)
(E, k) is Yes instance $\Rightarrow(F, k)$ is Yes instance.

5-Hitting Set

Input : A family $E \subseteq\binom{U}{5}$ of a set U and an integer k
Qn: Is there a k-size subset of U which hits all set in E

Compute a k-representative family F of size $\binom{k+5}{5} \leq O\left(k^{5}\right)$. Output (F, k).
Proof: (\Longleftarrow)

5-Hitting Set

Input : A family $E \subseteq\binom{U}{5}$ of a set U and an integer k
Qn: Is there a k-size subset of U which hits all set in E

Compute a k-representative family F of size $\binom{k+5}{5} \leq O\left(k^{5}\right)$. Output (F, k).
Proof: (\Longleftarrow)
Suppose (F, k) is Yes instance (X is a hitting set).

5-Hitting Set

Input : A family $E \subseteq\binom{U}{5}$ of a set U and an integer k
Qn: Is there a k-size subset of U which hits all set in E

Compute a k-representative family F of size $\binom{k+5}{5} \leq O\left(k^{5}\right)$. Output (F, k).
Proof: (\Longleftarrow)
Suppose (F, k) is Yes instance (X is a hitting set).
We claim X is hitting set for E. Suppose not, then there is $Y \in E$ s.t $X \cap Y=\varnothing$.

5-Hitting Set

Input : A family $E \subseteq\binom{U}{5}$ of a set U and an integer k
Qn: Is there a k-size subset of U which hits all set in E

Compute a k-representative family F of size $\binom{k+5}{5} \leq O\left(k^{5}\right)$. Output (F, k).
Proof: ($\Leftarrow)$
Suppose (F, k) is Yes instance (X is a hitting set).
We claim X is hitting set for E. Suppose not, then there is $Y \in E$ s.t $\mathrm{X} \cap \mathrm{Y}=\varnothing$. This implies there is $\mathrm{Y}^{\prime} \in \mathrm{F}$ s.t $\mathrm{X} \cap \mathrm{Y}^{\prime}=\varnothing$.

3-Set Packing

Input : A family $E \subseteq\binom{U}{3}$ of a set U and an integer k
Qn: Are there k sets in E which are pairwise disjoint

3-Set Packing

Input : A family $E \subseteq\binom{U}{3}$ of a set U and an integer k
Qn: Are there k sets in E which are pairwise disjoint
Compute a (3k-3)-representative family F of size $\binom{3 k}{3} \leq O\left(k^{3}\right)$. Output (F, k).

3-Set Packing

Input : A family $E \subseteq\binom{U}{3}$ of a set U and an integer k
Qn: Are there k sets in E which are pairwise disjoint
Compute a (3k-3)-representative family F of size $\binom{3 k}{3} \leq O\left(k^{3}\right)$.
Output (F, k).
Proof: (\Rightarrow)

3-Set Packing

Input : A family $E \subseteq\binom{U}{3}$ of a set U and an integer k
Qn: Are there k sets in E which are pairwise disjoint
Compute a (3k-3)-representative family F of size $\binom{3 k}{3} \leq O\left(k^{3}\right)$.
Output (F, k).
Proof: (\Rightarrow)
Let $S=\left\{Y_{1}, \ldots, Y_{k}\right\}$ is a solution such that $\left|S_{\cap} F\right|$ is maximised.

3-Set Packing

Input : A family $E \subseteq\binom{U}{3}$ of a set U and an integer k
Qn: Are there k sets in E which are pairwise disjoint
Compute a (3k-3)-representative family F of size $\binom{3 k}{3} \leq O\left(k^{3}\right)$.
Output (F, k).
Proof: (\Rightarrow)
Let $S=\left\{Y_{1}, \ldots, Y_{k}\right\}$ is a solution such that $\left|S_{\cap} F\right|$ is maximised.
If $S \subseteq F$, then we are done.

3-Set Packing

Input : A family $E \subseteq\binom{U}{3}$ of a set U and an integer k
Qn: Are there k sets in E which are pairwise disjoint
Compute a (3k-3)-representative family F of size $\binom{3 k}{3} \leq O\left(k^{3}\right)$.
Output (F, k).
Proof: (\Rightarrow)
Let $S=\left\{Y_{1}, \ldots, Y_{k}\right\}$ is a solution such that $\left|S_{\cap} F\right|$ is maximised.
If $S \subseteq F$, then we are done. Otherwise let $Y \in S \backslash F$.
Let $X=\left(Y_{1} \cup Y_{2} \ldots \cup Y_{k}\right) \backslash Y$.

3-Set Packing

Input : A family $E \subseteq\binom{U}{3}$ of a set U and an integer k
Qn: Are there k sets in E which are pairwise disjoint
Compute a (3k-3)-representative family F of size $\binom{3 k}{3} \leq O\left(k^{3}\right)$.
Output (F, k).
Proof: (\Rightarrow)
Let $S=\left\{Y_{1}, \ldots, Y_{k}\right\}$ is a solution such that $\left|S_{\cap} F\right|$ is maximised.
If $S \subseteq F$, then we are done. Otherwise let $Y \in S \backslash F$.
Let $X=\left(Y_{1} \cup Y_{2} \ldots \cup Y_{k}\right) \backslash Y$. Notice that $|X|=3 k-3$ and $X \cap Y=\varnothing$.

