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Outline

1. Vertex Cover, Representative Family, more
applications, and its generalisation to matrices

2. Overview of an alternate randomised
polynomial kernel for Vertex Cover above
Maximum Matching
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Vertex Cover

Input: A graph G and an integer k
Question : Is there a vertex cover of size k



A Simple Kernel for VC
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A Simple Kernel for VC

>K+1

* Delete all but k(k+1)+1 edges



A Simple Kernel for VC

>K+1

* Delete all but k(k+1)+1 edges
- Delete all isolated vertices



A Simple Kernel for VC
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A Simple Kernel for VC

K+1 ——
=Kk+1
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» Delete all but k(k+1)+1 edges

* Delete isolated vertices
* The resulting graph has size O(k?).
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A Simple Kernel for VC

» Delete all but k(k+1)+1 edges
* Delete isolated vertices
* The resulting graph has size O(k?).
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A Simple Kernel for VC

» Delete all but k(k+1)+1 edges
* Delete isolated vertices
* The resulting graph has size O(k?).

¢ — H

(Hk) = (6,k)

(=)

If XisaV.Cof G, then X isa
V.C of H
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A Simple Kernel for VC

* Delete all but k(k+1)+1 edges
* Delete isolated vertices
* The resulting graph has size O(k?).

¢ — H

(HK) = (6Kk)

(=)

If Xisa V.Cof G, then X isa
V.C of H

Proof: H is a subgraph of G
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A Simple Kernel for VC

» Delete all but k(k+1)+1 edges
* Delete isolated vertices
* The resulting graph has size O(k?).

¢ — H

(<)
Let X be a k size subset of V(H).
If XisaV.Cof H,then Xisa V.C
of G
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A Simple Kernel for VC

» Delete all but k(k+1)+1 edges
* Delete isolated vertices
* The resulting graph has size O(k?).

G — H

(<)
Let X be a k size subset of V(H).
If XisaV.Cof H,then Xisa V.C
of G

!

If XisnotaV.Cof G, then X is
not a V.C of H
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A Simple Kernel for VC

» Delete all but k(k+1)+1 edges
* Delete isolated vertices
* The resulting graph has size O(k?).

¢ — H

Let X be a k size subset of V(H).
If X isnotaV.C of G, then X is not
aV.Cof H
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A Simple Kernel for VC

» Delete all but k(k+1)+1 edges
* Delete isolated vertices
* The resulting graph has size O(k?).

¢ — H

Let X be a k size subset of V(H).
If X isnotaV.C of G, then X is not
aV.Cof H

G=6Go— G1— G2 ..

.« . GT — GT+1:H
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A Simple Kernel for VC

» Delete all but k(k+1)+1 edges
* Delete isolated vertices
* The resulting graph has size O(k?).

¢ — H

Let X be a k size subset of V(H).
If X isnotaV.C of G, then X is not
aV.Cof H

6=6o— 61— 62 ....6+ — 6+a=H

Let X be a k size subset of V(Gi.1).
If X is not a V.C of Gj, then X is not a
VC Of Gi+1
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A Simple Kernel for VC

G=6Go— 61— G2 ....6G: — Gt.1=H

Let X be a k size subset of V(Gi.1).
If X is not a V.C of Gj, then X is not a

» Delete all but k(k+1)+1 edges
* Delete isolated vertices
* The resulting graph has size O(k?).

¢ — H

Proof:

VC Of Gi+1
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A Simple Kernel for VC

G=6Go— 61— G2 ....6G: — Gt.1=H

Let X be a k size subset of V(Gi.1).
If X is not a V.C of Gj, then X is not a
VC Of Gi+1

Proof: Case 1: G; — Gi.1.

» Delete all but k(k+1)+1 edges
* Delete isolated vertices
* The resulting graph has size O(k?).

¢ — H
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A Simple Kernel for VC

=k+1

@
» Delete all but k(k+1)+1 edges

* Delete isolated vertices
* The resulting graph has size O(k?).

G — H

G=6Go— 61— G2 ....6G: — Gt.1=H

Let X be a k size subset of V(Gi.1).
If X is not a V.C of Gj, then X is not a
VC Of Gi+1

Proof: Case 1: G; — Gi.1.

Let e be an edge in Ginot covered by
X. If eisin E(Gi.1), then we are done.
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A Simple Kernel for VC

=k+1

@
» Delete all but k(k+1)+1 edges

+ Delete isolated vertices
* The resulting graph has size O(k?).

G — H

G=6Go— 61— G2 ....6G: — Gt.1=H

Let X be a k size subset of V(Gi.1).
If X is not a V.C of Gj, then X is not a
VC Of Gi+1

Proof: Case 1: G; — Gi.1.

Let e be an edge in Ginot covered by
X. If eisin E(Gi.1), then we are done.
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A Simple Kernel for VC

=k+1

@
» Delete all but k(k+1)+1 edges

+ Delete isolated vertices
* The resulting graph has size O(k?).

