
Important separators and parameterized
algorithms

Dániel Marx1

1Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

PCSS 2017
Vienna, Austria

September 2, 2017
1



Overview

Main message
Small separators in graphs have interesting extremal properties that
can be exploited in combinatorial and algorithmic results.

Bounding the number of “important” cuts.
Edge/vertex versions, directed/undirected versions.
Algorithmic applications: FPT algorithm for

Multiway cut
Directed Feedback Vertex Set

2



Minimum cuts
Definition: δ(R) is the set of edges with exactly one endpoint in R .
Definition: A set S of edges is a minimal (X ,Y )-cut if there is no
X −Y path in G \ S and no proper subset of S breaks every X −Y
path.
Observation: Every minimal (X ,Y )-cut S can be expressed as S =
δ(R) for some X ⊆ R and R ∩ Y = ∅.

R

δ(R)

Y
X

3



Minimum cuts

Theorem
A minimum (X ,Y )-cut can be found in polynomial time.

Theorem
The size of a minimum (X ,Y )-cut equals the maximum size of a
pairwise edge-disjoint collection of X − Y paths.

R

δ(R)

Y
X

3



Submodularity
Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|

Proof: Determine separately the contribution of the different types
of edges.

4



Submodularity
Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|

Proof: Determine separately the contribution of the different types
of edges.

A B

4



Submodularity
Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
0 1 1 0

Proof: Determine separately the contribution of the different types
of edges.

BA

4



Submodularity
Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
1 0 1 0

Proof: Determine separately the contribution of the different types
of edges.

A B

4



Submodularity
Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
0 1 0 1

Proof: Determine separately the contribution of the different types
of edges.

A B

4



Submodularity
Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
1 0 0 1

Proof: Determine separately the contribution of the different types
of edges.

BA

4



Submodularity
Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
1 1 1 1

Proof: Determine separately the contribution of the different types
of edges.

BA

4



Submodularity
Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
1 1 0 0

Proof: Determine separately the contribution of the different types
of edges.

BA

4



Submodularity

Lemma
Let λ be the minimum (X ,Y )-cut size. There is a unique maximal
Rmax ⊇ X such that δ(Rmax) is an (X ,Y )-cut of size λ.

Proof: Let R1,R2 ⊇ X be two sets such that δ(R1), δ(R2) are
(X ,Y )-cuts of size λ.

|δ(R1)| + |δ(R2)| ≥ |δ(R1 ∩ R2)| + |δ(R1 ∪ R2)|
λ λ ≥ λ

⇒ |δ(R1 ∪ R2)| ≤ λ
R2R1

Y

X

Note: Analogous result holds for a unique minimal Rmin.

5



Submodularity

Lemma
Let λ be the minimum (X ,Y )-cut size. There is a unique maximal
Rmax ⊇ X such that δ(Rmax) is an (X ,Y )-cut of size λ.

Proof: Let R1,R2 ⊇ X be two sets such that δ(R1), δ(R2) are
(X ,Y )-cuts of size λ.

|δ(R1)| + |δ(R2)| ≥ |δ(R1 ∩ R2)| + |δ(R1 ∪ R2)|
λ λ ≥ λ

⇒ |δ(R1 ∪ R2)| ≤ λ
R2R1

Y

X

Note: Analogous result holds for a unique minimal Rmin.

5



Important cuts
Definition: δ(R) is the set of edges with exactly one endpoint in R .
Definition: A set S of edges is a minimal (X ,Y )-cut if there is no
X −Y path in G \ S and no proper subset of S breaks every X −Y
path.
Observation: Every minimal (X ,Y )-cut S can be expressed as S =
δ(R) for some X ⊆ R and R ∩ Y = ∅.

R

δ(R)

Y
X

6



Important cuts

Definition
A minimal (X ,Y )-cut δ(R) is important if there is no (X ,Y )-cut
δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a cut is important
(δ(R) is important if R = Rmax).

R

δ(R)

Y
X

6



Important cuts

Definition
A minimal (X ,Y )-cut δ(R) is important if there is no (X ,Y )-cut
δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a cut is important
(δ(R) is important if R = Rmax).

R ′

δ(R)

R

δ(R ′)
X

Y

6



Important cuts

Definition
A minimal (X ,Y )-cut δ(R) is important if there is no (X ,Y )-cut
δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a cut is important
(δ(R) is important if R = Rmax).

