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Overview

Main message
Small separators in graphs have interesting extremal properties that
can be exploited in combinatorial and algorithmic results.

Bounding the number of “important” cuts.
Edge/vertex versions, directed/undirected versions.
Algorithmic applications: FPT algorithm for

Multiway cut
Directed Feedback Vertex Set
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Minimum cuts
Definition: δ(R) is the set of edges with exactly one endpoint in R .
Definition: A set S of edges is a minimal (X ,Y )-cut if there is no
X −Y path in G \ S and no proper subset of S breaks every X −Y
path.
Observation: Every minimal (X ,Y )-cut S can be expressed as S =
δ(R) for some X ⊆ R and R ∩ Y = ∅.
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Minimum cuts

Theorem
A minimum (X ,Y )-cut can be found in polynomial time.

Theorem
The size of a minimum (X ,Y )-cut equals the maximum size of a
pairwise edge-disjoint collection of X − Y paths.
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Submodularity
Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|

Proof: Determine separately the contribution of the different types
of edges.
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Submodularity

Lemma
Let λ be the minimum (X ,Y )-cut size. There is a unique maximal
Rmax ⊇ X such that δ(Rmax) is an (X ,Y )-cut of size λ.

Proof: Let R1,R2 ⊇ X be two sets such that δ(R1), δ(R2) are
(X ,Y )-cuts of size λ.

|δ(R1)| + |δ(R2)| ≥ |δ(R1 ∩ R2)| + |δ(R1 ∪ R2)|
λ λ ≥ λ

⇒ |δ(R1 ∪ R2)| ≤ λ
R2R1

Y

X

Note: Analogous result holds for a unique minimal Rmin.
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Important cuts
Definition: δ(R) is the set of edges with exactly one endpoint in R .
Definition: A set S of edges is a minimal (X ,Y )-cut if there is no
X −Y path in G \ S and no proper subset of S breaks every X −Y
path.
Observation: Every minimal (X ,Y )-cut S can be expressed as S =
δ(R) for some X ⊆ R and R ∩ Y = ∅.
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Important cuts

Definition
A minimal (X ,Y )-cut δ(R) is important if there is no (X ,Y )-cut
δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a cut is important
(δ(R) is important if R = Rmax).
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Important cuts

Definition
A minimal (X ,Y )-cut δ(R) is important if there is no (X ,Y )-cut
δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a cut is important
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Important cuts

Definition
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Important cuts
The number of important cuts can be exponentially large.

Example:

X

Y

1 2 k/2

This graph has 2k/2 important (X ,Y )-cuts of size at most k .

Theorem
There are at most 4k important (X ,Y )-cuts of size at most k .
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Important cuts

Theorem
There are at most 4k important (X ,Y )-cuts of size at most k .

Proof: Let λ be the minimum (X ,Y )-cut size and let δ(Rmax) be
the unique important cut of size λ such that Rmax is maximal.

(1) We show that Rmax ⊆ R for every important cut δ(R).

By the submodularity of δ:

|δ(Rmax)| + |δ(R)| ≥ |δ(Rmax ∩ R)| + |δ(Rmax ∪ R)|
λ ≥ λ

⇓
|δ(Rmax ∪ R)| ≤ |δ(R)|

⇓
If R 6= Rmax ∪ R , then δ(R) is not important.

Thus the important (X ,Y )- and (Rmax,Y )-cuts are the same.
⇒ We can assume X = Rmax.

8



Important cuts

Theorem
There are at most 4k important (X ,Y )-cuts of size at most k .

Proof: Let λ be the minimum (X ,Y )-cut size and let δ(Rmax) be
the unique important cut of size λ such that Rmax is maximal.

(1) We show that Rmax ⊆ R for every important cut δ(R).

By the submodularity of δ:

|δ(Rmax)| + |δ(R)| ≥ |δ(Rmax ∩ R)| + |δ(Rmax ∪ R)|
λ ≥ λ

⇓
|δ(Rmax ∪ R)| ≤ |δ(R)|

⇓
If R 6= Rmax ∪ R , then δ(R) is not important.

Thus the important (X ,Y )- and (Rmax,Y )-cuts are the same.
⇒ We can assume X = Rmax.

8



Important cuts

Theorem
There are at most 4k important (X ,Y )-cuts of size at most k .

Proof: Let λ be the minimum (X ,Y )-cut size and let δ(Rmax) be
the unique important cut of size λ such that Rmax is maximal.

(1) We show that Rmax ⊆ R for every important cut δ(R).

By the submodularity of δ:

|δ(Rmax)| + |δ(R)| ≥ |δ(Rmax ∩ R)| + |δ(Rmax ∪ R)|
λ ≥ λ

⇓
|δ(Rmax ∪ R)| ≤ |δ(R)|

⇓
If R 6= Rmax ∪ R , then δ(R) is not important.

