Important separators and parameterized algorithms

Dániel Marx ${ }^{1}$

${ }^{1}$ Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

PCSS 2017

Vienna, Austria
September 2, 2017

Overview

Main message

Small separators in graphs have interesting extremal properties that can be exploited in combinatorial and algorithmic results.

- Bounding the number of "important" cuts.
- Edge/vertex versions, directed/undirected versions.
- Algorithmic applications: FPT algorithm for
- Multiway cut
- Directed Feedback Vertex Set

Minimum cuts

Definition: $\delta(R)$ is the set of edges with exactly one endpoint in R. Definition: A set S of edges is a minimal (X, Y)-cut if there is no $X-Y$ path in $G \backslash S$ and no proper subset of S breaks every $X-Y$ path.
Observation: Every minimal (X, Y)-cut S can be expressed as $S=$ $\delta(R)$ for some $X \subseteq R$ and $R \cap Y=\emptyset$.

Minimum cuts

Theorem

A minimum (X, Y)-cut can be found in polynomial time.
Theorem
The size of a minimum (X, Y)-cut equals the maximum size of a pairwise edge-disjoint collection of $X-Y$ paths.

Submodularity

Fact: The function δ is submodular: for arbitrary sets A, B, $|\delta(A)|+|\delta(B)| \geq|\delta(A \cap B)|+|\delta(A \cup B)|$

Submodularity

Fact: The function δ is submodular: for arbitrary sets A, B,

$$
|\delta(A)|+|\delta(B)| \geq|\delta(A \cap B)|+|\delta(A \cup B)|
$$

Proof: Determine separately the contribution of the different types of edges.

Submodularity

Fact: The function δ is submodular: for arbitrary sets A, B,

$$
\left.\begin{array}{ccc}
|\delta(A)| & +\quad|\delta(B)| \geq & |\delta(A \cap B)| \\
0 & 1 & 1
\end{array} \right\rvert\, \begin{gathered}
|\delta(A \cup B)| \\
0
\end{gathered}
$$

Proof: Determine separately the contribution of the different types of edges.

Submodularity

Fact: The function δ is submodular: for arbitrary sets A, B,

$$
\begin{array}{cccc}
|\delta(A)| & +\quad|\delta(B)| \geq & |\delta(A \cap B)| & +\quad|\delta(A \cup B)| \\
1 & 0 & 1 & 0
\end{array}
$$

Proof: Determine separately the contribution of the different types of edges.

Submodularity

Fact: The function δ is submodular: for arbitrary sets A, B,

$$
\begin{array}{cccc}
|\delta(A)| & + & |\delta(B)| & \geq \\
0 & 1 & |\delta(A \cap B)| & +\quad|\delta(A \cup B)| \\
0 & 1
\end{array}
$$

Proof: Determine separately the contribution of the different types of edges.

Submodularity

Fact: The function δ is submodular: for arbitrary sets A, B,

$$
\begin{array}{cccc}
|\delta(A)| & +\quad|\delta(B)| \geq & |\delta(A \cap B)| & +|\delta(A \cup B)| \\
1 & 0 & 0 & 1
\end{array}
$$

Proof: Determine separately the contribution of the different types of edges.

Submodularity

Fact: The function δ is submodular: for arbitrary sets A, B,

$$
\begin{array}{cccc}
|\delta(A)| & + & |\delta(B)| & \geq \\
1 & 1 & |\delta(A \cap B)| & +|\delta(A \cup B)| \\
1
\end{array}
$$

Proof: Determine separately the contribution of the different types of edges.

Submodularity

Fact: The function δ is submodular: for arbitrary sets A, B,

$$
\left.\begin{array}{ccc}
|\delta(A)| & +|\delta(B)| \geq & |\delta(A \cap B)| \\
1 & 1 & 0
\end{array} \right\rvert\, \begin{gathered}
|\delta(A \cup B)| \\
0
\end{gathered}
$$

Proof: Determine separately the contribution of the different types of edges.