R

δ(R)

X
Y

6



Important cuts
The number of important cuts can be exponentially large.

Example:

X

Y

1 2 k/2

This graph has 2k/2 important (X ,Y )-cuts of size at most k .

Theorem
There are at most 4k important (X ,Y )-cuts of size at most k .

7



Important cuts
The number of important cuts can be exponentially large.

Example:

X

Y

1 2 k/2

This graph has 2k/2 important (X ,Y )-cuts of size at most k .

Theorem
There are at most 4k important (X ,Y )-cuts of size at most k .

7



Important cuts

Theorem
There are at most 4k important (X ,Y )-cuts of size at most k .

Proof: Let λ be the minimum (X ,Y )-cut size and let δ(Rmax) be
the unique important cut of size λ such that Rmax is maximal.

(1) We show that Rmax ⊆ R for every important cut δ(R).

By the submodularity of δ:

|δ(Rmax)| + |δ(R)| ≥ |δ(Rmax ∩ R)| + |δ(Rmax ∪ R)|
λ ≥ λ

⇓
|δ(Rmax ∪ R)| ≤ |δ(R)|

⇓
If R 6= Rmax ∪ R , then δ(R) is not important.

Thus the important (X ,Y )- and (Rmax,Y )-cuts are the same.
⇒ We can assume X = Rmax.

8



Important cuts

Theorem
There are at most 4k important (X ,Y )-cuts of size at most k .

Proof: Let λ be the minimum (X ,Y )-cut size and let δ(Rmax) be
the unique important cut of size λ such that Rmax is maximal.

(1) We show that Rmax ⊆ R for every important cut δ(R).

By the submodularity of δ:

|δ(Rmax)| + |δ(R)| ≥ |δ(Rmax ∩ R)| + |δ(Rmax ∪ R)|
λ ≥ λ

⇓
|δ(Rmax ∪ R)| ≤ |δ(R)|

⇓
If R 6= Rmax ∪ R , then δ(R) is not important.

Thus the important (X ,Y )- and (Rmax,Y )-cuts are the same.
⇒ We can assume X = Rmax.

8



Important cuts

Theorem
There are at most 4k important (X ,Y )-cuts of size at most k .

Proof: Let λ be the minimum (X ,Y )-cut size and let δ(Rmax) be
the unique important cut of size λ such that Rmax is maximal.

(1) We show that Rmax ⊆ R for every important cut δ(R).

By the submodularity of δ:

|δ(Rmax)| + |δ(R)| ≥ |δ(Rmax ∩ R)| + |δ(Rmax ∪ R)|
λ ≥ λ

⇓
|δ(Rmax ∪ R)| ≤ |δ(R)|

⇓
If R 6= Rmax ∪ R , then δ(R) is not important.

Thus the important (X ,Y )- and (Rmax,Y )-cuts are the same.
⇒ We can assume X = Rmax.

8



Important cuts
(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rmax is either in the cut or not.

Y
vu

X = Rmax

Branch 1: If uv ∈ S , then S \ uv is an important (X ,Y )-cut of
size at most k − 1 in G \ uv .

⇒ k decreases by one, λ decreases by at most 1.
Branch 2: If uv 6∈ S , then S is an important
(X ∪ v ,Y )-cut of size at most k in G .

⇒ k remains the same, λ increases by 1.

The measure 2k − λ decreases in each step.
⇒ Height of the search tree ≤ 2k
⇒ ≤ 22k = 4k important cuts of size at most k .

9



Important cuts
(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rmax is either in the cut or not.

Y
vu

X = Rmax

Branch 1: If uv ∈ S , then S \ uv is an important (X ,Y )-cut of
size at most k − 1 in G \ uv .

⇒ k decreases by one, λ decreases by at most 1.

Branch 2: If uv 6∈ S , then S is an important
(X ∪ v ,Y )-cut of size at most k in G .

⇒ k remains the same, λ increases by 1.

The measure 2k − λ decreases in each step.
⇒ Height of the search tree ≤ 2k
⇒ ≤ 22k = 4k important cuts of size at most k .

9



Important cuts
(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rmax is either in the cut or not.

Y
vu

X = Rmax

Branch 1: If uv ∈ S , then S \ uv is an important (X ,Y )-cut of
size at most k − 1 in G \ uv .

⇒ k decreases by one, λ decreases by at most 1.
Branch 2: If uv 6∈ S , then S is an important
(X ∪ v ,Y )-cut of size at most k in G .