3-Set Packing

Input : A family $E \subseteq\binom{U}{3}$ of a set U and an integer k
Qn: Are there k sets in E which are pairwise disjoint
Compute a (3k-3)-representative family F of size $\binom{3 k}{3} \leq O\left(k^{3}\right)$.
Output (F, k).
Proof: (\Rightarrow)
Let $S=\left\{Y_{1}, \ldots, Y_{k}\right\}$ is a solution such that $\left|S_{\cap} F\right|$ is maximised.
If $S \subseteq F$, then we are done. Otherwise let $Y \in S \backslash F$.
Let $X=\left(Y_{1} \cup Y_{2} \ldots Y_{k}\right) \backslash Y$. Notice that $|X|=3 k-3$ and $X \cap Y=\varnothing$.
This implies there is $\mathrm{Y}^{\prime} \in \mathrm{F}$ s.t $\mathrm{X} \cap \mathrm{Y}^{\prime}=\varnothing$.

3-Set Packing

Input : A family $E \subseteq\binom{U}{3}$ of a set U and an integer k
Qn: Are there k sets in E which are pairwise disjoint
Compute a (3k-3)-representative family F of size $\binom{3 k}{3} \leq O\left(k^{3}\right)$. Output (F, k).
Proof: (\Rightarrow)
Let $S=\left\{Y_{1}, \ldots, Y_{k}\right\}$ is a solution such that $\left|S_{\cap} F\right|$ is maximised.
If $S \subseteq F$, then we are done. Otherwise let $Y \in S \backslash F$.
Let $X=\left(Y_{1} \cup Y_{2} . . . \cup Y_{k}\right) \backslash Y$. Notice that $|X|=3 k-3$ and $X \cap Y=\varnothing$.
This implies there is $Y^{\prime} \in F s . t X \cap Y^{\prime}=\varnothing$. Then by replacing Y with Y^{\prime}
in S, we get a solution S^{\prime} s.t $\left.\dagger\left|S^{\prime} \cap F\right|\right\rangle\left|S_{n} F\right|$.

3-Set Packing

Input : A family $E \subseteq\binom{U}{3}$ of a set U and an integer k
Qn: Are there k sets in E which are pairwise disjoint
Compute a (3k-3)-representative family F of size $\binom{3 k}{3} \leq O\left(k^{3}\right)$.
Output (F, k).
Proof: (\Rightarrow)
Let $S=\left\{Y_{1}, \ldots, Y_{k}\right\}$ is a solution such that $\left|S_{\cap} F\right|$ is maximised.
If $S \subseteq F$, then we are done. Otherwise let $Y \in S \backslash F$.
Let $X=\left(Y_{1} \cup Y_{2} . . . \cup Y_{k}\right) \backslash Y$. Notice that $|X|=3 k-3$ and $X \cap Y=\varnothing$.
This implies there is $Y^{\prime} \in F$ s.t $X \cap Y^{\prime}=\varnothing$. Then by replacing Y with Y^{\prime} in S, we get a solution S^{\prime} s. $t\left|S^{\prime} \cap F\right|>\left|S_{n} F\right|$. Contradiction!

3-Set Packing

Input : A family $E \subseteq\binom{U}{3}$ of a set U and an integer k
Qn: Are there k sets in E which are pairwise disjoint
Compute a (3k-3)-representative family F of size $\binom{3 k}{3} \leq O\left(k^{3}\right)$.
Output (F, k).
Proof: (\Leftarrow)

3-Set Packing

Input : A family $E \subseteq\binom{U}{3}$ of a set U and an integer k
Qn: Are there k sets in E which are pairwise disjoint
Compute a (3k-3)-representative family F of size $\binom{3 k}{3} \leq O\left(k^{3}\right)$.
Output (F, k).
Proof: (\Leftarrow)

F is a subset of E

Generalization to Matrices

Definitions from Linear Algebra

Definitions from Linear Algebra

Definitions from Linear Algebra

A set of vectors v_{1}, \ldots, v_{+}is linearly independent if there is no scalars a_{1}, \ldots, a_{t}, not all equal to 0 such that

$$
\sum a_{i} v_{i}=0
$$

Definitions from Linear Algebra

A set of vectors v_{1}, \ldots, v_{+}is linearly independent if there is no scalars a_{1}, \ldots, a_{t}, not all equal to 0 such that

$$
\sum a_{i} v_{i}=0
$$

- Basis of C is a set of maximum no. of L.I vectors in C
- $\operatorname{rank}(C)=$ max. no. L.I vectors in $C=$ size of a basis of C

