
Linear kernel for planar Dominating Set

Input: (G, k), G is planar

Ouput: (G′, k′) s.t.

I (G, k) is a yes-instance if and only if (G′, k′) is a yes-instance,

I G′ is planar (actually a subgraph of G), and

I |G| = O(k).
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Tool

Protrusion in planar graph
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Tool

Reducing Protrusion

Reduce the number of vertices in P down to O(|OPT ∩ P |).

tw(P )  t

N(P )  t

Protrusion P

Remaining 
graph



Protrusion Reduction Rule

I For every partial solution D of N(P ) compute a minimum

extension of D to P ∪N(P ). (Partial solution: in dominating

set, is dominated and not dominated.) We have at most 3t

partial solutions for each P .

I If the size of the solution is at most |OPT (G) ∩ P |+ t, mark

the vertices of the solution

I Delete edges with both unmarked endpoints. (If there is an

optimal solution in G, then there is an optimal solution using

only marked vertices.)

I Delete isolated vertices.
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Protrusion Reduction Rule

How many marked vertices in P?

I 3t(|OPT (G) ∩ P |+ t)



Reduction Rule for unmarked vertices

Unmarked vertices of P

Marked vertices of P N(P)

How many unmarked vertices in P?



Planar Bipartite Lemma

Lemma (Planar Bipartite Lemma)

Let G be a simple bipartite graph with a bipartition (A,B) such

that every vertex v ∈ B has at least three neighbors in A. Then

|B| ≤ 2|A|

Proof: Euler’s formula m = n+ f − 2.



Reduction Rule for unmarked vertices

Unmarked vertices of P

Marked vertices of P N(P)

How many unmarked vertices in P?

- Degrees >= 3: constant (again
Planar Bipartite Lemma) 

- Degrees 1 and 2 can be many, need
more reduction rules



Reduction Rule for unmarked vertices

Degree-1 Reduction Rule for unmarked vertices

Degree-2 Reduction Rule for unmarked vertices



Reduction Rule for unmarked vertices

After application of Reduction Rules, what remains from P has

3t(|OPT (G) ∩ P |+ t) marked and O(3t(|OPT (G) ∩ P |+ t))

unmarked vertices.



Strategy

I Decompose G into protrusions

I Use protrusion reduction rule



Strategy

I Decompose G into protrusions

I Use protrusion reduction rule



Decompositing G

Input: (G, k), G is planar (and connected)

Compute a connected dominating set S of size O(k).

Claim

Every connected component of G− S is an outerplanar graph.



Decomposing G

Claim

Every connected component of G− S is an outerplanar graph.

Proof:

S

c.c. of G � S

Contract S )



Decomposing G

We have set S of size O(k) and every connected component of

G− S is of treewidth at most 2.

But the neighborhoods of components can be large.

S, |S| = O(k)

tw  2

tw  2

tw  2

tw  2

tw  2



Decomposing G

We have set S of size O(k) and every connected component of

G− S is of treewidth at most 2. We want (a little bit) more. We

want to enhance S such that S is still of order O(k) but for every

c.c. X of G− S, |NG(X)| ≤ 8.

S, |S| = O(k)

tw(X1)  2

tw(Xp)  2

· · ·

· · ·

8

8

8

8

8

· · ·



Cutting components

S, |S| = O(k)

Rooted tree-decompositions



Marking step

I Set marked vertices M = ∅, i = 1

I While a component C of G− (S ∪M) has ≥ 3 neighbors in S

do

I Let vi be the leftmost bag in the tree decomposition T of C

such that the vertices contained in bags of the subtree Ti

rooted in vi have ≥ 3 neighbors in S

I Add to M vertices contained in vi

I i := i+ 1, delete vertices contained in nodes of Ti from G.



Cutting components

S, |S| = O(k)

Rooted tree-decompositions

v1

T1

v2
v3

v4
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T3
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How many vertices are marked? Again

Lemma (Planar Bipartite Lemma)

Let G be a simple bipartite graph with a bipartition (A,B) such

that every vertex v ∈ B has at least three neighbors in A. Then

|B| ≤ 2|A|



How many vertices are marked?

By Planar Bipartite Lemma, i ≤ 2|S|. Each node vi contains at

most 3 vertices, hence |M | ≤ 6|S|.

S, |S| = O(k)
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Cutting components

Every c.c. of G− (S ∪M) sees at most 2 vertices in S.

S, |S| = O(k)
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Cutting components

Every c.c. of G− (S ∪M) sees at most 2 vertices in S.

S, |S| = O(k)



We are almost there!

Every c.c. of G− (S ∪M) sees at most 2 vertices in S but can see

many vertices in M .

Mark more vertices!
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Least common ancestor closure

While there are two marked nodes whose common ancestor is not

marked, mark it.



Least common ancestor closure

While there are two marked nodes whose common ancestor is not

marked, mark it.



Least common ancestor closure

While there are two marked nodes whose common ancestor is not

marked, mark it.



Least common ancestor closure

I By standard tree arguments, we marked at most |M |

additional vertices

I Put all marked vertices in M . The size of S ∪M is now at

most 13|S|
I Every connected component of G− (S ∪M) sees at most 2

vertices in S and at most 2 · 3 = 6 vertices in M
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Final decomposition

tw(X1)  2

tw(Xp)  2

· · ·

· · ·

· · ·

 8

 8

 8

 8

 8

S := S [ M



Different neighborhoods

Group components of G− S into classes according to their

neighborhoods in S.

How many classes?