⇒ k remains the same, λ increases by 1.

The measure 2k − λ decreases in each step.
⇒ Height of the search tree ≤ 2k
⇒ ≤ 22k = 4k important cuts of size at most k .

9



Important cuts
(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rmax is either in the cut or not.

Y
vu

X = Rmax

Branch 1: If uv ∈ S , then S \ uv is an important (X ,Y )-cut of
size at most k − 1 in G \ uv .

⇒ k decreases by one, λ decreases by at most 1.
Branch 2: If uv 6∈ S , then S is an important
(X ∪ v ,Y )-cut of size at most k in G .

⇒ k remains the same, λ increases by 1.

The measure 2k − λ decreases in each step.
⇒ Height of the search tree ≤ 2k
⇒ ≤ 22k = 4k important cuts of size at most k .

9



Important cuts

Theorem
There are at most 4k important (X ,Y )-cuts of size at most k .

Example: The bound 4k is essentially tight.

Y

X

Any subtree with k leaves gives an important (X ,Y )-cut of size k .
The number of subtrees with k leaves is the Catalan number

Ck−1 =
1
k

(
2k − 2
k − 1

)
≥ 4k/poly(k).

10



Important cuts

Theorem
There are at most 4k important (X ,Y )-cuts of size at most k .

Example: The bound 4k is essentially tight.

X

Y

Any subtree with k leaves gives an important (X ,Y )-cut of size k .

The number of subtrees with k leaves is the Catalan number

Ck−1 =
1
k

(
2k − 2
k − 1

)
≥ 4k/poly(k).

10



Important cuts

Theorem
There are at most 4k important (X ,Y )-cuts of size at most k .

Example: The bound 4k is essentially tight.

Y

X

Any subtree with k leaves gives an important (X ,Y )-cut of size k .

The number of subtrees with k leaves is the Catalan number

Ck−1 =
1
k

(
2k − 2
k − 1

)
≥ 4k/poly(k).

10



Important cuts

Theorem
There are at most 4k important (X ,Y )-cuts of size at most k .

Example: The bound 4k is essentially tight.

Y

X

Any subtree with k leaves gives an important (X ,Y )-cut of size k .
The number of subtrees with k leaves is the Catalan number

Ck−1 =
1
k

(
2k − 2
k − 1

)
≥ 4k/poly(k).

10



Multiway Cut
Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one
vertex of T .

Multiway Cut

Input: Graph G , set T of vertices, inte-
ger k

Find: A multiway cut S of at most k
edges. t4

t5

t4

t3

t2t1

Polynomial for |T | = 2, but NP-hard for any fixed |T | ≥ 3 [Dalhaus
et al. 1994].

11



Multiway Cut
Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one
vertex of T .

Multiway Cut

Input: Graph G , set T of vertices, inte-
ger k

Find: A multiway cut S of at most k
edges. t4

t5

t4

t3

t2t1

Trivial to solve in polynomial time for fixed k (in time nO(k)).

Theorem
Multiway cut can be solved in time 4k · k3 · (|V (G )|+ |E (G )|).

11



Multiway Cut
Intuition: Consider a t ∈ T . A subset of the solution S is a
(t,T \ t)-cut.

t

There are many such cuts.

But a cut farther from t and closer to T \ t seems to be more
useful.

12



Multiway Cut
Intuition: Consider a t ∈ T . A subset of the solution S is a
(t,T \ t)-cut.

t

There are many such cuts.

But a cut farther from t and closer to T \ t seems to be more
useful.

12



Multiway Cut
Intuition: Consider a t ∈ T . A subset of the solution S is a
(t,T \ t)-cut.

t

There are many such cuts.

But a cut farther from t and closer to T \ t seems to be more
useful.

12



Multiway Cut
Intuition: Consider a t ∈ T . A subset of the solution S is a
(t,T \ t)-cut.

t

There are many such cuts.

But a cut farther from t and closer to T \ t seems to be more
useful.

12



Multiway Cut and important cuts

Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a
solution S .

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |
S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a
u-v path in G \ S ′ implies a t-u path, a contradiction.

13



Multiway Cut and important cuts

Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a
solution S .

R

t

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |
S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a
u-v path in G \ S ′ implies a t-u path, a contradiction.

13



Multiway Cut and important cuts

Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a
solution S .

