
Linear kernel for planar Dominating Set

Input: (G, k), G is planar

Ouput: (G′, k′) s.t.

I (G, k) is a yes-instance if and only if (G′, k′) is a yes-instance,

I G′ is planar (actually a subgraph of G), and

I |G| = O(k).
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Tool

Protrusion in planar graph

tw(P )  t

N(P )  t

Protrusion P

Remaining 
graph



Tool

Reducing Protrusion

Reduce the number of vertices in P down to O(|OPT ∩ P |).

tw(P )  t

N(P )  t

Protrusion P

Remaining 
graph



Protrusion Reduction Rule

I For every partial solution D of N(P ) compute a minimum

extension of D to P ∪N(P ). (Partial solution: in dominating

set, is dominated and not dominated.) We have at most 3t

partial solutions for each P .

I If the size of the solution is at most |OPT (G) ∩ P |+ t, mark

the vertices of the solution

I Delete edges with both unmarked endpoints. (If there is an

optimal solution in G, then there is an optimal solution using

only marked vertices.)

I Delete isolated vertices.



Protrusion Reduction Rule

I For every partial solution D of N(P ) compute a minimum

extension of D to P ∪N(P ). (Partial solution: in dominating

set, is dominated and not dominated.) We have at most 3t

partial solutions for each P .

I If the size of the solution is at most |OPT (G) ∩ P |+ t, mark

the vertices of the solution

I Delete edges with both unmarked endpoints. (If there is an

optimal solution in G, then there is an optimal solution using

only marked vertices.)

I Delete isolated vertices.



Protrusion Reduction Rule

I For every partial solution D of N(P ) compute a minimum

extension of D to P ∪N(P ). (Partial solution: in dominating

set, is dominated and not dominated.) We have at most 3t

partial solutions for each P .

I If the size of the solution is at most |OPT (G) ∩ P |+ t, mark

the vertices of the solution

I Delete edges with both unmarked endpoints. (If there is an

optimal solution in G, then there is an optimal solution using

only marked vertices.)

I Delete isolated vertices.



Protrusion Reduction Rule

I For every partial solution D of N(P ) compute a minimum
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partial solutions for each P .

I If the size of the solution is at most |OPT (G) ∩ P |+ t, mark

the vertices of the solution
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optimal solution in G, then there is an optimal solution using
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I Delete isolated vertices.



Protrusion Reduction Rule

How many marked vertices in P?

I 3t(|OPT (G) ∩ P |+ t)



Reduction Rule for unmarked vertices

Unmarked vertices of P

Marked vertices of P N(P)

How many unmarked vertices in P?



Planar Bipartite Lemma

Lemma (Planar Bipartite Lemma)

Let G be a simple bipartite graph with a bipartition (A,B) such

that every vertex v ∈ B has at least three neighbors in A. Then

|B| ≤ 2|A|

Proof: Euler’s formula m = n+ f − 2.



Reduction Rule for unmarked vertices

Unmarked vertices of P

Marked vertices of P N(P)

How many unmarked vertices in P?

- Degrees >= 3: constant (again
Planar Bipartite Lemma) 

- Degrees 1 and 2 can be many, need
more reduction rules



Reduction Rule for unmarked vertices

Degree-1 Reduction Rule for unmarked vertices

Degree-2 Reduction Rule for unmarked vertices



Reduction Rule for unmarked vertices

After application of Reduction Rules, what remains from P has

3t(|OPT (G) ∩ P |+ t) marked and O(3t(|OPT (G) ∩ P |+ t))

unmarked vertices.



Strategy

I Decompose G into protrusions

I Use protrusion reduction rule



Strategy

I Decompose G into protrusions

I Use protrusion reduction rule



Decompositing G

Input: (G, k), G is planar (and connected)

Compute a connected dominating set S of size O(k).

Claim

Every connected component of G− S is an outerplanar graph.



Decomposing G

Claim

Every connected component of G− S is an outerplanar graph.

Proof:

S

c.c. of G � S

Contract S )



Decomposing G

We have set S of size O(k) and every connected component of

G− S is of treewidth at most 2.

But the neighborhoods of components can be large.

S, |S| = O(k)

tw  2

tw  2

tw  2

tw  2

tw  2



Decomposing G

We have set S of size O(k) and every connected component of

G− S is of treewidth at most 2. We want (a little bit) more. We

want to enhance S such that S is still of order O(k) but for every

c.c. X of G− S, |NG(X)| ≤ 8.