G — H

G=6Go— 61— G2 ....6G: — Gt.1=H

Let X be a k size subset of V(Gi.1).
If X is not a V.C of Gj, then X is not a
VC Of Gi+1

Proof: Case 1: G; — Gi.1.

Let e be an edge in Ginot covered by
X. If eisin E(Gi.1), then we are done.
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A Simple Kernel for VC

=k+1

@
» Delete all but k(k+1)+1 edges

* Delete isolated vertices
* The resulting graph has size O(k?).

G — H

G=6Go— 61— G2 ....6G: — Gt.1=H

Let X be a k size subset of V(Gi.1).
If X is not a V.C of Gj, then X is not a
VC Of Gi+1

Proof: Case 2: Gi — Gi.1 .

Let e be an edge in Ginot covered by
X. If eisin E(Gi.1), then we are done.
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A Simple Kernel for VC

=k+1

@
» Delete all but k(k+1)+1 edges

* Delete isolated vertices
* The resulting graph has size O(k?).

G — H

G=6Go— 61— G2 ....6G: — Gt.1=H

Let X be a k size subset of V(Gi.1).
If X is not a V.C of Gj, then X is not a
VC Of Gi+1

Proof: Case 2: Gi — Gi.1 .

Let e be an edge in Ginot covered by
X. If eisin E(Gi.1), then we are done.

Otherwise, we have deleted some
edges.

20



A Simple Kernel for VC

=k+1

@
» Delete all but k(k+1)+1 edges

* Delete isolated vertices
* The resulting graph has size O(k?).

G — H

G=6Go— 61— G2 ....6G: — Gt.1=H

Let X be a k size subset of V(Gi.1).
If X is not a V.C of Gj, then X is not a
VC Of Gi+1

Proof: Case 2: Gi — Gi.1 .

Let e be an edge in Ginot covered by
X. If eisin E(Gi.1), then we are done.

Otherwise, we have deleted some
edges. That is, |E(Gi.1)|=k(k+1)+1 and
max degree of Gi.1is k+l.
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A Simple Kernel for VC

G=6Go— 61— G2 ....6G: — Gt.1=H

o — . | Let X'be a k size subset of V(Gi.1).
W‘ If XisnotaV.Cof Gj, then X is not a

® V.C of Gi
Proof: Case 2: Gi — Gis1.
’W Let e be an edge in Ginot covered by
X. If eisin E(Gi.1), then we are done.
* Delete all but k(k+1)+1 edges Otherwise, we have deleted some

« Delete isolated vertices

* The resulting graph has size O(k?). edges' That is, |E(Gi+1)l:k(k+1)+1 and

max degree of Gi.1is k+l. So X cover
G — H at most k(k+1) edges. One edge will be
left uncovered. = .




Summary of VC kernel

(6.K)

( Polytime Algo |

\4

(H< G, k)

» For any k size set X, if Xis
not a V.C of G, then X is not a
V.C of H
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Summery of VC kernel

(G k) (E(G) k)

\ |
( Polytime Algo | _ Polytime Algo |

(H < 6. K) F=E(H) c E(6G)

| . . * For any k size set X, if there is an
* For any k size set X, If. X is edge {U,V} in E(G) such that
not a V.Cof G, then Xiisnota | y - {Uv}=2 then there is an edge

V.Cof H (' v} in F such that X n {U v}=2

30



Summery of VC kernel

(G k) (E(G) k)

\ |
( Polytime Algo | _ Polytime Algo |

(H < 6. K) F=E(H) c E(6G)

| . . * For any k size set X, if there is an
* For any k size set X, If. X is edge {U,V} in E(G) such that
not a V.Cof G, then Xiisnota | y - {Uv}=2 then there is an edge

V.Cof H (' v} in F such that X n {U v}=2

F is called k-representative family of E(G)
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Representative Family

Vv
J e ( 5 ),whereVisaseT.
*k is a positive integer
* A subfamily F ¢ E is called a k-representative family if:

for any k-size set X if there isaset ZcEst XnZ =g,
then there isaset ZeF st XnZ =2
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Representative Family

Vv
J e (2 ),whereVisaseT.

*k is a positive integer
* A subfamily F ¢ E is called a k-representative family if:

st XnZ-=g,
|F| Run time 7' = o

for any k-size
then

< k(k+1)+1

Polynomial in |E|
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Representative Family

Vv
J e ( 5 ),whereVisaseT.
*k is a positive integer
* A subfamily F ¢ E is called a k-representative family if:

for any k-size st XnZ-=og2,
Then |F| Run time 7' - %

< k(k+#1)+1  Polynomial in |E|

Proof: The V.C kernel we have seen.
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Representative Family
(for family of large subsets)

B C ( \; ) where V is a set and p is a positive integer
* k is a positive integer
* A subfamily F c E is called a k-representative family if:

for any k-size set X if there isaset ZeEst XnZ =g,

then thereisaset ZceF st XnZ =92
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Representative Family
(for family of large subsets)

B C ( \; ) where V is a set and p is a positive integer
* k is a positive integer
* A subfamily F ¢ E is called a k-representative family if:

for any k-size set X if there isaset ZeEst XnZ =g,

then thereisaset ZceF st XnZ =92

|F| Run time Ref.