R ′

R

t

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |

S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a
u-v path in G \ S ′ implies a t-u path, a contradiction.

13



Multiway Cut and important cuts

Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a
solution S .

R ′

R

t
u

v

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |
S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a
u-v path in G \ S ′ implies a t-u path, a contradiction. 13



Multiway Cut and important cuts

Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a
solution S .

t
u

vR

R ′

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |
S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a
u-v path in G \ S ′ implies a t-u path, a contradiction. 13



Algorithm for Multiway Cut

1 If every vertex of T is in a different component, then we are
done.

2 Let t ∈ T be a vertex that is not separated from every T \ t.
3 Branch on a choice of an important (t,T \ t) cut S of size at

most k .
4 Set G := G \ S and k := k − |S |.
5 Go to step 1.

We branch into at most 4k directions at most k times: 4k
2 · nO(1)

running time.

Next: Better analysis gives 4k bound on the size of the search tree.

14



Multicut

Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si -ti path
for any i .

Theorem
Multicut can be solved in time f (k , `) · nO(1) (FPT
parameterized by combined parameters k and `).

Proof: The solution partitions {s1, t1, . . . , s`, t`} into components.
Guess this partition, contract the vertices in a class, and solve
Multiway Cut.

Theorem [Bousquet, Daligault, Thomassé 2011] [M., Razgon 2011]

Multicut is FPT parameterized by the size k of the solution.

15



Multicut

Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si -ti path
for any i .

Theorem
Multicut can be solved in time f (k , `) · nO(1) (FPT
parameterized by combined parameters k and `).

Proof: The solution partitions {s1, t1, . . . , s`, t`} into components.
Guess this partition, contract the vertices in a class, and solve
Multiway Cut.

Theorem [Bousquet, Daligault, Thomassé 2011] [M., Razgon 2011]

Multicut is FPT parameterized by the size k of the solution.

15



Directed graphs
Definition: ~δ(R) is the set of edges leaving R .
Observation: Every inclusionwise-minimal directed (X ,Y )-cut S
can be expressed as S = ~δ(R) for some X ⊆ R and R ∩ Y = ∅.
Definition: A minimal (X ,Y )-cut ~δ(R) is important if there is no
(X ,Y )-cut ~δ(R ′) with R ⊂ R ′ and |~δ(R ′)| ≤ |~δ(R)|.

R

~δ(R)

YX

16



Directed graphs
Definition: ~δ(R) is the set of edges leaving R .
Observation: Every inclusionwise-minimal directed (X ,Y )-cut S
can be expressed as S = ~δ(R) for some X ⊆ R and R ∩ Y = ∅.
Definition: A minimal (X ,Y )-cut ~δ(R) is important if there is no
(X ,Y )-cut ~δ(R ′) with R ⊂ R ′ and |~δ(R ′)| ≤ |~δ(R)|.

R ′

~δ(R ′)

R

~δ(R)

YX

16



Directed graphs
Definition: ~δ(R) is the set of edges leaving R .
Observation: Every inclusionwise-minimal directed (X ,Y )-cut S
can be expressed as S = ~δ(R) for some X ⊆ R and R ∩ Y = ∅.
Definition: A minimal (X ,Y )-cut ~δ(R) is important if there is no
(X ,Y )-cut ~δ(R ′) with R ⊂ R ′ and |~δ(R ′)| ≤ |~δ(R)|.
The proof for the undirected case goes through for the directed case:

Theorem
There are at most 4k important directed (X ,Y )-cuts of size at
most k .

16



Directed Multiway Cut
The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Directed counterexample:

s t
a

b

Unique solution with k = 1 edges, but it is not an important cut
(boundary of {s, a}, but the boundary of {s, a, b} has same size).

17



Directed Multiway Cut
The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Directed counterexample:

s t
a

b

Unique solution with k = 1 edges, but it is not an important cut
(boundary of {s, a}, but the boundary of {s, a, b} has same size).

17



Directed Multiway Cut
The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Directed counterexample:

b

a
ts

Unique solution with k = 1 edges, but it is not an important cut
(boundary of {s, a}, but the boundary of {s, a, b} has same size).

17



Directed Multiway Cut
The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Problem in the undirected proof:

v

u
t

R

R ′

Replacing R by R ′ cannot create a t → u path, but can create a
u → t path.

17



Directed Multiway Cut
The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Using additional techniques, one can show:

Theorem [Chitnis, Hajiaghayi, M. 2011]

Directed Multiway Cut is FPT parameterized by the size k of
the solution.

