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Background in complexity theory

Unparameterized problems
=
Languages over %, for a finite alphabet ¥
<
Subsets of L*

Parameterized problems
=

Sets of pairs (x, k), where x € X* and k is a nonnegative integer

@ Unparameterized variant: k is appended to x in unary.
e Kernelization algorithm takes on input an instance (x, k), and
outputs an instance (x’, k’) such that

(x,k)elLs (X, K)elL and Ix'| + k" < f(k)

for some computable function f.
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Kernelization and FPT

If a decidable problem has a kernelization algorithm, then it is FPT.

Any FPT problem admits a kernelization algorithm:

o Let (x, k) be the input instance.
o If |x| < f(k), then we already have a kernel.
o Otherwise f(k) - |x|° = O(|x|°™).

Question of existence of any kernel is equivalent to being FPT.

We are interested in polynomial kernels, where f is a polynomial.

@ Before 2008, no tool to classify FPT problems wrt. whether they
have polykernels or not.
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Motivating intuition

@ Consider the k-PATH problem: verify whether the input graph
contains a simple path on k vertices.
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Motivating intuition

@ Consider the k-PATH problem: verify whether the input graph
contains a simple path on k vertices.

@ Suppose for a moment that k-PATH admits a kernelization
algorithm that, say, produces kernels with at most k3 vertices.

o Take t = k' instances (Gy, k), (Ga, k), ..., (G, k).

o Let H be a disjoint union of Gy, Gy,..., G;. Then the answer to
(H, k) is YES if and only if the answer to any (G, k) is YES.

o Apply kernelization to (H, k) obtaining an instance with k> vertices,
encodable in k® bits.

The final number of bits is much less than the number input instances.
Most of the instances have to be discarded completely.
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Kernelization and Compression

KERNELIZATION
n P_time \ 9
instance of L instance of L
size < p(k)
COMPRESSION
L4 01010000
01000001
instance of L instance of R (any)

bitsize < p(k)
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Kernelization and Compression
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the instance to a small size without mixing YES- and NO-instances.
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Kernelization and Compression

@ Intuition: In compression we only care about shrinking the size of
the instance to a small size without mixing YES- and NO-instances.
@ A polynomial kernelization is always a polynomial compression.

@ A polynomial compression can be turned into a polynomial
kernelization provided that there is a P-reduction from R to L.

o For instance, when R € NP and L is NP-hard.

@ Note: There are examples when a poly-compression is known but a
poly-kernel is not known, because it is unclear whether R is in NP.

Michat Pilipczuk Kernelization lower bounds 7/33



OR-distillation

@ Let L, R be unparameterized languages.
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OR-distillation

o Let L, R be unparameterized languages.

OR-distillation of L into R

Input: Words x1, x, . . ., X¢, each of length at most k.
Time: poly(t + 31, [xi).
Output: One word y such that

(a) ly| = poly(k), and
(b) y € R if and only if x; € L for at least one i.
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OR-distillation on picture
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OR-distillation on picture

t instances

< poly(k)

Intuition: Necessary loss of information ~» Contradiction for an NP-hard L

Define OR-L = {xi#xoF ... #x; : x; € L for at least one i},
OR-distillation L — R is a polynomial compression OR-L/max |x;| — R
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Backbone theorem

OR—d|St|”at|On theorem [Fortnow, Santhanam; 2008]

SAT does not admit an OR-distillation algorithm into any language R,
unless NP C coNP /poly.
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Backbone theorem

OR—d|St|”at|0n theorem [Fortnow, Santhanam; 2008]

SAT does not admit an OR-distillation algorithm into any language R,
unless NP C coNP /poly.

No NP-hard problem admits an OR-distillation algorithm into any
language R, unless NP C coNP/poly.

@ Assumption NP C coNP/poly may seem mysterious.

o Intuition: Verifying proofs in P-time cannot be turned into verifying
counterexamples in P-time, even if we allow polynomial advice.

o NP C coNP/poly implies PH = X¥.

o Not as bad as P = NP, but still considered very unlikely.

@ The proof is very short, but very tricky.
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@ Let L be a parameterized language.
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o Let L be a parameterized language.