(k+pj O( (k;p)w'l E| ) [Fomin et al. 2013]

P

36



B-Hitting Set

Input : A family E ¢ ( L5’ ) of a set U and an integer k

Qn: Is there a k-size subset of U which hits all set in E
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B-Hitting Set

Input : A family E ¢ ( L5’ ) of a set U and an integer k

Qn: Is there a k-size subset of U which hits all set in E

Compute a k-representative family F of size (k’:’) < O(k>).
Output (F , k).

38



5-Hitting Set

Input : A family E ¢ ( L5’ ) of a set U and an integer k

Qn: Is there a k-size subset of U which hits all set in E

Compute a k-representative family F of size (k*5) < O(k>).

5
Output (F , k).
Proof: (=)
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5-Hitting Set

Input : A family E ¢ ( L5’ ) of a set U and an integer k

Qn: Is there a k-size subset of U which hits all set in E

Compute a k-representative family F of size (k;5) < O(k°).
Output (F , k).
Proof: (=)

(E, k) is Yes instance = (F, k) is Yes instance.
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5-Hitting Set

Input : A family E ¢ ( L5’ ) of a set U and an integer k

Qn: Is there a k-size subset of U which hits all set in E

Compute a k-representative family F of size (k*5) < O(k>).

5
Output (F , k).
Proof: (<)
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5-Hitting Set

Input : A family E ¢ ( L5’ ) of a set U and an integer k

Qn: Is there a k-size subset of U which hits all set in E

Compute a k-representative family F of size (k*5) < O(k>).

5
Output (F , k).
Proof: (<)

Suppose (F , k) is Yes instance (X is a hitting set).
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5-Hitting Set

Input : A family E ¢ ( L5’ ) of a set U and an integer k

Qn: Is there a k-size subset of U which hits all set in E

Compute a k-representative family F of size (k*5) < O(k>).

5
Output (F , k).
Proof: (<)
Suppose (F , k) is Yes instance (X is a hitting set).
We claim X is hitting set for E. Suppose not, then there isY € E
stXnY=a.
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5-Hitting Set

5
Qn: Is there a k-size subset of U which hits all set in E

Input : A family E ¢ ( V ) of a set U and an integer k

Compute a k-representative family F of size (k*5) < O(k>).

5
Output (F , k).

Proof: (<)
Suppose (F , k) is Yes instance (X is a hitting set).
We claim X is hitting set for E. Suppose not, then there isY € E

s.t X nVY=2. Thisimplies there is YeF s.t X nVY' =2.

contradiction
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3-Set Packing

Input : A family E C ( g ) of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint
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3-Set Packing

Input : A family E C ( g ) of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

Compute a (3k-3)-representative family F of size (33k) < O(k3).
Output (F , k).
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3-Set Packing

Input : A family E C ( g ) of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

Compute a (3k-3)-representative family F of size (33k) < O(k3).
Output (F , k).
Proof: (=)
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3-Set Packing

Input : A family E C ( g ) of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

Compute a (3k-3)-representative family F of size (33k) < O(k3).
Output (F , k).

Proof: (=)
Let S={VY1,...Y«} is a solution such that |SnF| is maximised.
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3-Set Packing

Input : A family E C ( g ) of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

Compute a (3k-3)-representative family F of size (33k) < O(k3).
Output (F , k).
Proof: (=)

Let S={Y1,..,Y«} is a solution such that |SnF| is maximised.

If S ¢ F, then we are done.
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3-Set Packing

3

Input : A family E C ( / ) of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

Compute a (3k-3)-representative family F of size (33k) < O(k3).

Output (F , k).
Proof: (=)
Let S={Y1,..,Y«} is a solution such that

If S ¢ F, then we are done. Otherwise

Let X=(Y1uY2..uYk)\Y.

SnF| is maximised.
et Ye S\ F.
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3-Set Packing

3

Input : A family E C ( / ) of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

Compute a (3k-3)-representative family F of size (33k) < O(k3).

Output (F , k).

Proof: (=)
Let S={Y1,..,Y«} is a solution such that

If S ¢ F, then we are done. Otherwise

SnF| is maximised.
et Ye S\ F.

Let X=(Y1uY2...uYk)\Y. Notice that |X|=3k-3and X n Y = .
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3-Set Packing

Input : A family E C ( g ) of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

Compute a (3k-3)-representative family F of size (33k) < O(k3).
Output (F , k).

Proof: (=)
Let S={VY1,...Y«} is a solution such that |SnF| is maximised.

If S c F, then we are done. Otherwise let Ye S \ F.
Let X=(Y1uY2...uYk)\Y. Notice that |X|=3k-3and X n Y = .