Submodularity

Lemma

Let λ be the minimum (X, Y)-cut size. There is a unique maximal $R_{\max } \supseteq X$ such that $\delta\left(R_{\max }\right)$ is an (X, Y)-cut of size λ.

Submodularity

Lemma

Let λ be the minimum (X, Y)-cut size. There is a unique maximal $R_{\max } \supseteq X$ such that $\delta\left(R_{\max }\right)$ is an (X, Y)-cut of size λ.

Proof: Let $R_{1}, R_{2} \supseteq X$ be two sets such that $\delta\left(R_{1}\right), \delta\left(R_{2}\right)$ are (X, Y)-cuts of size λ.

$$
\begin{gathered}
\left|\delta\left(R_{1}\right)\right|+\left|\delta\left(R_{2}\right)\right| \geq\left|\delta\left(R_{1} \cap R_{2}\right)\right|+\left|\delta\left(R_{1} \cup R_{2}\right)\right| \\
\lambda \quad \geq \lambda \\
\Rightarrow \quad\left|\delta\left(R_{1} \cup R_{2}\right)\right| \leq \lambda
\end{gathered}
$$

Note: Analogous result holds for a unique minimal $R_{\text {min }}$.

Important cuts

Definition: $\delta(R)$ is the set of edges with exactly one endpoint in R. Definition: A set S of edges is a minimal (X, Y)-cut if there is no $X-Y$ path in $G \backslash S$ and no proper subset of S breaks every $X-Y$ path.
Observation: Every minimal (X, Y)-cut S can be expressed as $S=$ $\delta(R)$ for some $X \subseteq R$ and $R \cap Y=\emptyset$.

Important cuts

Definition

A minimal (X, Y)-cut $\delta(R)$ is important if there is no (X, Y)-cut $\delta\left(R^{\prime}\right)$ with $R \subset R^{\prime}$ and $\left|\delta\left(R^{\prime}\right)\right| \leq|\delta(R)|$.

Note: Can be checked in polynomial time if a cut is important $\left(\delta(R)\right.$ is important if $\left.R=R_{\max }\right)$.

Important cuts

Definition

A minimal (X, Y)-cut $\delta(R)$ is important if there is no (X, Y)-cut $\delta\left(R^{\prime}\right)$ with $R \subset R^{\prime}$ and $\left|\delta\left(R^{\prime}\right)\right| \leq|\delta(R)|$.

Note: Can be checked in polynomial time if a cut is important $\left(\delta(R)\right.$ is important if $\left.R=R_{\max }\right)$.

Important cuts

Definition

A minimal (X, Y)-cut $\delta(R)$ is important if there is no (X, Y)-cut $\delta\left(R^{\prime}\right)$ with $R \subset R^{\prime}$ and $\left|\delta\left(R^{\prime}\right)\right| \leq|\delta(R)|$.

Note: Can be checked in polynomial time if a cut is important $\left(\delta(R)\right.$ is important if $\left.R=R_{\max }\right)$.

Important cuts

The number of important cuts can be exponentially large.

Example:

This graph has $2^{k / 2}$ important (X, Y)-cuts of size at most k.

Important cuts

The number of important cuts can be exponentially large.
Example:

This graph has $2^{k / 2}$ important (X, Y)-cuts of size at most k.

Theorem

There are at most 4^{k} important (X, Y)-cuts of size at most k.

Important cuts

Theorem

There are at most 4^{k} important (X, Y)-cuts of size at most k.
Proof: Let λ be the minimum (X, Y)-cut size and let $\delta\left(R_{\max }\right)$ be the unique important cut of size λ such that $R_{\text {max }}$ is maximal.
(1) We show that $R_{\max } \subseteq R$ for every important cut $\delta(R)$.