S, |S| = O(k)

tw(X1)  2

tw(Xp)  2

· · ·

· · ·

8

8

8

8

8

· · ·



Cutting components

S, |S| = O(k)

Rooted tree-decompositions



Marking step

I Set marked vertices M = ∅, i = 1

I While a component C of G− (S ∪M) has ≥ 3 neighbors in S

do

I Let vi be the leftmost bag in the tree decomposition T of C

such that the vertices contained in bags of the subtree Ti

rooted in vi have ≥ 3 neighbors in S

I Add to M vertices contained in vi

I i := i+ 1, delete vertices contained in nodes of Ti from G.



Cutting components

S, |S| = O(k)

Rooted tree-decompositions

v1

T1

v2
v3

v4

v5

v6

T6

T5

T4

T3

T2



How many vertices are marked? Again

Lemma (Planar Bipartite Lemma)

Let G be a simple bipartite graph with a bipartition (A,B) such

that every vertex v ∈ B has at least three neighbors in A. Then

|B| ≤ 2|A|



How many vertices are marked?

By Planar Bipartite Lemma, i ≤ 2|S|. Each node vi contains at

most 3 vertices, hence |M | ≤ 6|S|.

S, |S| = O(k)

v1

T1

v2
v3

v4

v5

v6

T6

T5

T4

T3

T2



Cutting components

Every c.c. of G− (S ∪M) sees at most 2 vertices in S.

S, |S| = O(k)

Rooted tree-decompositions

v1

T1

v2
v3

v4

v5

v6

T6

T5

T4

T3

T2



Cutting components

Every c.c. of G− (S ∪M) sees at most 2 vertices in S.

S, |S| = O(k)



We are almost there!

Every c.c. of G− (S ∪M) sees at most 2 vertices in S but can see

many vertices in M .

Mark more vertices!
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Least common ancestor closure

While there are two marked nodes whose common ancestor is not

marked, mark it.
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Least common ancestor closure

While there are two marked nodes whose common ancestor is not

marked, mark it.



Least common ancestor closure

I By standard tree arguments, we marked at most |M |

additional vertices

I Put all marked vertices in M . The size of S ∪M is now at

most 13|S|
I Every connected component of G− (S ∪M) sees at most 2

vertices in S and at most 2 · 3 = 6 vertices in M
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I By standard tree arguments, we marked at most |M |

additional vertices

I Put all marked vertices in M . The size of S ∪M is now at
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Final decomposition

tw(X1)  2

tw(Xp)  2

· · ·

· · ·

· · ·

 8

 8

 8

 8

 8

S := S [ M



Different neighborhoods

Group components of G− S into classes according to their

neighborhoods in S.

How many classes?

I Number of different size-1 neighborhoods is at most |S|

I Number of different size-2 neighborhoods is at most 3|S|

(Euler formula)

I Number of different size-≥ 3 neighborhoods is at most 2|S|

(Planar Bipartite Lemma)

In total, at most 6|S| classes.
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Different neighborhoods
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I Number of different size-1 neighborhoods is at most |S|

I Number of different size-2 neighborhoods is at most 3|S|

(Euler formula)

I Number of different size-≥ 3 neighborhoods is at most 2|S|

(Planar Bipartite Lemma)

In total, at most 6|S| classes.



Closer look at a class

S, |S| = O(k)

X

S, |S| = O(k)

N(X)

O(k
) cla

sse
s

- The number of neighbors N(X) of X is at most 8
- N(X) is a dominating set of X
- Treewidth of N[X] is at most 10 



Reduction Rule

I Each class X is a protrusion, so we can apply Protrusion

Reduction Rule

I Since for each X, |OPT (G)∩X| ≤ 8, each protrusion shrinks

to constant size.



Reduction Rule

I Each class X is a protrusion, so we can apply Protrusion

Reduction Rule

I Since for each X, |OPT (G)∩X| ≤ 8, each protrusion shrinks

to constant size.



Recap of the algorithm

- Find a set S of size O(k) s.t. G − S is of constant treewidth

    - Find a set M of size O(k) s.t. every c.c. of G−(S ∪M) sees 
constant number of vertices in S ∪ M 

      - Group c.c. of G−(S∪M) into classes according to their  
neighborhoods 

   - Reduce each class to constant size 

 



Where the property of a dominating set was important?