This implies there is Y'eF s.t X n Y’ =2.
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3-Set Packing

3

Input : A family E C ( / ) of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

Compute a (3k-3)-representative family F of size (33k) < O(k3).

Output (F , k).

Proof: (=)
Let S={Y1,..,Y«} is a solution such that

If S c F, then we are done. Otherwise

SnF| is maximised.
et Ye S\ F.

Let X=(Y1uY2...uYk)\Y. Notice that |X|=3k-3and X n Y = .

This implies there is Y'eF s.t X n Y' =@. Then by replacing Y with Y’

in S, we get a solution S' s.t |S'nF|> | SnF].
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3-Set Packing

3

Input : A family E C ( / ) of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

Compute a (3k-3)-representative family F of size (33k) < O(k3).

Output (F , k).

Proof: (=)
Let S={Y1,..,Y«} is a solution such that

If S c F, then we are done. Otherwise

SnF| is maximised.
et Ye S\ F.

Let X=(Y1uY2...uYk)\Y. Notice that |X|=3k-3and X n Y = .

This implies there is Y'eF s.t X n Y' =@. Then by replacing Y with Y’

in S, we get a solution S's.t [S'nF|> |SnF|.  Contradictionl
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3-Set Packing

Input : A family E C ( g ) of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

Compute a (3k-3)-representative family F of size (33k) < O(k3).
Output (F , k).
Proof: ()
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3-Set Packing

Input : A family E C ( g ) of a set U and an integer k

Qn: Are there k sets in E which are pairwise disjoint

Compute a (3k-3)-representative family F of size (33k) < O(k3).
Output (F , k).
Proof: ()

F is a subset of E
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Generalization to Matrices

57



Definitions from Linear Algebra

|

|
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Definitions from Linear Algebra

|
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Definitions from Linear Algebra

"t A set of vectors vi,.. v is linearly
“Y$ R independent if there is no scalars
" ai,...,a+, not all equal to O such that

Vi V2 ... Vp 2 aiVv; = O
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Definitions from Linear Algebra

"t A set of vectors vi,.. v is linearly

“Y$ R independent if there is no scalars

" ai,...,ar, hot all equal to O such that
Vi V2 ... Vn 2 aiVv; = O

C

- Basis of C is a set of maximum no. of L.I vectors in C
» rank(C) = max. no. L.I vectors in C = size of a basis of C
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Definitions from Linear Algebra

"t A set of vectors vi,.. v is linearly

“Y$ R independent if there is no scalars

" ai,...,ar, hot all equal to O such that
Vi V2 ... Vn 2 aiVv; = O

C

- Basis of C is a set of maximum no. of L.I vectors in C
» rank(C) = max. no. L.I vectors in C = size of a basis of C
* rank(C) = rank(R)
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Definitions from Linear Algebra

"t A set of vectors vi,.. v is linearly
"% R independent if there is no scalars
' ai,...a+, not all equal to O such that

"m
Vi V2 ... Vn 2 aiVv; = O
C

- Basis of C is a set of maximum no. of L.I vectors in C

» rank(C) = max. no. L.I vectors in C = size of a basis of C

* rank(C) = rank(R)

» span(C) = set of all vectors which are linear combinations of C
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Definitions from Linear Algebra

"t A set of vectors vi,.. v is linearly
"% R independent if there is no scalars
' ai,...a+, not all equal to O such that

"m

Vi V2 ... Vp 2 aiVv; = O

C

- Basis of C is a set of maximum no. of L.I vectors in C

» rank(C) = max. no. L.I vectors in C = size of a basis of C

* rank(C) = rank(R)

» span(C) = set of all vectors which are linear combinations of C
* rank(span(C))=rank(C)
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Representative Family on Matrices

» E := a family of subsets of V, where
each set size is p

* k is a postive integer

Vi V2 ... Vnp
Vv

+ A subfamily F ¢ E is called a k-representative family if:

for any k-size set X if there isaset ZeEst Xu ZisL.I,
then thereisaset Z inFs.t XuZis L.I.
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Representative Family on Matrices

» E := a family of subsets of V, where
each set size is p

* k is a postive integer
Vi V2 ... Vp

N

IF| Run time Ref.

- A

I

[k;pjw [E[ now  [Lokshtanov et al. 2013]

(k+pj
p
for any k-size set X if there isaset ZeEst Xu ZisL.I,
then thereisaset Z inF st XuZisL.I.