Important cuts

Theorem

There are at most 4^{k} important (X, Y)-cuts of size at most k.
Proof: Let λ be the minimum (X, Y)-cut size and let $\delta\left(R_{\max }\right)$ be the unique important cut of size λ such that $R_{\max }$ is maximal.
(1) We show that $R_{\max } \subseteq R$ for every important cut $\delta(R)$.

By the submodularity of δ :

$$
\begin{gathered}
\left|\delta\left(R_{\max }\right)\right|+|\delta(R)| \geq\left|\delta\left(R_{\max } \cap R\right)\right|+\left|\delta\left(R_{\max } \cup R\right)\right| \\
\geq \lambda \\
\Downarrow \\
\left|\delta\left(R_{\max } \cup R\right)\right| \leq|\delta(R)| \\
\Downarrow \\
\quad \text { If } R \neq R_{\max } \cup R, \text { then } \delta(R) \text { is not important. }
\end{gathered}
$$

Important cuts

Theorem

There are at most 4^{k} important (X, Y)-cuts of size at most k.
Proof: Let λ be the minimum (X, Y)-cut size and let $\delta\left(R_{\max }\right)$ be the unique important cut of size λ such that $R_{\max }$ is maximal.
(1) We show that $R_{\max } \subseteq R$ for every important cut $\delta(R)$.

By the submodularity of δ :

$$
\begin{gathered}
\left|\delta\left(R_{\max }\right)\right|+|\delta(R)| \geq\left|\delta\left(R_{\max } \cap R\right)\right|+\left|\delta\left(R_{\max } \cup R\right)\right| \\
\geq \lambda \\
\Downarrow \\
\left|\delta\left(R_{\max } \cup R\right)\right| \leq|\delta(R)| \\
\Downarrow \\
\quad \text { If } R \neq R_{\max } \cup R, \text { then } \delta(R) \text { is not important. }
\end{gathered}
$$

Thus the important (X, Y) - and $\left(R_{\max }, Y\right)$-cuts are the same.
\Rightarrow We can assume $X=R_{\text {max }}$.

Important cuts

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge $u v$ leaving $X=R_{\max }$ is either in the cut or not.

Important cuts

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge $u v$ leaving $X=R_{\max }$ is either in the cut or not.

Branch 1: If $u v \in S$, then $S \backslash u v$ is an important (X, Y)-cut of size at most $k-1$ in $G \backslash u v$.

Branch 2: If $u v \notin S$, then S is an important $(X \cup v, Y)$-cut of size at most k in G.

Important cuts

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge $u v$ leaving $X=R_{\max }$ is either in the cut or not.

Branch 1: If $u v \in S$, then $S \backslash u v$ is an important (X, Y)-cut of size at most $k-1$ in $G \backslash u v$.
$\Rightarrow k$ decreases by one, λ decreases by at most 1 .
Branch 2: If $u v \notin S$, then S is an important $(X \cup v, Y)$-cut of size at most k in G.
$\Rightarrow k$ remains the same, λ increases by 1.

Important cuts

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge $u v$ leaving $X=R_{\max }$ is either in the cut or not.

Branch 1: If $u v \in S$, then $S \backslash u v$ is an important (X, Y)-cut of size at most $k-1$ in $G \backslash u v$.
$\Rightarrow k$ decreases by one, λ decreases by at most 1 .
Branch 2: If $u v \notin S$, then S is an important $(X \cup v, Y)$-cut of size at most k in G.
$\Rightarrow k$ remains the same, λ increases by 1.
The measure $2 k-\lambda$ decreases in each step.
\Rightarrow Height of the search tree $\leq 2 k$
$\Rightarrow \leq 2^{2 k}=4^{k}$ important cuts of size at most k.

Important cuts

Theorem

There are at most 4^{k} important (X, Y)-cuts of size at most k.
Example: The bound 4^{k} is essentially tight.

Important cuts

Theorem

There are at most 4^{k} important (X, Y)-cuts of size at most k.
Example: The bound 4^{k} is essentially tight.