OR-composition algorithm for L

Input: Instances (xi, k), (X2, k), - - -, (X¢, k).
Time: poly(t + S5, [xi| + k).
Output:  One instance (y, k*) such that
(a) k* =poly(k), and
(b) (v, k*) € Liff (x;, k) € L for at least one i.
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OR-composition on picture

t instances

OR-composition theorem [BDFH; 2008]

Suppose a parameterized problem L admits an OR-composition
algorithm, and the unparameterized version of L is NP-hard.

Then L does not admit a polynomial kernel unless NP C coNP /poly.
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Corollaries

k-PATH does not admit a polykernel, unless NP C coNP /poly.

Composition:
Take the disjoint union of the input graphs and the same parameter.

o A graph admits a k-path iff any of its connected components does.

Same for k-CYCLE and many other problems.

Today, investigating the existence of a polynomial kernel is often a
secondary goal after showing that a problem is FPT.
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Adding features

Does the proof actually exclude even polynomial compression into
any R, not just kernelization?

o Sure, we will just end up with an instance of OR-R.

Do we need to start the composition with the same language L as
we apply the compression to?
e No, the composition algorithm can compose instances of any
NP-hard language Q into one instance of L.

Can we add more refined bucket sorting? For instance, also by the
number of vertices in the graph?

o Yes, as long as we have polynomial number of buckets.

How large can t be?

o Well, not larger than |Z|*™, as we may remove duplicates of the
input instances.

e Hence, we may assume that logt = O(k).

o Ergo, the parameter of the composed instance may depend
polynomially on both k and log t.

o Observed also earlier via different arguments.
(Dom, Lokshtanov, and Saurabh; 2009)
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@ After the invention of the technique of OR-compositions, there was
a huge number of no-polykernel results.

o As we'll see later, there can be much more intricate compositions
than just “disjoint union”.

o Examples: MAX LEAF SUBTREE, SET COVER/m, SET COVER/n,
STEINER TREE, CONNECTED VERTEX COVER, DISJOINT PATHS,
DIRECTED MULTIWAY CUT WITH 2 TERMINALS, ...

@ Most of the works use a subset of mentioned features.

o Later: a new formalism cross-composition gathers all the features.
(Bodlaender, Jansen, and Kratsch; 2011)
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Polynomial equivalence relation

Polynomial equivalence relation

Equivalence relation ~ on ¥* is a polynomial equivalence relation if:

@ checking whether two words x,y € ¥* are ~-equivalent can be done
in poly(|x| + |y|) time; and
@ ~ partitions words of length < n into poly(n) equivalence classes.
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Polynomial equivalence relation

Polynomial equivalence relation

Equivalence relation ~ on ¥* is a polynomial equivalence relation if:
@ checking whether two words x,y € ¥* are ~-equivalent can be done
in poly(|x| + |y|) time; and

@ ~ partitions words of length < n into poly(n) equivalence classes.

e Examples, supposing some reasonable graph encoding:

e partitioning with respect to the number of vertices of the graph;
e or with respect to (i) the number of vertices, (ii) the number of
edges, (iii) size of the maximum matching, (iv) budget.
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Cross-composition

An unparameterized problem @ cross-composes into a parameterized
problem L, if there exists a polynomial equivalence relation ~ and an
algorithm that, given ~-equivalent strings xj, xo, . .., X¢, in time
poly (t + S |xi|) produces one instance (y, k*) such that

o (y,k*) € Liff x; € Q for at least one i = 1,2,...,t,

e k* = poly (log t + maxt_; [x;]).
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Cross-composition

Cross-composition

An unparameterized problem @ cross-composes into a parameterized
problem L, if there exists a polynomial equivalence relation ~ and an
algorithm that, given ~-equivalent strings xj, xo, . .., X¢, in time
poly (t + S |xi|) produces one instance (y, k*) such that

o (y,k*) € Liff x; € Q for at least one i = 1,2,...,t,

e k* = poly (log t + maxt_; [x;]).

Cross-composition theorem [Bodlaender, Jansen, Kratsch]

If some NP-hard problem @ cross-composes into L, then L has no
polynomial compression into any language R, unless NP C coNP /poly.
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Applications

@ Original application of Bodlaender, Jansen and Kratsch was that of
structural parameters.
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Applications

@ Original application of Bodlaender, Jansen and Kratsch was that of
structural parameters.

@ In fact, cross-composition is a good framework to express also all the
previous results.