Rank Vertex Cover

—10001—
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Rank Vertex Cover

111 000
000 100
000010
000 0O f
111 11 1

rank({vs,va,vs,ve}) = Max no. L.I vectors in it = 4

— O OO =
— O OO =
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Rank Vertex Cover

111 000 T
0001000
0000100
0000010
T11 1111

rank({vs,va,vs,ve}) = Max no. L.I vectors in it = 4
rank({vi,v2,v3,vs,v7vs}) = Max no. L.I vectors in it = 2

— O OO =
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Rank Vertex Cover

111000 11
00010000
00001000
00000100
1111111

rank({vs,va,vs,ve}) = Max no. L.I vectors in it = 4
rank({vi,v2,v3,vs,v7vs}) = Max no. L.I vectors in it = 2

Input: A graph G, a matrix M, and an integer k
Question : Is there a vertex cover of rank k

70



(D7 7 o)

*G has a V.C of size k iff (6,M) has V.C of rank k



Kernel for Rank Vertex Cover

(exn ]l 1))

/2



Kernel for Rank Vertex Cover

(exn ]l 1))

/3



Kernel for Rank Vertex Cover

(exn 1]

Vi V2 ... Vnp

For any edge {u,v} create a set {u,v'}
of two vectors in Q
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Kernel for Rank Vertex Cover

( 6, k, M= )

Vi V2 ... Vnp

For any edge {u,v} create a set {u,v'}
of two vectors in Q

E is the collection of sets of
vectors created
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Kernel for Rank Vertex Cover

u u

Q- M0 E={{uv} : {uv} in E(G))
0 M

/6



Kernel for Rank Vertex Cover

u u’
Q- M0 E={{uv} : {uv} in E(G))
0 M

- Compute 2k-representative family F of E (|F[=0(k?))
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Kernel for Rank Vertex Cover

u u

Q- M0 E={{uv} : {uv} in E(G))
0 M

- Compute 2k-representative family F of E (|F|=0(k?))
* Delete all edges which are not part of Fin G
- Delete isolated vertices from G and M

/8



Kernel for Rank Vertex Cover

u u’
Q- M0 E={{uv} : {uv} in E(G))
0 M

- Compute 2k-representative family F of E (|F|=0(k?))
» Delete all edges which are not part of FinG

- Delete isolated vertices from G and M

- Call the new instance (G',M' k)
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Kernel for Rank Vertex Cover

u u’
Q- M0 E={{uv} : {uv} in E(G))
0 M

- Compute 2k-representative family F of E (|F|=0(k?))
» Delete all edges which are not part of FinG

- Delete isolated vertices from G and M

- Call the new instance (G',M' k)

- Size of G' is O(k?)

* No. of columns in M' is O(k?)
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Kernel for Rank Vertex Cover

u u'
_ M 0 E={{uv} : {u,v} in E(G))
0 M

- Compute 2k-representative family F of E (|F|=0(k?))
* Delete all edges which are not part of Fin G

- Delete isolated vertices from G and M

- Call the new instance (G',M' k)

- Size of G' is O(k?)

* No. of columns in M" is O(k?)

- The number of no. of rows in M' is not bounded
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Kernel for Rank Vertex Cover

u u'
_ M 0 E={{uv} : {u,v} in E(G))
0 M

- Compute 2k-representative family F of E (|F|=0(k?))
* Delete all edges which are not part of Fin G

- Delete isolated vertices from G and M

- Call the new instance (G',M' k)

- Size of G' is O(k?)

* No. of columns in M" is O(k?)

- The number of no. of rows in M' is not bounded

Just see the correctness proof of this reduction

82



Proof: Forward direction

» G' is a subgraph of G

 M' is obtained by deleting some columns from M

+ If X is V.C of rank k in G, then X n V(G') is a V.C of rank k
inG
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Proof: Reverse direction
* Let X' isa V.C of G' and rank(X")=k
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Proof: Reverse direction

*Let X' isa V.C of G' and rank(X")=k
* We claim X=span(X')nM is a V.C of 6.
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Proof: Reverse direction

* Let X' isa V.C of G’ and rank(X')=k
* We claim X=span(X)nM is a V.C of 6.
» Suppose not. Let {u,v} be an edge not covered by X
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Proof: Reverse direction

*Let X' isa V.C of G' and rank(X")=k
* We claim X=span(X)nM is a V.C of 6.

» Suppose not. Let {u,v} be an edge not covered by X
» Let B be a basis of X
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Proof: Reverse direction

*Let X' isa V.C of G' and rank(X")=k
* We claim X=span(X)nM is a V.C of 6.

» Suppose not. Let {u,v} be an edge not covered by X
» Let B be a basis of X
- |B|=k
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Proof: Reverse direction

*Let X' isa V.C of G' and rank(X")=k
* We claim X=span(X)nM is a V.C of 6.

» Suppose not. Let {u,v} be an edge not covered by X
» Let B be a basis of X

- |B|=k

- Bu{u},Bu{vlarelLlI
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Proof: Reverse direction

*Let X' isa V.C of G' and rank(X")=k
* We claim X=span(X)nM is a V.C of 6.

» Suppose not. Let {u,v} be an edge not covered by X
» Let B be a basis of X

. |B|=k
- Bu{u}, Bu{vlarelLI
U
B { 0
Q=1 ..
0 B i
.