Definitions from Linear Algebra

A set of vectors v_{1}, \ldots, v_{+}is linearly independent if there is no scalars a_{1}, \ldots, a_{t}, not all equal to 0 such that

$$
\sum a_{i} v_{i}=0
$$

- Basis of C is a set of maximum no. of L.I vectors in C
- $\operatorname{rank}(C)=\max$. no. L.I vectors in $C=$ size of a basis of C
- $\operatorname{rank}(C)=\operatorname{rank}(R)$

Definitions from Linear Algebra

A set of vectors v_{1}, \ldots, v_{+}is linearly independent if there is no scalars a_{1}, \ldots, a_{t}, not all equal to 0 such that

$$
\sum a_{i} v_{i}=0
$$

- Basis of C is a set of maximum no. of L. I vectors in C
- $\operatorname{rank}(C)=\max$. no. L.I vectors in $C=$ size of a basis of C
- $\operatorname{rank}(C)=\operatorname{rank}(\mathrm{R})$
- $\operatorname{span}(C)=$ set of all vectors which are linear combinations of C

Definitions from Linear Algebra

A set of vectors v_{1}, \ldots, v_{+}is linearly independent if there is no scalars a_{1}, \ldots, a_{t}, not all equal to 0 such that

$$
\sum a_{i} v_{i}=0
$$

- Basis of C is a set of maximum no. of L. I vectors in C
- $\operatorname{rank}(C)=\max$. no. L.I vectors in $C=$ size of a basis of C
- $\operatorname{rank}(C)=\operatorname{rank}(\mathrm{R})$
- span $(C)=$ set of all vectors which are linear combinations of C
- $\operatorname{rank}(\operatorname{span}(C))=\operatorname{rank}(C)$

Representative Family on Matrices

- E := a family of subsets of V, where each set size is p
- k is a postive integer
- A subfamily $F \subseteq E$ is called a k-representative family if:
for any k-size set X if there is a set $Z \in E$ s.t $X \cup Z$ is L.I, then there is a set Z^{\prime} in F s.t $X \cup Z^{\prime}$ is L.I.

Representative Family on Matrices

- $E:=$ a family of subsets of V, where each set size is p
- k is a postive integer
- A : $\left.\begin{array}{c}k+p \\ p\end{array}\right) \quad\binom{k+p}{p}^{w-1}|\mathrm{E}| \mathrm{n}^{O(1)} \quad$ [Lokshtanov et al. 2013]
for any k-size set X if there is a set $Z \in E$ s.t $X \cup Z$ is L.I, then there is a set Z^{\prime} in F s.t $X \cup Z^{\prime}$ is L.I.

Rank Vertex Cover

Rank Vertex Cover

$\operatorname{rank}\left(\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}\right)=\operatorname{Max} n$. L.I vectors in it $=4$

Rank Vertex Cover

$\operatorname{rank}\left(\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}\right)=\operatorname{Max}$ no. L.I vectors in it $=4$
$\operatorname{rank}\left(\left\{v_{1}, v_{2}, v_{3}, v_{6}, v_{7}, v_{8}\right\}\right)=$ Max no. L.I vectors in it $=2$

Rank Vertex Cover

$\operatorname{rank}\left(\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}\right)=\operatorname{Max}$ no. L.I vectors in it $=4$
$\operatorname{rank}\left(\left\{v_{1}, v_{2}, v_{3}, v_{6}, v_{7}, v_{8}\right\}\right)=$ Max no. L.I vectors in it $=2$
Input: A graph G, a matrix M, and an integer k Question: Is there a vertex cover of rank k

V.C \leq Rank V.C

- G has a V.C of size k iff (G, M) has V.C of rank k

Kernel for Rank Vertex Cover

$$
(\operatorname{sen}[|\mid[])
$$

Kernel for Rank Vertex Cover

$$
\left(\sigma, k, M=\left[\left.\right|_{n, \ldots} \mid \ldots\right]\right)
$$

Kernel for Rank Vertex Cover

$$
\left(\sigma, k, M=\left[\|_{n=\ldots} \ldots\right]\right)
$$

For any edge $\{u, v\}$ create a set $\left\{u, v^{\prime}\right\}$ of two vectors in Q

Kernel for Rank Vertex Cover

For any edge $\{u, v\}$ create a set $\left\{u, v^{\prime}\right\}$ of two vectors in Q
E is the collection of sets of vectors created

Kernel for Rank Vertex Cover

$$
Q=\left[\begin{array}{cc}
u & u^{\prime} \\
M & 0 \\
0 & M
\end{array}\right]
$$

$E=\{\{u, v\rangle\}:\{u, v\}$ in $E(G)\}$

Kernel for Rank Vertex Cover

$$
Q=\left[\begin{array}{cc}
u & u^{\prime} \\
M & 0 \\
0 & M
\end{array}\right] \quad E=\left\{\left\{u, v^{\prime}\right\}:\{u, v\} \text { in } E(G)\right\}
$$

- Compute $2 k$-representative family F of $E\left(|F|=O\left(k^{2}\right)\right)$

