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Outline

Goals of this talk:

1 A brief introduction to the world of parameterized algorithms.
Specific techniques (randomization, treewidth, kernelization,
etc.) in later talks.

2 Overview of parameterized complexity and W[1]-hardness.
More complexity results based on ETH and SETH in later
talks.
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Parameterized problems

Main idea
Instead of expressing the running time as a function T (n) of n, we
express it as a function T (n, k) of the input size n and some
parameter k of the input.

In other words: we do not want to be efficient on all inputs of size
n, only for those where k is small.

What can be the parameter k?
The size k of the solution we are looking for.
The maximum degree of the input graph.
The dimension of the point set in the input.
The length of the strings in the input.
The length of clauses in the input Boolean formula.
. . .
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Parameterized complexity

Problem: Vertex Cover Independent Set
Input: Graph G , integer k Graph G , integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

Brute force: O(nk) possibilities O(nk) possibilities

O(2kn2) algorithm No no(k) algorithm
exists known
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Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1
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Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

e2 = u2v2

u2 v2
≤ k

Height of the search tree ≤ k ⇒ at most 2k leaves ⇒ 2k · nO(1)

time algorithm.
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Fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT) if
there is an f (k)nc time algorithm for some constant c .

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size k .
Finding a path of length k .
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.
Finding disjoint paths that connect k pairs of points.
. . .
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FPT techniques

Treewidth

Color coding

Iterative compression

Kernelization

Algebraic techniques

Bounded-depth search trees
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W[1]-hardness

Negative evidence similar to NP-completeness. If a problem is
W[1]-hard, then the problem is not FPT unless FPT=W[1].

Some W[1]-hard problems:
Finding a clique/independent set of size k .
Finding a dominating set of size k .
Finding k pairwise disjoint sets.
. . .
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Parameterized complexity

Rod G. Downey
Michael R. Fellows

Parameterized
Complexity

Springer 1999

The study of parameterized complexity was initiated by
Downey and Fellows in the early 90s.
First monograph in 1999.
By now, strong presence in most algorithmic conferences.
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Parameterized Algorithms

Marek Cygan, Fedor V. Fomin,
Lukasz Kowalik, Daniel Lokshtanov,
Dániel Marx, Marcin Pilipczuk,
Michał Pilipczuk, Saket Saurabh

Springer 2015
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Shift of focus

FPT or W[1]-hard?

qu
al
ita

tiv
e

qu
es
tio

n

11



Shift of focus

FPT or W[1]-hard?

What is the best possible
multiplier f (k) in the
running time f (k) · nO(1)?

What is the best possible
exponent g(k) in the
running time f (k) · ng(k)?

FPT
W[1]-hard
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2k? 1.0001k? 2
√
k? nO(k)? nlog k? nlog log k?
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Single-exponential running time

The following problems can be solved in time 2O(k) · nO(1), but
(assuming ETH) cannot be solved in time 2o(k) · nO(1):

Vertex Cover

Longest Cycle

Feedback Vertex Set

Multiway Cut

Odd Cycle Transversal

Steiner Tree

. . .

Seems to be the natural behavior of FPT problems?
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The race for better FPT algorithms

Single exponential Subexponential

Double
exponential

"Slightly super-
exponential"

Tower of
exponentials
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Graph Minors Theory

Neil Robertson Paul Seymour

Theory of graph minors devel-
oped in the monumental series

Graph Minors I–XXIII.
J. Combin. Theory, Ser. B
1983–2012

Structure theory of graphs excluding
minors (and much more).
Galactic combinatorial bounds and
running times.
Important early influence for
parameterized algorithms. [figure by Felix Reidl]
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Disjoint paths

k-Disjoint Paths
Given a graph G and pairs of vertices (s1, t1), . . . , (sk , tk),
find pairwise vertex-disjoint paths P1, . . . , Pk such that Pi

connects si and ti .

s1 s2 s3 s4

t1 t2 t3 t4
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Disjoint paths

k-Disjoint Paths
Given a graph G and pairs of vertices (s1, t1), . . . , (sk , tk),
find pairwise vertex-disjoint paths P1, . . . , Pk such that Pi

connects si and ti .