Bl/ \\/ B
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Proof: Reverse direction

*Let X' isa V.C of G' and rank(X")=k
* We claim X=span(X)nM is a V.C of 6.

» Suppose not. Let {u,v} be an edge not covered by X
» Let B be a basis of X

. |B|=k - Biu{u}isL.I
c Bu{u}, Bu{viare LI * Bau{v}isLlI
u
B { 0
Q=1 ...
0 B i
y

B1 / \\/ B> §



Proof: Reverse direction

*Let X' isa V.C of G' and rank(X")=k
* We claim X=span(X)nM is a V.C of 6.

» Suppose not. Let {u,v} be an edge not covered by X
» Let B be a basis of X

. |B|=k * Biu{u}isL.I
- Bu{u},Bu{viareLI  Bau{v}isLI
u - BiuBau{uVv}isL.I
B { 0
Q=8 ...
0 B
y

Bl/ \\/ B
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Proof: Reverse direction

*Let X' isa V.C of G' and rank(X")=k
* We claim X=span(X)nM is a V.C of 6.

» Suppose not. Let {u,v} be an edge not covered by X
» Let B be a basis of X

. |B|=k * Biu{u}islL.I
. Bu{u},Bu{viare LI * Bau{v}isL.I
u - BiuBau{uVvl}isLI
._, - |B1u B2 |=2k
B { 0
Q=8 ...
0 B
v

Bl/ \\/ B
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Proof: Reverse direction

*Let X' isa V.C of G' and rank(X")=k
* We claim X=span(X)nM is a V.C of 6.

» Suppose not. Let {u,v} be an edge not covered by X

* Let B be a basis of X .
. |B|=k * Bru{u}isL.I

- Bu{u},Bu{viareLI r BaulvhisLI
! * BiuBau{uvl}islLI
| - |B1u B2 |=2k
B { O * From the def. of rep. family
Q=1 .. * R there is {w,z'} in F s.t.
0 R i B1uBou{w,zY} is L.I
v

Bl/ \\/ B
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Proof: Reverse direction

*Let X' isa V.C of G' and rank(X")=k
* We claim X=span(X)nM is a V.C of 6.

» Suppose not. Let {u,v} be an edge not covered by X

- Let B be a basis of X .
. |B|=k * Biu{u}isL.I

. Bu{u},Bu{viareLI Bauiv}isLI
! - BiuBou{uVv}islL.I
| - |B1u B2 |=2k
B i O * From the def. of rep. family
Q=1 .. * KE there is {w,z’} in F s.t.
0 R i BiuB2u{w,z} is L.I
| - Bu{w}, Bu{z}arelL.I
vl

Bl/ \\/ B
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Proof: Reverse direction

*Let X' isa V.C of G' and rank(X")=k
* We claim X=span(X)nM is a V.C of 6.

» Suppose not. Let {u,v} be an edge not covered by X

- Let B be a basis of X .
. |B|=k * Biu{u}isL.I

. Bu{u},Bu{viareLI Bauiv}isLI
! - BiuBou{uVv}islL.I
| - |B1u B2 |=2k
B i O * From the def. of rep. family
Q=1 .. * e there is {w,z’} in F s.1.
0 R i B1uBou{w,z} is L.I
| - Bu{w}, Bu{z}arelL.I
Vv » That is, X' will not cover the

B, / \\/v 3, edge {w,z} in G
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Proof: Reverse direction

*Let X' isa V.C of G' and rank(X")=k
* We claim X=span(X)nM is a V.C of 6.

» Suppose not. Let {u,v} be an edge not covered by X

- Let B be a basis of X .
. |B|=k * Biu{u}isL.I

. Bu{u},Bu{viareLI Bauiv}isLI
! - BiuBou{uVv}islL.I
| - |B1u B2 |=2k
B i O * From the def. of rep. family
Q=1 .. * e there is {w,z’} in E s.1.
0 R i B1uBou{w,z} is L.I
| - Bu{w}, Bu{z}arelL.I
Vv » That is, X' will not cover the

edge {w,z} in G
B1 / \\/, B2 Contradiction! o7



Bound on no. of rows

* We got (G ,M' k), where size of G’ and no. columns in M' is
O(k?).
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Bound on no. of rows

* We got (G ,M' k), where size of G’ and no. columns in M' is
O(k?).

* To bound the number of rows, we delete all rows except
row vectors in a basis.
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Bound on no. of rows

* We got (G ,M' k), where size of G’ and no. columns in M' is
O(k?).

* To bound the number of rows, we delete all rows except
row vectors in a basis.

* Row rank = column rank implies that the size of row basis is

O(k?).
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Bound on no. of rows

* We got (G ,M' k), where size of G’ and no. columns in M' is
O(k?).

* To bound the number of rows, we delete all rows except
row vectors in a basis.

* Row rank = column rank implies that the size of row basis is

O(k?).