- Find a set S of size O(k) s.t. G − S is of constant treewidth

    - Find a set M of size O(k) s.t. every c.c. of G−(S ∪M) sees constant 
number of vertices in S ∪ M 

      - Group c.c. of G−(S∪M) into classes according to their  
neighborhoods 

   - Reduce each class to constant size 

 



Abstraction of the property

Parameterized problem (G,k) such that:

- If (G,k) is a YES instance,  we can find a set S of size 
O(k) s.t. G − S is of constant treewidth

- We can reduce each class to constant size 

WE HAVE LINEAR KERNEL!

 



Concept of Separability

X Y

SOLUTION

L
Z R

|OPT (L ∪ Z)| = |OPT (G) ∩ L| ± O(|Z|)

|OPT (R ∪ Z)| = |OPT (G) ∩R| ± O(|Z|)



Bidimensional Problems

I Minor Free Graph Class + Minor Bidimensionality

=⇒ tw(O(
√
k))

(Sublinear Treewidth Parameter Bound)

I APEX-Minor Free Graph Class + Contraction Bidimensionality

=⇒ tw(O(
√
k))

I Separability + Sublinear Treewidth Parameter Bound

=⇒ ∃ S of size O(k) such that tw(G[V \ S]) ≤ η

(η is a constant that only depends on the problem)
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Treewidth modulator

Main Idea: All Bidimensional and Seperable problems are

“constant factor” related to:

Treewidth η-Modulator

Input: A graph G = (V,E) and a positive integers k.

Parameter: k

Question: Does there exist a subset F ⊆ V of size at most k

such that tw(G[V \ F ]) ≤ η?

on “planar like graphs”.



Approximating treewidth modulator

Constant factor approximation:

FVF, Daniel Lokshtanov, Neeldhara Misra, Saket Saurabh

Planar F-Deletion: Approximation, Kernelization and Optimal FPT

Algorithms. FOCS 2012: 470-479

Thus for every instance (G, k) of a bidimensional separable problem

on planar (apex-minor-free, minor-free) one can find in polynomial

time a set S of size O(k) such that G−S is of constant treewidth.
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Reduction rules and protrusions

X
Rest of the graph

tw(G[X])<r
    <r

Protrusion: Definition

Given a graph G and S ⊆ V (G), we define ∂G(S) as the set of

vertices in S that have a neighbor in V (G) \ S.

Definition

[r-protrusion] Given a graph G, we say that a set X ⊆ V (G) is an

r-protrusion of G if tw(G[X]) ≤ r and |∂(X)| ≤ r.
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Idea to use this object in kernelization:

Bodlaender, FF, Lokshtanov, Penninkx, Saurabh, Thilikos

(Meta) Kernelization. FOCS 2009: 629-638 Used before in the

development of algorithms on graphs of bounded treewidth.
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How protrusions work for parameterized problem Π

If the size of protrusion X is larger than some constant x

(depending only on Π), it is possible to replace X by a protrusion

X ′ of size x′ < x such that the solution for Π remains the “same”

on the new graph.

X
Rest of the graphN(X)

X' Rest of the graphN(X)

Protrusion: Definition
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In the dominating set example protrusions were the sets X formed

by different classes of neighborhoods in S.

S, |S| = O(k)

X

S, |S| = O(k)

N(X)

O(k
) cla

sse
s

- The number of neighbors N(X) of X is at most 8
- N(X) is a dominating set of X
- Treewidth of N[X] is at most 10 



Protrusion replacer

A protrusion replacer is an algorithm (well, a sequence of

algorithms, one for each r) that in polynomial time reduces each

protrusion to the size f(r).

For DS we use r ≤ 8.

Theorem

Every separable CMSO-Optimization problem has a protrusion

replacer.
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Putting things together

Theorem

Every bidimensional separable CMSO-Optimization problem has a

linear kernel on planar graphs.

Where did we use planarity?
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CMSO Bidimensional separable problems

Dominating Set, r-Dominating Set, Vertex Cover,

Connected r-Dominating Set, Connected Vertex Cover,

Vertex-Minor-Covering, Minimum Maximal Matching,

Vertex-Subgraph-Covering, Clique-Transversal,

Almost-Outerplanar, Feedback Vertex Set, Cycle

Domination, Edge Dominating Set, Independent Set,

Induced d-Degree Subgraph, r-Scattered Set, Induced

Matching, Triangle Packing, Cycle Packing ...



I School on Recent Advances in Parameterized Complexity will

be held on December 3-7, 2017, Tel Aviv, Israel.

I PhD position in Bergen (send me email)
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