NP-hard, but FPT parameterized by k : can be solved in time
f (k)n3 for some horrible function f (k) [Robertson and Seymour].
More “efficient” algorithm where f (k) is only quadruple
exponential [Kawarabayashi and Wollan 2010].
The Polynomial Excluded Grid Theorem improves this to triple
exponential [Chekuri and Chuzhoy 2014].
Double-exponential is possible on planar graphs
[Adler et al. 2011].

Open: can we have a 2k
O(1) · nO(1) time algorithm?

15



Edge Clique Cover

Edge Clique Cover: Given a graph G and an integer k , cover
the edges of G with at most k cliques.

(the cliques need not be edge disjoint)

Equivalently: can G be represented as an intersection graph over a
k element universe?
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Edge Clique Cover

Edge Clique Cover: Given a graph G and an integer k , cover
the edges of G with at most k cliques.

(the cliques need not be edge disjoint)

Can be solved in time 22O(k) · nO(1) — double exponential
dependence on k .
Assuming ETH, double-exponential dependence on k cannot
be avoided [Cygan, Pilipczuk, Pilipczuk 2013].
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Slightly superexponential algorithms

Running time of the form 2O(k log k) · nO(1) appear naturally in
parameterized algorithms usually because of one of two reasons:

1 Branching into k directions at most k times explores a search
tree of size kk = 2O(k log k).

2 Trying k! = 2O(k log k) permutations of k elements (or
partitions, matchings, . . .)

Can we avoid these steps and obtain 2O(k) · nO(1) time algorithms?
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Slightly superexponential algorithms
The improvement to 2O(k) often required significant new ideas:

k-Path:

2O(k log k) · nO(1) using representative sets [Monien 1985]
⇓

2O(k) · nO(1) using color coding [Alon, Yuster, Zwick 1995]

Feedback Vertex Set:

2O(k log k) · nO(1) using k-way branching [Downey and Fellows 1995]
⇓

2O(k) · nO(1) using iterative compression [Guo et al. 2005]

Planar Subgraph Isomorphism:

2O(k log k) · nO(1) using tree decompositions [Eppstein et al. 1995]
⇓

2O(k) · nO(1) using sphere cut decompositions [Dorn 2010]
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The race for better FPT algorithms

Single exponential Subexponential

Double
exponential

"Slightly super-
exponential"

Tower of
exponentials
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Subexponential parameterized algorithms
There are two main domains where subexponential parameterized
algorithms appear:

1 Some graph modification problems:
Chordal Completion [Fomin and Villanger 2013]
Interval Completion [Bliznets et al. 2016]
Unit Interval Completion [Bliznets et al. 2015]
Feedback Arc Set in Tournaments [Alon et al. 2009]

2 “Square root phenomenon” for planar graphs and geometric
objects: most NP-hard problems are easier and usually exactly
by a square root factor.

Planar graphs Geometric objects
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Chordal Completion

Definition: A graph is chordal if it does not contain an induced
cycle of length greater than 3.

Chordal Completion: Given a graph G and an integer k , add
at most k edges to G to make it a chordal graph.

Lemma: At least k−3 edges are needed to make a k-cycle chordal.
Proof: By induction. k = 3 is trivial.

21
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Chordal Completion

Definition: A graph is chordal if it does not contain an induced
cycle of length greater than 3.

Chordal Completion: Given a graph G and an integer k , add
at most k edges to G to make it a chordal graph.

Lemma: At least k−3 edges are needed to make a k-cycle chordal.
Proof: By induction. k = 3 is trivial.