Proof omitted
(uses elementary operations)
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V.C above Max matching
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V.C above Max matching

» Size of a V.C is at least the size a max. matching.
* Max. matching can be computed in polynomial time
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V.C above Max matching

» Size of a V.C is at least the size a max. matching.
* Max. matching can be computed in polynomial time

Input: A graph G and an integer k
Question : Is there a vertex cover of size mm(G)+k
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V.C above mm < Rank V.C

(2 ) (D o)

* G has a V.C of size mm(G)+k iff (G,M) has V.C of rank mm(G)+k
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Rank Reduction
. 1t 0
(% s [ 0" 11] )

l Rand. polynomial Time

(¢ k=00¢2), m)

( Each entry is on poly(k) bits
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How to get a Kernel for V.C above MM
(G ,k) of V.C above MM

!

(6, mm+k,I,) of Rank V.C
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How to get a Kernel for V.C above MM
(G ,k) of V.C above MM

!

(6, mm+k,I,) of Rank V.C

|

Matrix entry bounded in poly(k) (G',O(k3/2),M') Of RClnk VC
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How to get a Kernel for V.C above MM
(G ,k) of V.C above MM

!

(6, mm+k,I,) of Rank V.C

|

Matrix entry bounded in poly(k) (G',O(k3/2),M') Of RClnk VC

|

Size bounded in poly(k) (G"'O(k?’/z),M“) Of Rﬂnk VC

109



How to get a Kernel for V.C above MM
(G k) of V.C above MM

!

(6, mm+k,I,) of Rank V.C

|

Matrix entry bounded in poly(k) (G',O(k3/2),M') Of Rﬂnk VC

|

Size bounded in poly(k) (G",O(k:;/z),M”) Of Rank VC

|

Size bounded in poly(k) (H,k") Of VC ClbOVZ MM
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How to get a Kernel for V.C above MM
(G k) of V.C above MM

!

(6, mm+k,I,) of Rank V.C

|

Matrix entry bounded in poly(k) (G',O(k3/2),M') Of Rank VC

l in NP
Size bounded in poly(k) (G",O(k:;/z),M”) Of Rank VC U
Size bounded in poly(k) (H’k") of V.C above MM is NP-hard

N
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How to get a Kernel for V.C above MM
(G k) of V.C above MM

!

(6, mm+k,I,) of Rank V.C

|

Matrix entry bounded in poly(k) (G',O(k3/2),M') Of Rﬂnk VC

l in NP
Size bounded in poly(k) (G",O(k:;/z),M”) Of Rank VC \/
Size bounded in poly(k) (H’k") of V.C above MM is NP-hard

N

112



Co-loop in a matrix

Vi V2 ... Vp

» Co-loop is a column vector which is part of any basis.
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Rank Reduction

(6, mm+k,I,) of Rank V.C

|

(6',0(k32),M") of Rank V.C
(H, p, N) of Rank V.C and a co-loop v in N

(in Rand. Polynomial time)

(H\u, p-2, N') of Rank V.C

» Co-loops in (N \ N(v)) ¢ Co-loops in N
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Rank Reduction

(H, p, N) of Rank V.C and a co-loop uin N

(6, mm+k,I,) of Rank V.C
l(in Rand. Polynomial time) l

(H\u, p-2, N') of Rank V.C , 3/2 '
* Co-loops in N\N(v) ¢ Co-loops in N (G zo(k ),M) Of Rank V.C
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Rank Reduction

(H, p, N) of Rank V.C and a co-loop uin N

(6, mm+k,I,) of Rank V.C
l(in Rand. Polynomial time) l

(H\u, p-2, N') of Rank V.C , 3/2 '
* Co-loops in N\N(v) ¢ Co-loops in N (G :O(k ),M) Of Rank V.C

V.C above MM

Rand. poly time B 7 Yes/No
G6k) — algorithm
QMism et al., ZOII]J\ a V.C of size mm+ck3/?
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Rank Reduction

(H, p, N) of Rank V.C and a co-loop uin N

(6, mm+k,I,) of Rank V.C
l(in Rand. Polynomial time) l

(H\u, p-2, N') of Rank V.C , 3/2 '
* Co-loops in N\N(v) ¢ Co-loops in N (G :O(k ),M) Of Rank V.C

V.C above MM

Rand. poly time B 7 Yes/No
G6k) — algorithm
QMism et al., ZOII]J\ a V.C of size mm+ck3/?

an Independent set of size
n-(mm+ck3/?)
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Rank Reduction

(H, p, N) of Rank V.C and a co-loop uin N

(6, mm+k,I,) of Rank V.C
l(in Rand. Polynomial time) l

(H\u, p-2, N') of Rank V.C ' 3/2 '
» Co-loops in N\N(v) ¢ Co-loops in N' (G zo(k ),M) of Rank V.C

* Recall that (6,mm+k I,) is the input instance of Rank V.C

118



Rank Reduction

(H, p, N) of Rank V.C and a co-loop uin N

(6, mm+k,I,) of Rank V.C
l(in Rand. Polynomial time) l

(H\u, p-2, N') of Rank V.C ' 3/2 ,
» Co-loops in N\N(v) ¢ Co-loops in N’ (G zo(k ):M) of Rank V.C