Kernel for Rank Vertex Cover

$$
Q=\left[\begin{array}{cc}
u & u^{\prime} \\
M & 0 \\
0 & M
\end{array}\right] \quad E=\left\{\left\{u, v^{\prime}\right\}:\{u, v\} \text { in } E(G)\right\}
$$

- Compute $2 k$-representative family F of $E\left(|F|=O\left(k^{2}\right)\right)$
- Delete all edges which are not part of F in G
- Delete isolated vertices from G and M

Kernel for Rank Vertex Cover

$$
Q=\left[\begin{array}{cc}
u & u^{\prime} \\
M & 0 \\
0 & M
\end{array}\right] \quad E=\left\{\left\{u, v^{\prime}\right\}:\{u, v\} \text { in } E(G)\right\}
$$

- Compute $2 k$-representative family F of $E\left(|F|=O\left(k^{2}\right)\right)$
- Delete all edges which are not part of F in G
- Delete isolated vertices from G and M
- Call the new instance ($\left.G^{\prime}, M^{\prime}, k\right)$

Kernel for Rank Vertex Cover

$$
Q=\left[\begin{array}{cc}
u & u^{\prime} \\
M & 0 \\
0 & M
\end{array}\right] \quad E=\left\{\left\{u, v^{\prime}\right\}:\{u, v\} \text { in } E(G)\right\}
$$

- Compute $2 k$-representative family F of $E\left(|F|=O\left(k^{2}\right)\right)$
- Delete all edges which are not part of F in G
- Delete isolated vertices from G and M
- Call the new instance ($\left.G^{\prime}, M^{\prime}, k\right)$
- Size of G^{\prime} is $O\left(k^{2}\right)$
- No. of columns in M^{\prime} is $O\left(k^{2}\right)$

Kernel for Rank Vertex Cover

$$
Q=\left[\begin{array}{cc}
u & u^{\prime} \\
M & 0 \\
0 & M
\end{array}\right] \quad E=\left\{\left\{u, v^{\prime}\right\}:\{u, v\} \text { in } E(G)\right\}
$$

- Compute $2 k$-representative family F of $E\left(|F|=O\left(k^{2}\right)\right)$
- Delete all edges which are not part of F in G
- Delete isolated vertices from G and M
- Call the new instance ($\left.G^{\prime}, M^{\prime}, k\right)$
- Size of G^{\prime} is $O\left(k^{2}\right)$
- No. of columns in M^{\prime} is $O\left(k^{2}\right)$
- The number of no. of rows in M^{\prime} is not bounded

Kernel for Rank Vertex Cover

$$
Q=\left[\begin{array}{cc}
u & u^{\prime} \\
M & 0 \\
0 & M
\end{array}\right]
$$

$$
E=\{\{u, v '\}:\{u, v\} \text { in } E(G)\}
$$

- Compute $2 k$-representative family F of $E\left(|F|=O\left(k^{2}\right)\right)$
- Delete all edges which are not part of F in G
- Delete isolated vertices from G and M
- Call the new instance ($\left.G^{\prime}, M^{\prime}, k\right)$
- Size of G^{\prime} is $O\left(k^{2}\right)$
- No. of columns in M^{\prime} is $O\left(k^{2}\right)$
- The number of no. of rows in M^{\prime} is not bounded

Just see the correctness proof of this reduction

Proof: Forward direction

- G^{\prime} is a subgraph of G
- M^{\prime} is obtained by deleting some columns from M
- If X is V.C of rank k in G, then $X \cap V\left(G^{\prime}\right)$ is a V.C of rank k in G^{\prime}

Proof: Reverse direction

- Let X^{\prime} is a V.C of G^{\prime} and $\operatorname{rank}\left(X^{\prime}\right)=k$

Proof: Reverse direction

- Let X^{\prime} is a V.C of G^{\prime} and $\operatorname{rank}\left(X^{\prime}\right)=k$
- We claim $X=\operatorname{span}\left(X^{\prime}\right) \cap M$ is a V.C of G.

Proof: Reverse direction

- Let X^{\prime} is a V.C of G^{\prime} and $\operatorname{rank}\left(X^{\prime}\right)=k$
- We claim $X=\operatorname{span}\left(X^{\prime}\right) \cap M$ is a V.C of G.
- Suppose not. Let $\{u, v\}$ be an edge not covered by X

Proof: Reverse direction

- Let X^{\prime} is a V.C of G^{\prime} and $\operatorname{rank}\left(X^{\prime}\right)=k$
- We claim $X=\operatorname{span}\left(X^{\prime}\right) \cap M$ is a V.C of G.
- Suppose not. Let $\{u, v\}$ be an edge not covered by X
- Let B be a basis of X

Proof: Reverse direction

- Let X^{\prime} is a V.C of G^{\prime} and $\operatorname{rank}\left(X^{\prime}\right)=k$
- We claim $X=\operatorname{span}\left(X^{\prime}\right) \cap M$ is a V.C of G.
- Suppose not. Let $\{u, v\}$ be an edge not covered by X
- Let B be a basis of X
- $|B|=k$