Ck
Ck−x+2

Cx
Cx : x − 3 edges
Ck−x+2: k − x − 1 edges
Ck : (x−3)+(k−x−1)+1 = k−3
edges
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Chordal Completion

Algorithm:
Find an induced cycle C of length ≥ 4 (can be done in
polynomial time).
If no such cycle exists ⇒ Done!
If C has more than k + 3 vertices ⇒ No solution!
Otherwise, one of the(

|C |
2

)
− |C | ≤ (k + 3)(k + 2)/2− k = O(k2)

missing edges has to be added ⇒ Branch!
Size of the search tree is kO(k).
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Chordal Completion – more efficiently
Definition: Triangulation of a cycle.

Ck

Lemma: Every chordal supergraph of a cycle C contains a
triangulation of the cycle C .

Lemma: The number of ways a cycle of length k can be
triangulated is exactly the (k − 2)-nd Catalan number

Ck−2 =
1

k − 1

(
2(k − 2)
k − 2

)
≤ 4k−3.
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Chordal Completion – more efficiently

Algorithm:
Find an induced cycle C of length at least 4 (can be done in
polynomial time).
If no such cycle exists ⇒ Done!
If C has more than k + 3 vertices ⇒ No solution!
Otherwise, one of the ≤ 4|C |−3 triangulations has to be in the
solution ⇒ Branch!

Claim: Search tree has at most Tk = 4k leaves.
Proof: By induction. Number of leaves is at most

Tk ≤ 4|C |−3 · Tk−(|C |−3) ≤ 4|C |−3 · 4k−(|C |−3) = 4k .
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Subexpoential algorithms on planar graphs

Most NP-hard problems (e.g., 3-Coloring, Independent Set,
Hamiltonian Cycle, Steiner Tree, etc.) remain NP-hard on
planar graphs,1 so what do we mean by “easier”?

The running time is still exponential, but significantly smaller:

2O(n) ⇒ 2O(
√
n)

nO(k) ⇒ nO(
√
k)

2O(k) · nO(1) ⇒ 2O(
√
k) · nO(1)

1Notable exception: Max Cut is in P for planar graphs.
25



Subexpoential algorithms on planar graphs

Most NP-hard problems (e.g., 3-Coloring, Independent Set,
Hamiltonian Cycle, Steiner Tree, etc.) remain NP-hard on
planar graphs,1 so what do we mean by “easier”?

The running time is still exponential, but significantly smaller:

2O(n) ⇒ 2O(
√
n)

nO(k) ⇒ nO(
√
k)

2O(k) · nO(1) ⇒ 2O(
√
k) · nO(1)

1Notable exception: Max Cut is in P for planar graphs.
25



Subexpoential algorithms on planar graphs

The following problems can be solved in time 2O(
√
k·polylogk) · nO(1)

on planar graphs:

Vertex Cover

k-Path

Independent Set

Dominating Set

Feedback Vertex Set

Subset TSP

Subgraph Isomorphism for bounded degree connected
patterns.
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Subexpoential algorithms on planar graphs

The following problems can be solved in time nO(k) on general
graphs, which can be improved to f (k)nO(

√
k) on planar graphs:

Distance-d Independent Set on planar graphs
Distance-d Dominating Set on planar graphs
Strongly Connected Steiner Subgraph on directed
planar graphs
Independent Set for unit disks in the plane
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Multiway Cut

k-Terminal Cut (aka Multiway Cut)

Input: A graph G , an integer p, and a set T of k terminals
Output: A set S of at most p edges such that removing S sep-

arates any two vertices of T

Theorem
NP-hard already for k = 3.

28



Multiway Cut

k-Terminal Cut (aka Multiway Cut)

Input: A graph G , an integer p, and a set T of k terminals
Output: A set S of at most p edges such that removing S sep-

arates any two vertices of T

Theorem

Planar k-Terminal Cut can be solved in time 2O(k) · nO(
√
k).

28



Lower bounds
So far we have seen positive results: basic algorithmic techniques
for fixed-parameter tractability.

What kind of negative results we have?
Can we show that a problem (e.g., Clique) is not FPT?
Can we show that a problem (e.g., Vertex Cover) has no
algorithm with running time, say, 2o(k) · nO(1)?