Any subtree with k leaves gives an important (X, Y)-cut of size k.

Important cuts

Theorem

There are at most 4^{k} important (X, Y)-cuts of size at most k.
Example: The bound 4^{k} is essentially tight.

Any subtree with k leaves gives an important (X, Y)-cut of size k.

Important cuts

Theorem

There are at most 4^{k} important (X, Y)-cuts of size at most k.
Example: The bound 4^{k} is essentially tight.

Any subtree with k leaves gives an important (X, Y)-cut of size k. The number of subtrees with k leaves is the Catalan number

$$
C_{k-1}=\frac{1}{k}\binom{2 k-2}{k-1} \geq 4^{k} / \operatorname{poly}(k)
$$

Multiway Cut

Definition: A multiway cut of a set of terminals T is a set S of edges such that each component of $G \backslash S$ contains at most one vertex of T.

Multiway Cut
Input: Graph G, set T of vertices, integer k
Find:
A multiway cut S of at most k edges.

Polynomial for $|T|=2$, but NP-hard for any fixed $|T| \geq 3$ [Dalhaus et al. 1994].

Multiway Cut

Definition: A multiway cut of a set of terminals T is a set S of edges such that each component of $G \backslash S$ contains at most one vertex of T.

Multiway Cut

Input: Graph G, set T of vertices, integer k

Find:
A multiway cut S of at most k edges.

Trivial to solve in polynomial time for fixed k (in time $n^{O(k)}$).

Theorem

Multiway cut can be solved in time $4^{k} \cdot k^{3} \cdot(|V(G)|+|E(G)|)$.

Multiway Cut

Intuition: Consider a $t \in T$. A subset of the solution S is a ($t, T \backslash t$)-cut.

Multiway Cut

Intuition: Consider a $t \in T$. A subset of the solution S is a ($t, T \backslash t$)-cut.

There are many such cuts.

Multiway Cut

Intuition: Consider a $t \in T$. A subset of the solution S is a ($t, T \backslash t$)-cut.

There are many such cuts.

Multiway Cut

Intuition: Consider a $t \in T$. A subset of the solution S is a ($t, T \backslash t$)-cut.

There are many such cuts.
But a cut farther from t and closer to $T \backslash t$ seems to be more useful.

Multiway Cut and important cuts

Pushing Lemma

Let $t \in T$. The Multiway Cut problem has a solution S that contains an important $(t, T \backslash t)$-cut.

Multiway Cut and important cuts

Pushing Lemma

Let $t \in T$. The Multiway Cut problem has a solution S that contains an important $(t, T \backslash t)$-cut.

Proof: Let R be the vertices reachable from t in $G \backslash S$ for a solution S.

Multiway Cut and important cuts

Pushing Lemma

Let $t \in T$. The Multiway Cut problem has a solution S that contains an important ($t, T \backslash t$)-cut.

Proof: Let R be the vertices reachable from t in $G \backslash S$ for a solution S.

$\delta(R)$ is not important, then there is an important cut $\delta\left(R^{\prime}\right)$ with $R \subset R^{\prime}$ and $\left|\delta\left(R^{\prime}\right)\right| \leq|\delta(R)|$. Replace S with
$S^{\prime}:=(S \backslash \delta(R)) \cup \delta\left(R^{\prime}\right) \Rightarrow\left|S^{\prime}\right| \leq|S|$

Multiway Cut and important cuts

Pushing Lemma

Let $t \in T$. The Multiway Cut problem has a solution S that contains an important ($t, T \backslash t$)-cut.

Proof: Let R be the vertices reachable from t in $G \backslash S$ for a solution S.