17



Directed Multicut

Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si → ti path
for any i .

Theorem [Pilipczuk and Wahlström 2016]

Directed Multicut with ` = 4 is W[1]-hard.

18



Directed Multicut

Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si → ti path
for any i .

Theorem [Pilipczuk and Wahlström 2016]

Directed Multicut with ` = 4 is W[1]-hard.

But the case ` = 2 can be reduced to Directed Multiway Cut:

t1s1

t2 s2

18



Directed Multicut

Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si → ti path
for any i .

Theorem [Pilipczuk and Wahlström 2016]

Directed Multicut with ` = 4 is W[1]-hard.

But the case ` = 2 can be reduced to Directed Multiway Cut:

x y

s2t2

s1 t1

18



Directed Multicut

Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si → ti path
for any i .

Theorem [Pilipczuk and Wahlström 2016]

Directed Multicut with ` = 4 is W[1]-hard.

But the case ` = 2 can be reduced to Directed Multiway Cut:

x y

s2t2

s1 t1

18



Directed Multicut

Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si → ti path
for any i .

Theorem [Pilipczuk and Wahlström 2016]

Directed Multicut with ` = 4 is W[1]-hard.

Corollary
Directed Multicut with ` = 2 is FPT parameterized by the
size k of the solution.

? Open: Is Directed Multicut with ` = 3 FPT?

18



Skew Multicut

Skew Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of k directed edges such that G \ S con-
tains no si → tj path for any i ≥ j .

t4

t3

t2

t1

s4

s3

s2

s1

19



Skew Multicut

Skew Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of k directed edges such that G \ S con-
tains no si → tj path for any i ≥ j .

t4

t3

t2

t1

s4

s3

s2

s1

Pushing Lemma
Skew Multcut problem has a solution S that contains an
important (s`, {t1, . . . , t`})-cut.

19



Skew Multicut

Skew Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of k directed edges such that G \ S con-
tains no si → tj path for any i ≥ j .

t4

t3

t2

t1

s4

s3

s2

s1

Pushing Lemma
Skew Multcut problem has a solution S that contains an
important (s`, {t1, . . . , t`})-cut.

Theorem [Chen, Liu, Lu, O’Sullivan, Razgon 2008]

Skew Multicut can be solved in time 4k · nO(1). 19



Directed Feedback Vertex Set

Directed Feedback Vertex/Edge Set
Input: Directed graph G , integer k

Find: A set S of k vertices/edges such that G \ S
is acyclic.

Note: Edge and vertex versions are equivalent, we will consider the
edge version here.

Theorem [Chen, Liu, Lu, O’Sullivan, Razgon 2008]

Directed Feedback Edge Set is FPT parameterized by the
size k of the solution.

Solution uses the technique of iterative compression introduced by
[Reed, Smith, Vetta 2004].

20



The compression problem

Directed Feedback Edge Set Compression
Input: Directed graph G , integer k ,

a set W of k + 1 edges such that G \W
is acyclic

Find: A set S of k edges such that G \ S is
acyclic.

Easier than the original problem, as the extra input W gives us
useful structural information about G .

Lemma
The compression problem is FPT parameterized by k .

A useful trick for edge deletion problems: we define the
compression problem in a way that a solution of k + 1 vertices are
given and we have to find a solution of k edges.

21



The compression problem

Directed Feedback Edge Set Compression
Input: Directed graph G , integer k ,

a setW of k + 1 vertices such that G \W
is acyclic

Find: A set S of k edges such that G \ S is
acyclic.

Easier than the original problem, as the extra input W gives us
useful structural information about G .

Lemma
The compression problem is FPT parameterized by k .

A useful trick for edge deletion problems: we define the
compression problem in a way that a solution of k + 1 vertices are
given and we have to find a solution of k edges.

21



The compression problem
Proof: Let W = {w1, . . . ,wk+1}
Let us split each wi into an edge −→ti si .

t4s1t1 s2t2 s3t3 s4
By guessing the order of {w1, . . . ,wk+1} in the acyclic
ordering of G \ S , we can assume that w1 < w2 < · · · < wk+1
in G \ S [(k + 1)! possibilities].

⇒ We can solve the compression problem by (k + 1)! applications
of Skew Multicut.