@ Plan for now: show some non-trivial cross-composition to give an
intuition about basic tricks.
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Application 1: SET SPLITTING

| Universe U and family of subsets F C 2V

P: U]

Q: Is there a coloring C : U — {B, W} such that every set X € F
is split, i.e., contains a black and a white element?
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Universe U and family of subsets F C 2V
|U]
Is there a coloring C : U — {B, W} such that every set X € F
is split, i.e., contains a black and a white element?

L0~

@ We show a cross-composition of SET SPLITTING into itself.

@ We may assume that the universes are of the same size, hence we
think of them as of one, common universe.
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Application 1: SET SPLITTING

I: Universe U and family of subsets F C 2V

P: U]

Q: Is there a coloring C : U — {B, W} such that every set X € F
is split, i.e., contains a black and a white element?

@ We show a cross-composition of SET SPLITTING into itself.

@ We may assume that the universes are of the same size, hence we
think of them as of one, common universe.

@ Assume that t is a power of 2 (by copying the instances).

Michat Pilipczuk Kernelization lower bounds 21/33



Cross-composing into SET SPLITTING

Input: Instances (U, F')

Output: Instance (U*, F*)
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Cross-composing into SET SPLITTING

INSTANCE SELECTOR

1 + log t pairs of vertices

Input: Instances (U, F')

Output: Instance (U*, F*) Xg': X, left special vertex,

and binary encoding of i in IS
|U*| = |U| +2logt +2
F* consists of:

1+ log t 2-element sets for pairs,
VX € F', two sets XS‘,X{‘
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Cross-composing into SET SPLITTING

INSTANCE SELECTOR

1 + log t pairs of vertices

Input: Instances (U, F')

Output: Instance (U*, F*) Xg': X, left special vertex,

and binary encoding of i in IS

|U*| = |U| +2logt +2

Xi: reverse XJ' on IS
F* consists of:

1 + log t 2-element sets for pairs,

vX € F' two sets XS‘ s Xl*

PLAYGROUND

joint universe U
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Input: Instances (U, F') Take any solution C

Output: Instance (U*, F*)
There is exactly one index i with
monochromatic parts from IS.
|U*| = |U| +2logt +2
(=): C on IS defines, which instance must be
F* consists of: solved in PL
1 + log t 2-element sets for pairs,
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Cross-composing into SET SPLITTING

INSTANCE SELECTOR

1 + log t pairs of vertices

Input: Instances (U, F') Take any solution C

Output: Instance (U*, F*)
There is exactly one index i with
monochromatic parts from IS.
|U*| = |U| +2logt +2
(=): C on IS defines, which instance must be
F* consists of: solved in PL
1 + log t 2-element sets for pairs,

VX € Fl, two sets X, X} (=) If (U, FT) is solvable, we set IS
accordingly, and solve this instance in PL.

Remaining sets are split for free.

PLAYGROUND

joint universe U
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SET SPLITTING: wrap up

@ Unparameterized SET SPLITTING cross-composes into
SET SPLITTING parameterized by |U]|.
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SET SPLITTING: wrap up

@ Unparameterized SET SPLITTING cross-composes into
SET SPLITTING parameterized by |U].

(]

Unparameterized SET SPLITTING is NP-hard.

@ Hence, SET SPLITTING parameterized by |U| does not admit a
polynomial kernel, unless NP C coNP /poly.

@ Main lesson:

o Model the choice of the instance to be solved.

o ldea: choose log t bits of its index on an appropriate gadget.

o Choice of the index makes the instance active, while the other
instances are “switched off”.
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o ldea: Hardness of kernelization can be transferred via reductions,
similarly to NP-hardness.
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o ldea: Hardness of kernelization can be transferred via reductions,
similarly to NP-hardness.

Polynomial parameter transformation (PPT)

A polynomial parameter transformation from a parameterized problem
P to a parameterized problem @ is a polynomial-time algorithm that
transforms a given instance (x, k) of P into an equivalent instance

(x’, k") of @ such that k' = poly(k).

If problem P PPT-reduces to Q, and P does not admit a polynomial
compression algorithm (into any language R), then neither does Q.

e Proof:
Compose the PPT with the assumed compression for Q.
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Application 2: STEINER TREE

I: Graph G with terminals T C V(G), k € N

P: k+|T]

Q: s there aset X C V(G)\ T, such that |[X| < k and
G[T U X] is connected?

ol



Application 2: STEINER TREE

I: Graph G with terminals T C V(G), k € N

P: k+|T]

Q: s there aset X C V(G)\ T, such that |[X| < k and
G[T U X] is connected?