$\delta(R)$ is not important, then there is an important cut $\delta\left(R^{\prime}\right)$ with $R \subset R^{\prime}$ and $\left|\delta\left(R^{\prime}\right)\right| \leq|\delta(R)|$. Replace S with
$S^{\prime}:=(S \backslash \delta(R)) \cup \delta\left(R^{\prime}\right) \Rightarrow\left|S^{\prime}\right| \leq|S|$
S^{\prime} is a multiway cut: (1) There is no $t-u$ path in $G \backslash S^{\prime}$ and (2) a $u-v$ path in $G \backslash S^{\prime}$ implies a $t-u$ path, a contradiction.

Multiway Cut and important cuts

Pushing Lemma

Let $t \in T$. The Multiway Cut problem has a solution S that contains an important ($t, T \backslash t$)-cut.

Proof: Let R be the vertices reachable from t in $G \backslash S$ for a solution S.

$\delta(R)$ is not important, then there is an important cut $\delta\left(R^{\prime}\right)$ with $R \subset R^{\prime}$ and $\left|\delta\left(R^{\prime}\right)\right| \leq|\delta(R)|$. Replace S with
$S^{\prime}:=(S \backslash \delta(R)) \cup \delta\left(R^{\prime}\right) \Rightarrow\left|S^{\prime}\right| \leq|S|$
S^{\prime} is a multiway cut: (1) There is no $t-u$ path in $G \backslash S^{\prime}$ and (2) a $u-v$ path in $G \backslash S^{\prime}$ implies a $t-u$ path, a contradiction.

Algorithm for Multiway Cut

(1) If every vertex of T is in a different component, then we are done.
(2) Let $t \in T$ be a vertex that is not separated from every $T \backslash t$.
(3) Branch on a choice of an important $(t, T \backslash t)$ cut S of size at most k.
(4) Set $G:=G \backslash S$ and $k:=k-|S|$.
(6) Go to step 1 .

We branch into at most 4^{k} directions at most k times: $4^{k^{2}} \cdot n^{O(1)}$ running time.

Next: Better analysis gives 4^{k} bound on the size of the search tree.

Multicut

Multicut
Input: Graph G, pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{\ell}, t_{\ell}\right)$, integer k
Find: A set S of edges such that $G \backslash S$ has no $s_{i}-t_{i}$ path for any i.

Theorem

Multicut can be solved in time $f(k, \ell) \cdot n^{O(1)}$ (FPT parameterized by combined parameters k and ℓ).

Multicut

Multicut

Input: Graph G, pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{\ell}, t_{\ell}\right)$, integer k
Find: A set S of edges such that $G \backslash S$ has no $s_{i}-t_{i}$ path for any i.

Theorem

Multicut can be solved in time $f(k, \ell) \cdot n^{O(1)}$ (FPT parameterized by combined parameters k and ℓ).

Proof: The solution partitions $\left\{s_{1}, t_{1}, \ldots, s_{\ell}, t_{\ell}\right\}$ into components. Guess this partition, contract the vertices in a class, and solve Multiway Cut.

Theorem [Bousquet, Daligault, Thomassé 2011] [M., Razgon 2011] Multicut is FPT parameterized by the size k of the solution.

Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving R.
Observation: Every inclusionwise-minimal directed (X, Y)-cut S can be expressed as $S=\vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y=\emptyset$. Definition: A minimal (X, Y)-cut $\vec{\delta}(R)$ is important if there is no (X, Y)-cut $\vec{\delta}\left(R^{\prime}\right)$ with $R \subset R^{\prime}$ and $\left|\vec{\delta}\left(R^{\prime}\right)\right| \leq|\vec{\delta}(R)|$.

Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving R.
Observation: Every inclusionwise-minimal directed (X, Y)-cut S can be expressed as $S=\vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y=\emptyset$. Definition: A minimal (X, Y)-cut $\vec{\delta}(R)$ is important if there is no (X, Y)-cut $\vec{\delta}\left(R^{\prime}\right)$ with $R \subset R^{\prime}$ and $\left|\vec{\delta}\left(R^{\prime}\right)\right| \leq|\vec{\delta}(R)|$.

Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving R.
Observation: Every inclusionwise-minimal directed (X, Y)-cut S can be expressed as $S=\vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y=\emptyset$.
Definition: A minimal (X, Y)-cut $\vec{\delta}(R)$ is important if there is no
(X, Y)-cut $\vec{\delta}\left(R^{\prime}\right)$ with $R \subset R^{\prime}$ and $\left|\vec{\delta}\left(R^{\prime}\right)\right| \leq|\vec{\delta}(R)|$.
The proof for the undirected case goes through for the directed case:

Theorem

There are at most 4^{k} important directed (X, Y)-cuts of size at most k.

Directed Multiway Cut

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let $t \in T$. The Multiway Cut problem has a solution S that contains an important $(t, T \backslash t)$-cut.

Directed counterexample:

Unique solution with $k=1$ edges, but it is not an important cut (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ has same size).

Directed Multiway Cut

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let $t \in T$. The Multiway Cut problem has a solution S that contains an important $(t, T \backslash t)$-cut.

Directed counterexample:

Unique solution with $k=1$ edges, but it is not an important cut (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ has same size).

Directed Multiway Cut

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let $t \in T$. The Multiway Cut problem has a solution S that contains an important $(t, T \backslash t)$-cut.

Directed counterexample:

Unique solution with $k=1$ edges, but it is not an important cut (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ has same size).

Directed Multiway Cut

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let $t \in T$. The Multiway Cut problem has a solution S that contains an important $(t, T \backslash t)$-cut.

Problem in the undirected proof:

Replacing R by R^{\prime} cannot create a $t \rightarrow u$ path, but can create a $u \rightarrow t$ path.

Directed Multiway Cut

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let $t \in T$. The Multiway Cut problem has a solution S that contains an important $(t, T \backslash t)$-cut.

Using additional techniques, one can show:

Theorem [Chitnis, Hajiaghayi, M. 2011]

Directed Multiway Cut is FPT parameterized by the size k of the solution.

Directed Multicut

Directed Multicut
Input: Graph G, pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{\ell}, t_{\ell}\right)$, integer k
Find: A set S of edges such that $G \backslash S$ has no $s_{i} \rightarrow t_{i}$ path for any i.

Theorem [Pilipczuk and Wahlström 2016]
Directed Multicut with $\ell=4$ is $\mathrm{W}[1]$-hard.

Directed Multicut

Directed Multicut
Input: Graph G, pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{\ell}, t_{\ell}\right)$, integer k
Find: A set S of edges such that $G \backslash S$ has no $s_{i} \rightarrow t_{i}$ path for any i.

Theorem [Pilipczuk and Wahlström 2016]
Directed Multicut with $\ell=4$ is $\mathrm{W}[1]$-hard.
But the case $\ell=2$ can be reduced to Directed Multiway Cut:

Directed Multicut

Directed Multicut
Input: Graph G, pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{\ell}, t_{\ell}\right)$, integer k
Find: A set S of edges such that $G \backslash S$ has no $s_{i} \rightarrow t_{i}$ path for any i.

Theorem [Pilipczuk and Wahlström 2016]
Directed Multicut with $\ell=4$ is $\mathrm{W}[1]$-hard.
But the case $\ell=2$ can be reduced to Directed Multiway Cut:

Directed Multicut

Directed Multicut
Input: Graph G, pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{\ell}, t_{\ell}\right)$, integer k
Find: A set S of edges such that $G \backslash S$ has no $s_{i} \rightarrow t_{i}$ path for any i.

Theorem [Pilipczuk and Wahlström 2016]
Directed Multicut with $\ell=4$ is $\mathrm{W}[1]$-hard.
But the case $\ell=2$ can be reduced to Directed Multiway Cut:

Directed Multicut

Directed Multicut
Input: Graph G, pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{\ell}, t_{\ell}\right)$, integer k
Find: A set S of edges such that $G \backslash S$ has no $s_{i} \rightarrow t_{i}$ path for any i.