* Recall that (6,mm+k I,) is the input instance of Rank V.C
* Run the algorithm by Misra et al., 2011 on (G,k) and if it outputs
Yes/No, we are done.
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Rank Reduction

(H, p, N) of Rank V.C and a co-loop uin N

(6, mm+k,I,) of Rank V.C
l(in Rand. Polynomial time) l

(H\u, p-2, N') of Rank V.C ' 3/2 ,
» Co-loops in N\N(v) ¢ Co-loops in N’ (G zo(k ):M) of Rank V.C

* Recall that (6,mm+k,I,) is the input instance of Rank V.C

* Run the algorithm by Misra et al., 2011 on (G,k) and if it outputs
Yes/No, we are done.

- Otherwise the output is an independent set S of size n-(mm+ck3/2)
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Rank Reduction

(H, p, N) of Rank V.C and a co-loop uin N

(6, mm+k,I,) of Rank V.C
l(in Rand. Polynomial time) l

(H\u, p-2, N') of Rank V.C ' 3/2 ,
» Co-loops in N\N(v) ¢ Co-loops in N’ (G zo(k ):M) of Rank V.C

* Recall that (6,mm+k,I,) is the input instance of Rank V.C

* Run the algorithm by Misra et al., 2011 on (G k) and if it outputs
Yes/No, we are done.

- Otherwise the output is an independent set S of size n-(mm+ck3/2)
+ All elements of S in Inare co-loops
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Rank Reduction

(H, p, N) of Rank V.C and a co-loop uin N

(6, mm+k,I,) of Rank V.C
l(in Rand. Polynomial time) l

(H\u, p-2, N') of Rank V.C ' 3/2 ,
» Co-loops in N\N(v) ¢ Co-loops in N’ (G zo(k ):M) of Rank V.C

* Recall that (6,mm+k,I,) is the input instance of Rank V.C

* Run the algorithm by Misra et al., 2011 on (G,k) and if it outputs
Yes/No, we are done.

- Otherwise the output is an independent set S of size n-(mm+ck3/2)
+ All elements of S in Inare co-loops

* The neighbourhood of any element in S is in V(G)\S
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Rank Reduction

(H, p, N) of Rank V.C and a co-loop uin N

(6, mm+k,I,) of Rank V.C
l(in Rand. Polynomial time) l

(H\u, p-2, N') of Rank V.C ' 3/2 ,
» Co-loops in N\N(v) ¢ Co-loops in N’ (G zo(k ):M) of Rank V.C

* Recall that (6,mm+k,I,) is the input instance of Rank V.C

* Run the algorithm by Misra et al., 2011 on (G,k) and if it outputs
Yes/No, we are done.

- Otherwise the output is an independent set S of size n-(mm+ck3/2)
+ All elements of S in Inare co-loops

* The neighbourhood of any element in S is in V(G)\S

* We apply the above reduction rule one by one on S.
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Rank Reduction

(H, p, N) of Rank V.C and a co-loop uin N

(6, mm+k,I,) of Rank V.C
l(in Rand. Polynomial time) l

(H\u, p-2, N') of Rank V.C ' 3/2 ,
» Co-loops in N\N(v) ¢ Co-loops in N’ (G zo(k ):M) of Rank V.C

* Recall that (6,mm+k,I,) is the input instance of Rank V.C

* Run the algorithm by Misra et al., 2011 on (G,k) and if it outputs
Yes/No, we are done.

- Otherwise the output is an independent set S of size n-(mm+ck3/2)
+ All elements of S in Inare co-loops

* The neighbourhood of any element in S is in V(G)\S

* We apply the above reduction rule one by one on S.

rank(M')=n-2|S|=n-2(n-mm-ck32) <-n+2mm+2ck32 < 2ck%2
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Conclusion

Kernelization: V.C above MM, V.C above LP, Almost 2SAT,
Multiway Cut with deletable terminals, Subset FVS, etc
Open problems: deterministic polynomial kernels for the
above problems ?

FPT: k-Matroid Parity, k-Path, k-Tree, Connectivity problems
on graphs of bounded tree-width, Long Cycle, k-MLD, etc

Exact Exponential Time algorithms : Min. Equivalent digraph,
Minimum Weight j-connected Spanning Subgraph.
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Conclusion

Kernelization: V.C above MM, V.C above LP, Almost 2SAT,
Multiway Cut with deletable terminals, Subset FVS, etc
Open problems: deterministic polynomial kernels for the
above problems ?

FPT: k-Matroid Parity, k-Path, k-Tree, Connectivity problems
on graphs of bounded tree-width, Long Cycle, k-MLD, etc

Exact Exponential Time algorithms : Min. Equivalent digraph,
Minimum Weight 3-connected Spanning Subgraph.

Thank you for your attention!
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