Proof: Reverse direction

- Let X^{\prime} is a V.C of G^{\prime} and $\operatorname{rank}\left(X^{\prime}\right)=k$
- We claim $X=\operatorname{span}\left(X^{\prime}\right) \cap M$ is a V.C of G.
- Suppose not. Let $\{u, v\}$ be an edge not covered by X
- Let B be a basis of X
- $|B|=k$
- $B \cup\{u\}, B \cup\{v\}$ are L.I

Proof: Reverse direction

- Let X^{\prime} is a $V . C$ of G^{\prime} and $\operatorname{rank}\left(X^{\prime}\right)=k$
- We claim $X=\operatorname{span}\left(X^{\prime}\right) \cap M$ is a V.C of G.
- Suppose not. Let $\{u, v\}$ be an edge not covered by X
- Let B be a basis of X
- $|B|=k$
- $B \cup\{u\}, B \cup\{v\}$ are L.I

Proof: Reverse direction

- Let X^{\prime} is a $V . C$ of G^{\prime} and $\operatorname{rank}\left(X^{\prime}\right)=k$
- We claim $X=\operatorname{span}\left(X^{\prime}\right) \cap M$ is a V.C of G.
- Suppose not. Let $\{u, v\}$ be an edge not covered by X
- Let B be a basis of X
- $|B|=k$
- $B \cup\{u\}, B \cup\{v\}$ are L.I
- $B_{1} \cup\{u\}$ is L.I
- $\mathrm{B}_{2} \cup\left\{v^{\prime}\right\}$ is L.I

Proof: Reverse direction

- Let X^{\prime} is a V.C of G^{\prime} and $\operatorname{rank}\left(X^{\prime}\right)=k$
- We claim $X=\operatorname{span}\left(X^{\prime}\right) \cap M$ is a V.C of G.
- Suppose not. Let $\{u, v\}$ be an edge not covered by X
- Let B be a basis of X
- $|B|=k$
- $B \cup\{u\}, B \cup\{v\}$ are L.I
- $B_{1} \cup\{u\}$ is L.I
- $B_{2} \cup\left\{v^{\prime}\right\}$ is L.I
- $B_{1} \cup B_{2} \cup\left\{u, v^{\prime}\right\}$ is L.I

Proof: Reverse direction

- Let X^{\prime} is a V.C of G^{\prime} and $\operatorname{rank}\left(X^{\prime}\right)=k$
- We claim $X=\operatorname{span}\left(X^{\prime}\right) \cap M$ is a V.C of G.
- Suppose not. Let $\{u, v\}$ be an edge not covered by X
- Let B be a basis of X
- $|B|=k$
- $B \cup\{u\}, B \cup\{v\}$ are L.I
- $B_{1} \cup\{u\}$ is L.I
- $B_{2} \cup\left\{v^{\prime}\right\}$ is L.I
- $B_{1} \cup B_{2} \cup\left\{u, v^{\prime}\right\}$ is L.I
- $\left|B_{1} \cup B_{2}\right|=2 k$

Proof: Reverse direction

- Let X^{\prime} is a V.C of G^{\prime} and $\operatorname{rank}\left(X^{\prime}\right)=k$
- We claim $X=\operatorname{span}\left(X^{\prime}\right) \cap M$ is a V.C of G.
- Suppose not. Let $\{u, v\}$ be an edge not covered by X
- Let B be a basis of X
- $|B|=k$
- $B \cup\{u\}, B \cup\{v\}$ are L.I

- $B_{1} \cup\{u\}$ is L.I
- $B_{2} \cup\left\{v^{\prime}\right\}$ is L.I
- $B_{1} \cup B_{2} \cup\left\{u, v^{\prime}\right\}$ is L.I
- $\left|B_{1} \cup B_{2}\right|=2 k$
- From the def. of rep. family there is $\left\{w, z^{\prime}\right\}$ in F s.t. $B_{1} \cup B_{2} \cup\left\{w, z^{\prime}\right\}$ is L.I

Proof: Reverse direction

- Let X^{\prime} is a V.C of G^{\prime} and $\operatorname{rank}\left(X^{\prime}\right)=k$
- We claim $X=\operatorname{span}\left(X^{\prime}\right) \cap M$ is a V.C of G.
- Suppose not. Let $\{u, v\}$ be an edge not covered by X
- Let B be a basis of X
- $|B|=k$
- $B \cup\{u\}, B \cup\{v\}$ are L.I

- $B_{1} \cup\{u\}$ is L.I
- $B_{2} \cup\left\{v^{\prime}\right\}$ is L.I
- $B_{1} \cup B_{2} \cup\left\{u, v^{\prime}\right\}$ is L.I
- $\left|B_{1} \cup B_{2}\right|=2 k$
- From the def. of rep. family there is $\left\{w, z^{\prime}\right\}$ in F s.t.
$B_{1} \cup B_{2} \cup\left\{w, z^{\prime}\right\}$ is L.I
- $B \cup\{w\}, B \cup\{z\}$ are L.I