I Number of different size-1 neighborhoods is at most |S|

I Number of different size-2 neighborhoods is at most 3|S|

(Euler formula)

I Number of different size-≥ 3 neighborhoods is at most 2|S|

(Planar Bipartite Lemma)

In total, at most 6|S| classes.
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Closer look at a class

S, |S| = O(k)

X

S, |S| = O(k)

N(X)

O(k
) cla

sse
s

- The number of neighbors N(X) of X is at most 8
- N(X) is a dominating set of X
- Treewidth of N[X] is at most 10 



Reduction Rule

I Each class X is a protrusion, so we can apply Protrusion

Reduction Rule

I Since for each X, |OPT (G)∩X| ≤ 8, each protrusion shrinks

to constant size.



Reduction Rule

I Each class X is a protrusion, so we can apply Protrusion

Reduction Rule

I Since for each X, |OPT (G)∩X| ≤ 8, each protrusion shrinks

to constant size.



Recap of the algorithm

- Find a set S of size O(k) s.t. G − S is of constant treewidth

    - Find a set M of size O(k) s.t. every c.c. of G−(S ∪M) sees 
constant number of vertices in S ∪ M 

      - Group c.c. of G−(S∪M) into classes according to their  
neighborhoods 

   - Reduce each class to constant size 

 



Where the property of a dominating set was important?

- Find a set S of size O(k) s.t. G − S is of constant treewidth

    - Find a set M of size O(k) s.t. every c.c. of G−(S ∪M) sees constant 
number of vertices in S ∪ M 

      - Group c.c. of G−(S∪M) into classes according to their  
neighborhoods 

   - Reduce each class to constant size 

 



Abstraction of the property

Parameterized problem (G,k) such that:

- If (G,k) is a YES instance,  we can find a set S of size 
O(k) s.t. G − S is of constant treewidth

- We can reduce each class to constant size 

WE HAVE LINEAR KERNEL!

 



Concept of Separability

X Y

SOLUTION

L
Z R

|OPT (L ∪ Z)| = |OPT (G) ∩ L| ± O(|Z|)

|OPT (R ∪ Z)| = |OPT (G) ∩R| ± O(|Z|)



Bidimensional Problems

I Minor Free Graph Class + Minor Bidimensionality

=⇒ tw(O(
√
k))

(Sublinear Treewidth Parameter Bound)

I APEX-Minor Free Graph Class + Contraction Bidimensionality

=⇒ tw(O(
√
k))

I Separability + Sublinear Treewidth Parameter Bound

=⇒ ∃ S of size O(k) such that tw(G[V \ S]) ≤ η

(η is a constant that only depends on the problem)
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Treewidth modulator

Main Idea: All Bidimensional and Seperable problems are

“constant factor” related to:

Treewidth η-Modulator

Input: A graph G = (V,E) and a positive integers k.

Parameter: k

Question: Does there exist a subset F ⊆ V of size at most k

such that tw(G[V \ F ]) ≤ η?

on “planar like graphs”.



Approximating treewidth modulator

Constant factor approximation:

FVF, Daniel Lokshtanov, Neeldhara Misra, Saket Saurabh

Planar F-Deletion: Approximation, Kernelization and Optimal FPT

Algorithms. FOCS 2012: 470-479

Thus for every instance (G, k) of a bidimensional separable problem

on planar (apex-minor-free, minor-free) one can find in polynomial

time a set S of size O(k) such that G−S is of constant treewidth.
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Reduction rules and protrusions

X
Rest of the graph

tw(G[X])<r
    <r

Protrusion: Definition

Given a graph G and S ⊆ V (G), we define ∂G(S) as the set of

vertices in S that have a neighbor in V (G) \ S.

Definition

[r-protrusion] Given a graph G, we say that a set X ⊆ V (G) is an

r-protrusion of G if tw(G[X]) ≤ r and |∂(X)| ≤ r.
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Idea to use this object in kernelization:

Bodlaender, FF, Lokshtanov, Penninkx, Saurabh, Thilikos

(Meta) Kernelization. FOCS 2009: 629-638 Used before in the

development of algorithms on graphs of bounded treewidth.
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How protrusions work for parameterized problem Π

If the size of protrusion X is larger than some constant x

(depending only on Π), it is possible to replace X by a protrusion

X ′ of size x′ < x such that the solution for Π remains the “same”

on the new graph.

X
Rest of the graphN(X)

X' Rest of the graphN(X)

Protrusion: Definition
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In the dominating set example protrusions were the sets X formed

by different classes of neighborhoods in S.

S, |S| = O(k)

X
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N(X)

O(k
) cla

sse
s

- The number of neighbors N(X) of X is at most 8
- N(X) is a dominating set of X
- Treewidth of N[X] is at most 10 



Protrusion replacer

A protrusion replacer is an algorithm (well, a sequence of

algorithms, one for each r) that in polynomial time reduces each

protrusion to the size f(r).

For DS we use r ≤ 8.

Theorem

Every separable CMSO-Optimization problem has a protrusion

replacer.
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Putting things together

Theorem

Every bidimensional separable CMSO-Optimization problem has a

linear kernel on planar graphs.

Where did we use planarity?
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CMSO Bidimensional separable problems

Dominating Set, r-Dominating Set, Vertex Cover,

Connected r-Dominating Set, Connected Vertex Cover,

Vertex-Minor-Covering, Minimum Maximal Matching,

Vertex-Subgraph-Covering, Clique-Transversal,

Almost-Outerplanar, Feedback Vertex Set, Cycle

Domination, Edge Dominating Set, Independent Set,

Induced d-Degree Subgraph, r-Scattered Set, Induced

Matching, Triangle Packing, Cycle Packing ...



I School on Recent Advances in Parameterized Complexity will

be held on December 3-7, 2017, Tel Aviv, Israel.

I PhD position in Bergen (send me email)
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