22



The compression problem
Proof: Let W = {w1, . . . ,wk+1}
Let us split each wi into an edge −→ti si .

t4s1t1 s2t2 s3t3 s4
Claim:

G \ S is acyclic and has an ordering with w1 < w2 < · · · < wk+1
⇓

S covers every si → tj path for every i ≥ j
⇓

G \ S is acyclic

⇒ We can solve the compression problem by (k + 1)! applications
of Skew Multicut.

22



The compression problem
Proof: Let W = {w1, . . . ,wk+1}
Let us split each wi into an edge −→ti si .

s4t3 s3t2 s2t1 s1 t4
Claim:

G \ S is acyclic and has an ordering with w1 < w2 < · · · < wk+1
⇓

S covers every si → tj path for every i ≥ j
⇓

G \ S is acyclic

⇒ We can solve the compression problem by (k + 1)! applications
of Skew Multicut.

22



The compression problem
Proof: Let W = {w1, . . . ,wk+1}
Let us split each wi into an edge −→ti si .

s4t3 s3t2 s2t1 s1 t4
Claim:

G \ S is acyclic and has an ordering with w1 < w2 < · · · < wk+1
⇓

S covers every si → tj path for every i ≥ j
⇓

G \ S is acyclic

⇒ We can solve the compression problem by (k + 1)! applications
of Skew Multicut. 22



Iterative compression
We have given a f (k)nO(1) algorithm for the following problem:

Directed Feedback Edge Set Compression
Input: Directed graph G , integer k ,

a set W of k + 1 vertices such that G \W
is acyclic

Find: A set S of k edges such that G \ S is
acyclic.

Nice, but how do we get a solution W of size k + 1?

We get it for free!
Powerful technique: iterative compression (introduced by [Reed,
Smith, Vetta 2004] for Bipartite Deletion).

23



Iterative compression
We have given a f (k)nO(1) algorithm for the following problem:

Directed Feedback Edge Set Compression
Input: Directed graph G , integer k ,

a set W of k + 1 vertices such that G \W
is acyclic

Find: A set S of k edges such that G \ S is
acyclic.

Nice, but how do we get a solution W of size k + 1?

We get it for free!
Powerful technique: iterative compression (introduced by [Reed,
Smith, Vetta 2004] for Bipartite Deletion).

23



Iterative compression
Let v1, . . . , vn be the edges of G and let Gi be the subgraph
induced by {v1, . . . , vi}.

For every i = 1, . . . , n, we find a set Si of at most k edges such
that Gi \ Si is acyclic.

For i = 1, we have the trivial solution Si = ∅.
Suppose we have a solution Si for Gi . Let Wi contain the head
of each edge in Si . Then Wi ∪ {vi+1} is a set of at most k + 1
vertices whose removal makes Gi+1 acyclic.
Use the compression algorithm for Gi+1 with the set
Wi ∪ {vi+1}.

If there is no solution of size k for Gi+1, then we can stop.
Otherwise the compression algorithm gives a solution Si+1 of
size k for Gi+1.

We call the compression algorithm n times, everything else is
polynomial.
⇒ Directed Feedback Edge Set is FPT.

24



Iterative compression
Let v1, . . . , vn be the edges of G and let Gi be the subgraph
induced by {v1, . . . , vi}.

For every i = 1, . . . , n, we find a set Si of at most k edges such
that Gi \ Si is acyclic.

For i = 1, we have the trivial solution Si = ∅.
Suppose we have a solution Si for Gi . Let Wi contain the head
of each edge in Si . Then Wi ∪ {vi+1} is a set of at most k + 1
vertices whose removal makes Gi+1 acyclic.
Use the compression algorithm for Gi+1 with the set
Wi ∪ {vi+1}.

If there is no solution of size k for Gi+1, then we can stop.
Otherwise the compression algorithm gives a solution Si+1 of
size k for Gi+1.

We call the compression algorithm n times, everything else is
polynomial.
⇒ Directed Feedback Edge Set is FPT.

24



Summary

Definition of important cuts.
Combinatorial bound on the number of important cuts.
Pushing argument: we can assume that the solution contains
an important cut. Solves Multiway Cut, Skew
Multiway Cut.
Iterative compression reduces Directed Feedback
Vertex Set to Skew Multiway Cut.

25



Advertisement
Postdoc positions available in parameterized
algorithms and complexity!

Institute for Computer Science and Control
Hungarian Academy of Sciences
Budapest, Hungary

26