Proof: Reverse direction

- Let X^{\prime} is a V.C of G^{\prime} and $\operatorname{rank}\left(X^{\prime}\right)=k$
- We claim $X=\operatorname{span}\left(X^{\prime}\right) \cap M$ is a V.C of G.
- Suppose not. Let $\{u, v\}$ be an edge not covered by X
- Let B be a basis of X
- $|B|=k$
- $B \cup\{u\}, B \cup\{v\}$ are L.I

- $B_{1} \cup\{u\}$ is L.I
- $B_{2} \cup\left\{v^{\prime}\right\}$ is L.I
- $B_{1} \cup B_{2} \cup\left\{u, v^{\prime}\right\}$ is L.I
- $\left|B_{1} \cup B_{2}\right|=2 k$
- From the def. of rep. family there is $\left\{w, z^{\prime}\right\}$ in F s.t.
$B_{1} \cup B_{2} \cup\left\{w, z^{\prime}\right\}$ is L.I
- $B \cup\{w\}, B \cup\{z\}$ are L.I
- That is, X^{\prime} will not cover the edge $\{w, z\}$ in G^{\prime}

Proof: Reverse direction

- Let X^{\prime} is a V.C of G^{\prime} and $\operatorname{rank}\left(X^{\prime}\right)=k$
- We claim $X=\operatorname{span}\left(X^{\prime}\right) \cap M$ is a V.C of G.
- Suppose not. Let $\{u, v\}$ be an edge not covered by X
- Let B be a basis of X
- $|B|=k$
- $B \cup\{u\}, B \cup\{v\}$ are L.I

- $B_{1} \cup\{u\}$ is L.I
- $B_{2} \cup\left\{v^{\prime}\right\}$ is L.I
- $B_{1} \cup B_{2} \cup\left\{u, v^{\prime}\right\}$ is L.I
- $\left|B_{1} \cup B_{2}\right|=2 k$
- From the def. of rep. family there is $\left\{w, z^{\prime}\right\}$ in E s.t.
$B_{1} \cup B_{2} \cup\left\{w, z^{\prime}\right\}$ is L.I
- $B \cup\{w\}, B \cup\{z\}$ are L.I
- That is, X^{\prime} will not cover the edge $\{w, z\}$ in G^{\prime}

Contradiction!

Bound on no. of rows

- We got ($\left.G^{\prime}, M^{\prime}, k\right)$, where size of G^{\prime} and no. columns in M^{\prime} is $O\left(k^{2}\right)$.

Bound on no. of rows

- We got $\left(G^{\prime}, M^{\prime}, k\right)$, where size of G^{\prime} and no. columns in M^{\prime} is $O\left(k^{2}\right)$.
- To bound the number of rows, we delete all rows except row vectors in a basis.

Bound on no. of rows

- We got ($\left.G^{\prime}, M^{\prime}, k\right)$, where size of G^{\prime} and no. columns in M^{\prime} is $O\left(k^{2}\right)$.
- To bound the number of rows, we delete all rows except row vectors in a basis.
- Row rank = column rank implies that the size of row basis is $O\left(k^{2}\right)$.

Bound on no. of rows

- We got $\left(G^{\prime}, M^{\prime}, k\right)$, where size of G^{\prime} and no. columns in M^{\prime} is $O\left(k^{2}\right)$.
- To bound the number of rows, we delete all rows except row vectors in a basis.
- Row rank = column rank implies that the size of row basis is $O\left(k^{2}\right)$.

Proof omitted
(uses elementary operations)

V.C above Max matching

V.C above Max matching

- Size of a V.C is at least the size a max. matching.
- Max. matching can be computed in polynomial time

V.C above Max matching

- Size of a V.C is at least the size a max. matching.
- Max. matching can be computed in polynomial time

Input: A graph G and an integer k
Question : Is there a vertex cover of size $m m(G)+k$

V.C above $m m \leq R a n k$ V.C

- G has a V.C of size $m m(G)+k$ iff (G, M) has V.C of rank mm(G)+k

Rank Reduction

Each entry is on poly(k) bits

How to get a Kernel for V.C above MM

(G,k) of V.C above MM \downarrow
($G, m m+k, I_{n}$) of Rank V.C

How to get a Kernel for V.C above MM

(G, k) of V.C above MM
($G, m m+k, I_{n}$) of Rank V.C \downarrow

Matrix entry bounded in poly(k) $\left(G^{\prime}, O\left(k^{3 / 2}\right), M^{\prime}\right)$ of Rank V.C

How to get a Kernel for V.C above MM

(G, k) of V.C above MM
($G, m m+k, I_{n}$) of Rank V.C \downarrow

Matrix entry bounded in poly(k) $\left(G^{\prime}, O\left(k^{3 / 2}\right), M^{\prime}\right)$ of Rank V.C

$$
\downarrow
$$

Size bounded in poly(k) ($\left.G^{\prime \prime}, O\left(k^{3 / 2}\right), M^{\prime \prime}\right)$ of Rank V.C