Thus the important (X ,Y )- and (Rmax,Y )-cuts are the same.
⇒ We can assume X = Rmax.

8



Important cuts
(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rmax is either in the cut or not.

Y
vu

X = Rmax

Branch 1: If uv ∈ S , then S \ uv is an important (X ,Y )-cut of
size at most k − 1 in G \ uv .

⇒ k decreases by one, λ decreases by at most 1.
Branch 2: If uv 6∈ S , then S is an important
(X ∪ v ,Y )-cut of size at most k in G .

⇒ k remains the same, λ increases by 1.

The measure 2k − λ decreases in each step.
⇒ Height of the search tree ≤ 2k
⇒ ≤ 22k = 4k important cuts of size at most k .
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Important cuts

Theorem
There are at most 4k important (X ,Y )-cuts of size at most k .

Example: The bound 4k is essentially tight.

Y

X

Any subtree with k leaves gives an important (X ,Y )-cut of size k .
The number of subtrees with k leaves is the Catalan number

Ck−1 =
1
k

(
2k − 2
k − 1

)
≥ 4k/poly(k).
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Multiway Cut
Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one
vertex of T .

Multiway Cut

Input: Graph G , set T of vertices, inte-
ger k

Find: A multiway cut S of at most k
edges. t4

t5

t4

t3

t2t1

Polynomial for |T | = 2, but NP-hard for any fixed |T | ≥ 3 [Dalhaus
et al. 1994].
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Multiway Cut
Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one
vertex of T .

Multiway Cut

Input: Graph G , set T of vertices, inte-
ger k

Find: A multiway cut S of at most k
edges. t4

t5

t4

t3

t2t1

Trivial to solve in polynomial time for fixed k (in time nO(k)).

Theorem
Multiway cut can be solved in time 4k · k3 · (|V (G )|+ |E (G )|).
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Multiway Cut
Intuition: Consider a t ∈ T . A subset of the solution S is a
(t,T \ t)-cut.

t

There are many such cuts.

But a cut farther from t and closer to T \ t seems to be more
useful.
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Multiway Cut and important cuts

Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a
solution S .

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |
S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a
u-v path in G \ S ′ implies a t-u path, a contradiction.
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Algorithm for Multiway Cut

1 If every vertex of T is in a different component, then we are
done.

2 Let t ∈ T be a vertex that is not separated from every T \ t.
3 Branch on a choice of an important (t,T \ t) cut S of size at

most k .
4 Set G := G \ S and k := k − |S |.
5 Go to step 1.

We branch into at most 4k directions at most k times: 4k
2 · nO(1)

running time.

Next: Better analysis gives 4k bound on the size of the search tree.
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Multicut

Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si -ti path
for any i .

Theorem
Multicut can be solved in time f (k , `) · nO(1) (FPT
parameterized by combined parameters k and `).

Proof: The solution partitions {s1, t1, . . . , s`, t`} into components.
Guess this partition, contract the vertices in a class, and solve
Multiway Cut.

Theorem [Bousquet, Daligault, Thomassé 2011] [M., Razgon 2011]

Multicut is FPT parameterized by the size k of the solution.
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Directed graphs
Definition: ~δ(R) is the set of edges leaving R .
Observation: Every inclusionwise-minimal directed (X ,Y )-cut S
can be expressed as S = ~δ(R) for some X ⊆ R and R ∩ Y = ∅.
Definition: A minimal (X ,Y )-cut ~δ(R) is important if there is no
(X ,Y )-cut ~δ(R ′) with R ⊂ R ′ and |~δ(R ′)| ≤ |~δ(R)|.

R

~δ(R)

YX
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Directed graphs
Definition: ~δ(R) is the set of edges leaving R .
Observation: Every inclusionwise-minimal directed (X ,Y )-cut S
can be expressed as S = ~δ(R) for some X ⊆ R and R ∩ Y = ∅.
Definition: A minimal (X ,Y )-cut ~δ(R) is important if there is no
(X ,Y )-cut ~δ(R ′) with R ⊂ R ′ and |~δ(R ′)| ≤ |~δ(R)|.
The proof for the undirected case goes through for the directed case:

Theorem
There are at most 4k important directed (X ,Y )-cuts of size at
most k .
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Directed Multiway Cut
The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Directed counterexample:

s t
a

b

Unique solution with k = 1 edges, but it is not an important cut
(boundary of {s, a}, but the boundary of {s, a, b} has same size).
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Directed Multiway Cut
The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Problem in the undirected proof:

v

u
t

R

R ′

Replacing R by R ′ cannot create a t → u path, but can create a
u → t path.
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Directed Multiway Cut
The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Using additional techniques, one can show:

Theorem [Chitnis, Hajiaghayi, M. 2011]

Directed Multiway Cut is FPT parameterized by the size k of
the solution.
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Directed Multicut

Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si → ti path
for any i .