Theorem [Pilipczuk and Wahlström 2016] Directed Multicut with $\ell=4$ is $\mathrm{W}[1]$-hard.

Corollary

Directed Multicut with $\ell=2$ is FPT parameterized by the size k of the solution.

?
Open: Is Directed Multicut with $\ell=3$ FPT?

Skew Multicut

Skew Multicut

Input: Graph G, pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{\ell}, t_{\ell}\right)$, integer k
Find: A set S of k directed edges such that $G \backslash S$ contains no $s_{i} \rightarrow t_{j}$ path for any $i \geq j$.

Skew Multicut

Skew Multicut

Input: Graph G, pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{\ell}, t_{\ell}\right)$, integer k
Find: A set S of k directed edges such that $G \backslash S$ contains no $s_{i} \rightarrow t_{j}$ path for any $i \geq j$.

Pushing Lemma

Skew Multcut problem has a solution S that contains an important $\left(s_{\ell},\left\{t_{1}, \ldots, t_{\ell}\right\}\right)$-cut.

Skew Multicut

Skew Multicut

Input: Graph G, pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{\ell}, t_{\ell}\right)$, integer k
Find: A set S of k directed edges such that $G \backslash S$ contains no $s_{i} \rightarrow t_{j}$ path for any $i \geq j$.

Pushing Lemma

Skew Multcut problem has a solution S that contains an important $\left(s_{\ell},\left\{t_{1}, \ldots, t_{\ell}\right\}\right)$-cut.

Theorem [Chen, Liu, Lu, O'Sullivan, Razgon 2008] Skew Multicut can be solved in time $4^{k} \cdot n^{O(1)}$.

Directed Feedback Vertex Set

Directed Feedback Vertex/Edge Set

Input: Directed graph G, integer k
Find: A set S of k vertices/edges such that $G \backslash S$ is acyclic.

Note: Edge and vertex versions are equivalent, we will consider the edge version here.

Theorem [Chen, Liu, Lu, O'Sullivan, Razgon 2008]
Directed Feedback Edge Set is FPT parameterized by the size k of the solution.

Solution uses the technique of iterative compression introduced by [Reed, Smith, Vetta 2004].

The compression problem

```
Directed Feedback Edge Set Compression
    Input: Directed graph G, integer k,
    a set W of k+1 edges such that }G\
    is acyclic
    Find: A set S of k edges such that G\S is
    acyclic.
```

Easier than the original problem, as the extra input W gives us useful structural information about G.

Lemma

The compression problem is FPT parameterized by k.

The compression problem

```
Directed Feedback Edge Set Compression
    Input: Directed graph G, integer k,
    a set W of k+1 vertices such that G\W
    is acyclic
    Find:
        A set S of k edges such that G\S is
        acyclic.
```

Easier than the original problem, as the extra input W gives us useful structural information about G.

Lemma

The compression problem is FPT parameterized by k.
A useful trick for edge deletion problems: we define the compression problem in a way that a solution of $k+1$ vertices are given and we have to find a solution of k edges.

The compression problem

Proof: Let $W=\left\{w_{1}, \ldots, w_{k+1}\right\}$ Let us split each w_{i} into an edge $\overrightarrow{t_{i} S_{i}}$.

- By guessing the order of $\left\{w_{1}, \ldots, w_{k+1}\right\}$ in the acyclic ordering of $G \backslash S$, we can assume that $w_{1}<w_{2}<\cdots<w_{k+1}$ in $G \backslash S[(k+1)$! possibilities].

The compression problem

Proof: Let $W=\left\{w_{1}, \ldots, w_{k+1}\right\}$
Let us split each w_{i} into an edge $\overrightarrow{t_{i} s_{i}}$.