How to get a Kernel for V.C above MM

(G, k) of V.C above MM
\downarrow
($G, m m+k, I_{n}$) of Rank V.C

Matrix entry bounded in poly(k) $\left(G^{\prime}, O\left(k^{3 / 2}\right), M^{\prime}\right)$ of Rank V.C

$$
\downarrow
$$

Size bounded in poly(k) ($\left.G^{\prime \prime}, O\left(k^{3 / 2}\right), M^{\prime \prime}\right)$ of Rank V.C
\downarrow
Size bounded in poly $(k) \quad\left(H, k^{\prime \prime}\right)$ of V.C above MM

How to get a Kernel for V.C above MM

(G, k) of V.C above MM \downarrow
($G, m m+k, I_{n}$) of Rank V.C \downarrow

Matrix entry bounded in poly(k) $\left(G^{\prime}, O\left(k^{3 / 2}\right), M^{\prime}\right)$ of Rank V.C \downarrow in NP Size bounded in poly(k) ($\left.G^{\prime \prime}, O\left(k^{3 / 2}\right), M^{\prime \prime}\right)$ of Rank V.C \downarrow

Size bounded in poly $(k) \quad\left(H, k^{\prime \prime}\right)$ of V.C above MM
is NP-hard

How to get a Kernel for V.C above MM

Size bounded in poly $(k) \quad\left(H, k^{\prime \prime}\right)$ of V.C above MM
is NP-hard

Co-loop in a matrix

$\cdots[\mid$.

- Co-loop is a column vector which is part of any basis.

Rank Reduction

(H, p, N) of Rank V.C and a co-loop v in N
(in Rand. Polynomial time)
($H \backslash u, p-2, N^{\prime}$) of Rank V.C

- Co-loops in $(N \backslash N(v)) \subseteq$ Co-loops in N^{\prime}

Rank Reduction

(H, p, N) of Rank V.C and a co-loop u in N
(in Rand. Polynomial time)
(H $\mathrm{H} \backslash \mathrm{u}, \mathrm{p}-2, \mathrm{~N}^{\prime}$) of Rank V.C

- Co-loops in $\mathrm{N} \backslash \mathrm{N}(\mathrm{v}) \subseteq$ Co-loops in N^{\prime}

Rank Reduction

(H, p, N) of Rank V.C and a co-loop u in N

($H \backslash u, p-2, N^{\prime}$) of Rank V.C

- Co-loops in N\N(v) \subseteq Co-loops in N^{\prime}
($G, m m+k, I_{n}$) of Rank V.C

$\left(G^{\prime}, O\left(k^{3 / 2}\right), M^{\prime}\right)$ of Rank V.C

Rank Reduction

(H, p, N) of Rank V.C and a co-loop u in N

(H\u, p-2, N') of Rank V.C

- Co-loops in NTN(v) \subseteq Co-loops in N^{\prime}
($G, m m+k, I_{n}$) of Rank V.C

$\left(G^{\prime}, O\left(k^{3 / 2}\right), M^{\prime}\right)$ of Rank V.C

an Independent set of size $n-\left(m m+k^{3 / 2}\right)$

Rank Reduction

(H, p, N) of Rank V.C and a co-loop u in N
(in Rand. Polynomial time)
(H\u, p-2, N') of Rank V.C

- Co-loops in N N $\mathrm{N}(\mathrm{v}) \subseteq$ Co-loops in N^{\prime}
($G, m m+k, I_{n}$) of Rank V.C

$\left(G^{\prime}, O\left(k^{3 / 2}\right), M^{\prime}\right)$ of Rank V.C
- Recall that ($G, m m+k, I_{n}$) is the input instance of Rank V.C

Rank Reduction

(H, p, N) of Rank V.C and a co-loop u in N

(H\u, p-2, N') of Rank V.C

- Co-loops in NTN(v) \subseteq Co-loops in N^{\prime}
$\left(G, m m+k, I_{n}\right)$ of Rank V.C
\downarrow
$\left(G^{\prime}, O\left(k^{3 / 2}\right), M^{\prime}\right)$ of Rank V.C
- Recall that ($G, m m+k, I_{n}$) is the input instance of Rank V.C
- Run the algorithm by Misra et al., 2011 on (G, k) and if it outputs Yes/No, we are done.