This would require showing that P 6= NP: if P = NP, then, e.g.,
k-Clique is polynomial-time solvable, hence FPT.

Can we give some evidence for negative results?

29
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Classical complexity
Nondeterministic Turing Machine (NTM): single tape, finite
alphabet, finite state, head can move left/right only one cell. In
each step, the machine can branch into an arbitrary number of
directions. Run is successful if at least one branch is successful.

NP: The class of all languages that can be recognized by a
polynomial-time NTM.

Polynomial-time reduction from problem P to problem Q: a
function φ with the following properties:

φ(x) can be computed in time |x |O(1),
φ(x) is a yes-instance of Q if and only if x is a yes-instance of
P .

Definition: Problem Q is NP-hard if any problem in NP can be
reduced to Q.

If an NP-hard problem can be solved in polynomial time, then every
problem in NP can be solved in polynomial time (i.e., P = NP).
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Parameterized complexity
To build a complexity theory for parameterized problems, we need
two concepts:

An appropriate notion of reduction.
An appropriate hypothesis.

Polynomial-time reductions are not good for our purposes.

Example: Graph G has an independent set k if and only if it has a
vertex cover of size n − k .

⇒ Transforming an Independent Set instance (G , k) into a
Vertex Cover instance (G , n − k) is a correct polynomial-time
reduction.

However, Vertex Cover is FPT, but Independent Set is not
known to be FPT.
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Parameterized reduction

Definition
Parameterized reduction from problem P to problem Q: a
function φ with the following properties:

φ(x) can be computed in time f (k) · |x |O(1), where k is the
parameter of x ,
φ(x) is a yes-instance of Q ⇐⇒ x is a yes-instance of P .
If k is the parameter of x and k ′ is the parameter of φ(x),
then k ′ ≤ g(k) for some function g .

Fact: If there is a parameterized reduction from problem P to
problem Q and Q is FPT, then P is also FPT.

Non-example: Transforming an Independent Set instance
(G , k) into a Vertex Cover instance (G , n − k) is not a
parameterized reduction.

Example: Transforming an Independent Set instance (G , k)
into a Clique instance (G , k) is a parameterized reduction.
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Multicolored Clique
A useful variant of Clique:

Multicolored Clique: The vertices of the input graph G are
colored with k colors and we have to find a clique containing one
vertex from each color.

(or Partitioned Clique)

V1 V2 . . . Vk

Theorem
There is a parameterized reduction from Clique to
Multicolored Clique.

Create G ′ by replacing each vertex v with k vertices, one in each
color class. If u and v are adjacent in the original graph, connect
all copies of u with all copies of v .

G G ′

V1 V2 . . . Vk

v
u u1, . . . , uk

v1, . . . , vk

k-clique in G ⇐⇒ multicolored k-clique in G ′.

Similarly: reduction to Multicolored Independent Set.
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Dominating Set

Theorem
There is a parameterized reduction from Multicolored
Independent Set to Dominating Set.

Proof: Let G be a graph with color classes V1, . . . , Vk . We
construct a graph H such that G has a multicolored k-clique iff H
has a dominating set of size k .

V1

x1 y1 x2 y2 xk yk

u

v
V2 Vk

The dominating set has to contain one vertex from each of the
k cliques V1, . . . , Vk to dominate every xi and yi .

For every edge e = uv , an additional vertex we ensures that
these selections describe an independent set.

34



Dominating Set

Theorem
There is a parameterized reduction from Multicolored
Independent Set to Dominating Set.

Proof: Let G be a graph with color classes V1, . . . , Vk . We
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V1

x1 y1 x2 y2 xk yk

u

v
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V2 Vk

The dominating set has to contain one vertex from each of the
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For every edge e = uv , an additional vertex we ensures that
these selections describe an independent set. 34



Variants of Dominating Set

Dominating Set: Given a graph, find k vertices that
dominate every vertex.
Red-Blue Dominating Set: Given a bipartite graph, find
k vertices on the red side that dominate the blue side.
Set Cover: Given a set system, find k sets whose union
covers the universe.
Hitting Set: Given a set system, find k elements that
intersect every set in the system.