@ We show that STEINER TREE has no polykernel (unless...) using a
PPT from a auxiliary problem.
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The auxiliary problem technique

@ Introduce a simpler problem P, which is almost trivially
compositional.
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The auxiliary problem technique

@ Introduce a simpler problem P, which is almost trivially
compositional.

@ Then design a PPT from P to the target problem.

o Idea: Move the weight of the proof to the transformation and the
actual definition of P.

@ High level: Extract the essence of the original problem into the
auxiliary problem.

Michat Pilipczuk Kernelization lower bounds 26/33



COLORFUL GRAPH MOTIF

COLORFUL GRAPH MOTIF

=

Graph G and a coloring function ¢: V(G) — {1,2,... k}
k

Does there exists a connected subgraph of G that contains
exactly one vertex of each color?
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About CGM

@ The problem is NP-hard even on trees.
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About CGM

The problem is NP-hard even on trees.

FPT algorithms for various variants using the algebraic approach.

Composition: Take the disjoint union of instances, reuse colors.

o There is a connected colorful motif in the composed instance iff
there is one in any of the input instances.

Corollary: no polykernel for CGM unless NP C coNP /poly.
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About CGM

The problem is NP-hard even on trees.

FPT algorithms for various variants using the algebraic approach.

Composition: Take the disjoint union of instances, reuse colors.

o There is a connected colorful motif in the composed instance iff
there is one in any of the input instances.

Corollary: no polykernel for CGM unless NP C coNP /poly.
Now: PPT from CGM to ST.
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CGM to ST
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From CGM to ST

Attach a terminal to every color class.

Give budget k for connecting nodes.

Michat Pilipczuk Kernelization lower bounds 29/33



From CGM to ST

Attach a terminal to every color class.

Give budget k for connecting nodes.
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CGM: wrap up

@ CGM has no polynomial kernel, unless NP C coNP /poly.
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CGM: wrap up

CGM has no polynomial kernel, unless NP C coNP /poly.
CGM PPT-reduces to STEINER TREE par. by k + |T]|.

@ Hence STEINER TREE par. by k + |T| does not admit a polynomial
kernel, unless NP C coNP /poly.

Note: Composition for CGM is far simpler than trying to do this
directly for STEINER TREE.
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AND-compositions

@ In the compositionality framework, we used the OR function to
compose instances.
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AND-compositions

@ In the compositionality framework, we used the OR function to
compose instances.

@ What about replacing it with, say, AND?

e AND-distillation, AND-(cross)-composition:
Same as before, but with AND instead of OR.

o Example of problem admitting an AND-composition: TREEWIDTH.

o AND-conjecture:
If 3SAT has an AND-distillation, then NP C coNP /poly.

e The proof of Fortnow and Santhanam fails for AND.
o The conjecture was proved by Drucker in 2012.

@ Corollary: The whole framework works for AND instead of OR.
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Weak compositions

@ ldea: Inspect the proof of FS to get precise estimates.
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A weak cross-composition of dimension d from an unpar. problem @
to a par. problem L, is an algorithm that, given ~-equivalent strings

X1, X2, - - ., X¢ for some polynomial equivalence relation ~, in time

poly (t + S |xi|) produces one instance (y, k*) such that
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Weak compositions

@ ldea: Inspect the proof of FS to get precise estimates.
o Cor: A framework for lower bounds on kernel sizes.

Weak cross-composition

A weak cross-composition of dimension d from an unpar. problem @
to a par. problem L, is an algorithm that, given ~-equivalent strings
X1, X2, - - ., X¢ for some polynomial equivalence relation ~, in time
poly (t + S |xi|) produces one instance (y, k*) such that
o (y,k*) € Liff x; € Q for at least one i = 1,2,...,t,

o k* = t'/9 . poly (maxt_; |xi|).

Weak cross-composition theorem

Suppose NP ¢ coNP /poly. If some NP-hard problem Q has a
cross-composition of dimension d into L, then L does not admit a
compression into any language R with bitsize O(k9~¢) for any ¢ > 0.

e Ex: VERTEX COVER has no compression into bitsize O(k>~¢).
o Note: The 2k-kernel for VC needs O(k?) bits for the encoding.
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Conclusions

e Composition: a versatile framework for proving lower bounds for
polynomial kernelization.
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e Composition: a versatile framework for proving lower bounds for
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e Thank you for your attention!
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