Rank Reduction

(H, p, N) of Rank V.C and a co-loop u in N

(H\u, p-2, N') of Rank V.C

- Co-loops in NTN(v) \subseteq Co-loops in N^{\prime}
$\left(G, m m+k, I_{n}\right)$ of Rank V.C
\downarrow
$\left(G^{\prime}, O\left(k^{3 / 2}\right), M^{\prime}\right)$ of Rank V.C
- Recall that ($G, m m+k, I_{n}$) is the input instance of Rank V.C
- Run the algorithm by Misra et al., 2011 on (G, k) and if it outputs Yes/No, we are done.
- Otherwise the output is an independent set S of size $n-\left(m m+c k^{3 / 2}\right)$

Rank Reduction

(H, p, N) of Rank V.C and a co-loop u in N

(H\u, p-2, N') of Rank V.C

- Co-loops in N\N(v) \subseteq Co-loops in N^{\prime}
(G,mm+k, $\left.I_{n}\right)$ of Rank V.C
\downarrow
$\left(G^{\prime}, O\left(k^{3 / 2}\right), M^{\prime}\right)$ of Rank V.C
- Recall that ($G, m m+k, I_{n}$) is the input instance of Rank V.C
- Run the algorithm by Misra et al., 2011 on (G, k) and if it outputs Yes/No, we are done.
- Otherwise the output is an independent set S of size $n-\left(m m+c k^{3 / 2}\right)$
- All elements of S in I_{n} are co-loops

Rank Reduction

(H, p, N) of Rank V.C and a co-loop u in N (in Rand. Polynomial time) (H\u, p-2, N') of Rank V.C

- Co-loops in NXN(v) \subseteq Co-loops in N^{\prime}
$\left(G, m m+k, I_{n}\right)$ of Rank V.C
\downarrow
$\left(G^{\prime}, O\left(k^{3 / 2}\right), M^{\prime}\right)$ of Rank V.C
- Recall that ($G, m m+k, I_{n}$) is the input instance of Rank V.C
- Run the algorithm by Misra et al., 2011 on (G, k) and if it outputs Yes/No, we are done.
- Otherwise the output is an independent set S of size $n-\left(m m+c k^{3 / 2}\right)$
- All elements of S in I_{n} are co-loops
- The neighbourhood of any element in S is in $V(G) \backslash S$

Rank Reduction

(H, p, N) of Rank V.C and a co-loop u in N
(in Rand. Polynomial time)
(H $\mathrm{V} \backslash \mathrm{u}, \mathrm{p}-2, \mathrm{~N}^{\prime}$) of Rank V.C

- Co-loops in $\mathrm{N} \backslash \mathrm{N}(\mathrm{v}) \subseteq$ Co-loops in N^{\prime}
$\left(G, m m+k, I_{n}\right)$ of Rank V.C
\downarrow
$\left(G^{\prime}, O\left(k^{3 / 2}\right), M^{\prime}\right)$ of Rank V.C
- Recall that ($G, m m+k, I_{n}$) is the input instance of Rank V.C
- Run the algorithm by Misra et al., 2011 on (G, k) and if it outputs Yes/No, we are done.
- Otherwise the output is an independent set S of size $n-\left(m m+c k^{3 / 2}\right)$
- All elements of S in I_{n} are co-loops
- The neighbourhood of any element in S is in $V(G) \backslash S$
- We apply the above reduction rule one by one on S.

Rank Reduction

(H, p, N) of Rank V.C and a co-loop u in N
(in Rand. Polynomial time)
(H $\mathrm{V} \backslash \mathrm{u}, \mathrm{p}-2, \mathrm{~N}^{\prime}$) of Rank V.C

- Co-loops in $\mathrm{N} \backslash \mathrm{N}(\mathrm{v}) \subseteq$ Co-loops in N^{\prime}
$\left(G, m m+k, I_{n}\right)$ of Rank V.C
\downarrow
$\left(G^{\prime}, O\left(k^{3 / 2}\right), M^{\prime}\right)$ of Rank V.C
- Recall that ($G, m m+k, I_{n}$) is the input instance of Rank V.C
- Run the algorithm by Misra et al., 2011 on (G, k) and if it outputs Yes/No, we are done.
- Otherwise the output is an independent set S of size $n-\left(m m+c k^{3 / 2}\right)$
- All elements of S in I_{n} are co-loops
- The neighbourhood of any element in S is in $V(G) \backslash S$
- We apply the above reduction rule one by one on S.
$\operatorname{rank}\left(M^{\prime}\right)=n-2|S|=n-2\left(n-m m-c k^{3 / 2}\right) \leq-n+2 m m+2 c k^{3 / 2} \leq 2 c k^{3 / 2}$

Conclusion

Kernelization: V.C above MM, V.C above LP, Almost 2SAT, Multiway Cut with deletable terminals, Subset FVS, etc Open problems: deterministic polynomial kernels for the above problems?

FPT: k-Matroid Parity, k-Path, k-Tree, Connectivity problems on graphs of bounded tree-width, Long Cycle, k-MLD, etc

Exact Exponential Time algorithms: Min. Equivalent digraph, Minimum Weight λ-connected Spanning Subgraph.

Conclusion

Kernelization: V.C above MM, V.C above LP, Almost 2SAT, Multiway Cut with deletable terminals, Subset FVS, etc Open problems: deterministic polynomial kernels for the above problems?

FPT: k-Matroid Parity, k-Path, k-Tree, Connectivity problems on graphs of bounded tree-width, Long Cycle, k-MLD, etc

Exact Exponential Time algorithms: Min. Equivalent digraph, Minimum Weight λ-connected Spanning Subgraph.

Thank you for your attention!