All of these problems are equivalent under parameterized
reductions, hence at least as hard as Clique.
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Hard problems
Hundreds of parameterized problems are known to be at least as
hard as Clique:

Independent Set

Set Cover

Hitting Set

Connected Dominating Set

Independent Dominating Set

Partial Vertex Cover parameterized by k

Dominating Set in bipartite graphs
. . .

We believe that none of these problems are FPT.
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Basic hypotheses
It seems that parameterized complexity theory cannot be built on
assuming P 6= NP – we have to assume something stronger.

Let us choose a basic hypothesis:

Engineers’ Hypothesis

k-Clique cannot be solved in time f (k) · nO(1).

Theorists’ Hypothesis
k-Step Halting Problem (is there a path of the given NTM
that stops in k steps?) cannot be solved in time f (k) · nO(1).

Exponential Time Hypothesis (ETH)

n-variable 3SAT cannot be solved in time 2o(n).

Which hypothesis is the most plausible?
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Summary of complexity

Independent Set and k-Step Halting Problem can be
reduced to each other ⇒ Engineers’ Hypothesis and Theorists’
Hypothesis are equivalent!
Independent Set and k-Step Halting Problem can be
reduced to Dominating Set.

Is there a parameterized reduction from Dominating Set to
Independent Set?
Probably not. Unlike in NP-completeness, where most
problems are equivalent, here we have a hierarchy of hard
problems.

Independent Set is W[1]-complete.
Dominating Set is W[2]-complete.

Does not matter if we only care about whether a problem is
FPT or not!
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FPT or not!
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Boolean circuit
A Boolean circuit consists of input gates, negation gates, AND
gates, OR gates, and a single output gate.

x1 x7x6x4x3x2

Circuit Satisfiability: Given a Boolean circuit C , decide if
there is an assignment on the inputs of C making the output true.

Weight of an assignment: number of true values.

Weighted Circuit Satisfiability: Given a Boolean circuit
C and an integer k , decide if there is an assignment of weight k
making the output true.
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Weighted Circuit Satisfiability
Independent Set can be reduced to Weighted Circuit
Satisfiability:

x1 x7x6x4x3x2

Dominating Set can be reduced to Weighted Circuit
Satisfiability:

x1 x7x6x4x3x2

To express Dominating Set, we need more complicated circuits.
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Depth and weft
The depth of a circuit is the maximum length of a path from an
input to the output.
A gate is large if it has more than 2 inputs. The weft of a circuit is
the maximum number of large gates on a path from an input to the
output.

Independent Set: weft 1, depth 3
x2 x3 x4 x6 x7x1

Dominating Set: weft 2, depth 2
x1 x7x6x4x3x2
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The W-hierarchy
Let C [t, d ] be the set of all circuits having weft at most t and
depth at most d .

Definition
A problem P is in the class W[t] if there is a constant d and a
parameterized reduction from P to Weighted Circuit
Satisfiability of C [t, d ].

We have seen that Independent Set is in W[1] and
Dominating Set is in W[2].

Fact: Independent Set is W[1]-complete.
Fact: Dominating Set is W[2]-complete.

If any W[1]-complete problem is FPT, then FPT = W[1] and every
problem in W[1] is FPT.

If any W[2]-complete problem is in W[1], then W[1] = W[2].

⇒ If there is a parameterized reduction from Dominating Set to
Independent Set, then W[1] = W[2].
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Weft

Weft is a term related to weaving cloth: it is the thread that runs
from side to side in the fabric.
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What did we learn, Palmer?

The initial question: FPT or W[1]-hard?
More refined question: what is the exact best possible running
time?
Surprising running times appear naturally.
Using W[1]-hardness and parameterized reductions to give
evidence that a problem is not FPT.

44



Advertisement
Postdoc positions available in parameterized
algorithms and complexity!

Institute for Computer Science and Control
Hungarian Academy of Sciences
Budapest, Hungary

45