Claim:
$G \backslash S$ is acyclic and has an ordering with $w_{1}<w_{2}<\cdots<w_{k+1}$
\Downarrow
S covers every $s_{i} \rightarrow t_{j}$ path for every $i \geq j$
\Downarrow
$G \backslash S$ is acyclic

The compression problem

Proof: Let $W=\left\{w_{1}, \ldots, w_{k+1}\right\}$
Let us split each w_{i} into an edge $\overrightarrow{t_{i} s_{i}}$.

Claim:
$G \backslash S$ is acyclic and has an ordering with $w_{1}<w_{2}<\cdots<w_{k+1}$
\Downarrow
S covers every $s_{i} \rightarrow t_{j}$ path for every $i \geq j$
\Downarrow
$G \backslash S$ is acyclic

The compression problem

Proof: Let $W=\left\{w_{1}, \ldots, w_{k+1}\right\}$ Let us split each w_{i} into an edge $\overrightarrow{t_{i} s_{i}}$.

Claim:
$G \backslash S$ is acyclic and has an ordering with $w_{1}<w_{2}<\cdots<w_{k+1}$
\Downarrow
S covers every $s_{i} \rightarrow t_{j}$ path for every $i \geq j$
\Downarrow
$G \backslash S$ is acyclic
\Rightarrow We can solve the compression problem by $(k+1)$! applications of Skew Multicut.

Iterative compression

We have given a $f(k) n^{O(1)}$ algorithm for the following problem:

Directed Feedback Edge Set Compression Input: Directed graph G, integer k, a set W of $k+1$ vertices such that $G \backslash W$ is acyclic
Find: A set S of k edges such that $G \backslash S$ is acyclic.

Nice, but how do we get a solution W of size $k+1$?

Iterative compression

We have given a $f(k) n^{O(1)}$ algorithm for the following problem:

Directed Feedback Edge Set Compression Input: Directed graph G, integer k, a set W of $k+1$ vertices such that $G \backslash W$ is acyclic
 Find: A set S of k edges such that $G \backslash S$ is acyclic.

Nice, but how do we get a solution W of size $k+1$?

We get it for free!

Powerful technique: iterative compression (introduced by [Reed, Smith, Vetta 2004] for Bipartite Deletion).

Iterative compression

Let v_{1}, \ldots, v_{n} be the edges of G and let G_{i} be the subgraph induced by $\left\{v_{1}, \ldots, v_{i}\right\}$.

For every $i=1, \ldots, n$, we find a set S_{i} of at most k edges such that $G_{i} \backslash S_{i}$ is acyclic.

Iterative compression

Let v_{1}, \ldots, v_{n} be the edges of G and let G_{i} be the subgraph induced by $\left\{v_{1}, \ldots, v_{i}\right\}$.
For every $i=1, \ldots, n$, we find a set S_{i} of at most k edges such that $G_{i} \backslash S_{i}$ is acyclic.

- For $i=1$, we have the trivial solution $S_{i}=\emptyset$.
- Suppose we have a solution S_{i} for G_{i}. Let W_{i} contain the head of each edge in S_{i}. Then $W_{i} \cup\left\{v_{i+1}\right\}$ is a set of at most $k+1$ vertices whose removal makes G_{i+1} acyclic.
- Use the compression algorithm for G_{i+1} with the set $W_{i} \cup\left\{v_{i+1}\right\}$.
- If there is no solution of size k for G_{i+1}, then we can stop.
- Otherwise the compression algorithm gives a solution S_{i+1} of size k for G_{i+1}.

We call the compression algorithm n times, everything else is polynomial.
\Rightarrow Directed Feedback Edge Set is FPT.

Summary

- Definition of important cuts.
- Combinatorial bound on the number of important cuts.
- Pushing argument: we can assume that the solution contains an important cut. Solves Multiway Cut, Skew Multiway Cut.
- Iterative compression reduces Directed Feedback Vertex Set to Skew Multiway Cut.

Advertisement

Postdoc positions available in parameterized algorithms and complexity!

Institute for Computer Science and Control Hungarian Academy of Sciences Budapest, Hungary