Theorem [Pilipczuk and Wahlström 2016]

Directed Multicut with ` = 4 is W[1]-hard.
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Directed Multicut

Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si → ti path
for any i .

Theorem [Pilipczuk and Wahlström 2016]

Directed Multicut with ` = 4 is W[1]-hard.

Corollary
Directed Multicut with ` = 2 is FPT parameterized by the
size k of the solution.

? Open: Is Directed Multicut with ` = 3 FPT?
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Skew Multicut

Skew Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of k directed edges such that G \ S con-
tains no si → tj path for any i ≥ j .

t4

t3

t2

t1

s4

s3

s2

s1
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Skew Multicut

Skew Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of k directed edges such that G \ S con-
tains no si → tj path for any i ≥ j .

t4

t3

t2

t1

s4

s3

s2

s1

Pushing Lemma
Skew Multcut problem has a solution S that contains an
important (s`, {t1, . . . , t`})-cut.
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Skew Multicut

Skew Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of k directed edges such that G \ S con-
tains no si → tj path for any i ≥ j .

t4

t3

t2

t1

s4

s3

s2

s1

Pushing Lemma
Skew Multcut problem has a solution S that contains an
important (s`, {t1, . . . , t`})-cut.

Theorem [Chen, Liu, Lu, O’Sullivan, Razgon 2008]

Skew Multicut can be solved in time 4k · nO(1). 19



Directed Feedback Vertex Set

Directed Feedback Vertex/Edge Set
Input: Directed graph G , integer k

Find: A set S of k vertices/edges such that G \ S
is acyclic.

Note: Edge and vertex versions are equivalent, we will consider the
edge version here.

Theorem [Chen, Liu, Lu, O’Sullivan, Razgon 2008]

Directed Feedback Edge Set is FPT parameterized by the
size k of the solution.

Solution uses the technique of iterative compression introduced by
[Reed, Smith, Vetta 2004].
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The compression problem

Directed Feedback Edge Set Compression
Input: Directed graph G , integer k ,

a set W of k + 1 edges such that G \W
is acyclic

Find: A set S of k edges such that G \ S is
acyclic.

Easier than the original problem, as the extra input W gives us
useful structural information about G .

Lemma
The compression problem is FPT parameterized by k .

A useful trick for edge deletion problems: we define the
compression problem in a way that a solution of k + 1 vertices are
given and we have to find a solution of k edges.
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The compression problem
Proof: Let W = {w1, . . . ,wk+1}
Let us split each wi into an edge −→ti si .

t4s1t1 s2t2 s3t3 s4
By guessing the order of {w1, . . . ,wk+1} in the acyclic
ordering of G \ S , we can assume that w1 < w2 < · · · < wk+1
in G \ S [(k + 1)! possibilities].

⇒ We can solve the compression problem by (k + 1)! applications
of Skew Multicut.
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⇓

S covers every si → tj path for every i ≥ j
⇓
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Iterative compression
We have given a f (k)nO(1) algorithm for the following problem:

Directed Feedback Edge Set Compression
Input: Directed graph G , integer k ,

a set W of k + 1 vertices such that G \W
is acyclic

Find: A set S of k edges such that G \ S is
acyclic.

Nice, but how do we get a solution W of size k + 1?

We get it for free!
Powerful technique: iterative compression (introduced by [Reed,
Smith, Vetta 2004] for Bipartite Deletion).
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Iterative compression
Let v1, . . . , vn be the edges of G and let Gi be the subgraph
induced by {v1, . . . , vi}.

For every i = 1, . . . , n, we find a set Si of at most k edges such
that Gi \ Si is acyclic.

For i = 1, we have the trivial solution Si = ∅.
Suppose we have a solution Si for Gi . Let Wi contain the head
of each edge in Si . Then Wi ∪ {vi+1} is a set of at most k + 1
vertices whose removal makes Gi+1 acyclic.
Use the compression algorithm for Gi+1 with the set
Wi ∪ {vi+1}.

If there is no solution of size k for Gi+1, then we can stop.
Otherwise the compression algorithm gives a solution Si+1 of
size k for Gi+1.

We call the compression algorithm n times, everything else is
polynomial.
⇒ Directed Feedback Edge Set is FPT.
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Summary

Definition of important cuts.
Combinatorial bound on the number of important cuts.
Pushing argument: we can assume that the solution contains
an important cut. Solves Multiway Cut, Skew
Multiway Cut.
Iterative compression reduces Directed Feedback
Vertex Set to Skew Multiway Cut.
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