Lower bounds for polynomial kernelization

Michał Pilipczuk

Institute of Informatics, University of Warsaw, Poland

Parameterized Complexity Summer School Vienna, September 2nd, 2017

Kernelization — recap

 $\begin{array}{l} {\rm Unparameterized\ problems}\\\Leftrightarrow\\ {\rm Languages\ over\ }\Sigma,\ {\rm for\ a\ finite\ alphabet\ }\Sigma\\\Leftrightarrow\\ {\rm Subsets\ of\ }\Sigma^{\star}\end{array}$

 $\begin{array}{c} {\rm Unparameterized\ problems}\\\Leftrightarrow\\ {\rm Languages\ over\ }\Sigma,\ {\rm for\ a\ finite\ alphabet\ }\Sigma\\\Leftrightarrow\\ {\rm Subsets\ of\ }\Sigma^{\star} \end{array}$

Parameterized problems

Sets of pairs (x, k), where $x \in \Sigma^*$ and k is a nonnegative integer

 $\begin{array}{c} {\rm Unparameterized\ problems}\\\Leftrightarrow\\ {\rm Languages\ over\ }\Sigma,\ {\rm for\ a\ finite\ alphabet\ }\Sigma\\\Leftrightarrow\\ {\rm Subsets\ of\ }\Sigma^{\star} \end{array}$

Parameterized problems

 \Leftrightarrow

Sets of pairs (x, k), where $x \in \Sigma^*$ and k is a nonnegative integer

• **Unparameterized variant**: *k* is appended to *x* in unary.

 $\begin{array}{c} {\rm Unparameterized\ problems}\\\Leftrightarrow\\ {\rm Languages\ over\ }\Sigma,\ {\rm for\ a\ finite\ alphabet\ }\Sigma\\\Leftrightarrow\\ {\rm Subsets\ of\ }\Sigma^{\star} \end{array}$

Parameterized problems

 \Leftrightarrow

Sets of pairs (x, k), where $x \in \Sigma^*$ and k is a nonnegative integer

- Unparameterized variant: k is appended to x in unary.
- Kernelization algorithm takes on input an instance (x, k), and outputs an instance (x', k') such that

 $(x,k) \in L \Leftrightarrow (x',k') \in L$ and $|x'| + k' \leqslant f(k)$

for some computable function f.

• If a decidable problem has a kernelization algorithm, then it is FPT.

- If a decidable problem has a kernelization algorithm, then it is FPT.
- Any FPT problem admits a kernelization algorithm:

- If a decidable problem has a kernelization algorithm, then it is FPT.
- Any FPT problem admits a kernelization algorithm:
 - Let (x, k) be the input instance.

- If a decidable problem has a kernelization algorithm, then it is FPT.
- Any FPT problem admits a kernelization algorithm:
 - Let (x, k) be the input instance.
 - If $|x| \leq f(k)$, then we already have a kernel.

- If a decidable problem has a kernelization algorithm, then it is FPT.
- Any FPT problem admits a kernelization algorithm:
 - Let (x, k) be the input instance.
 - If $|x| \leq f(k)$, then we already have a kernel.
 - Otherwise $f(k) \cdot |x|^c = \mathcal{O}(|x|^{c+1})$.

- If a decidable problem has a kernelization algorithm, then it is FPT.
- Any FPT problem admits a kernelization algorithm:
 - Let (x, k) be the input instance.
 - If $|x| \leq f(k)$, then we already have a kernel.
 - Otherwise $f(k) \cdot |x|^c = \mathcal{O}(|x|^{c+1})$.
- Question of existence of any kernel is equivalent to being FPT.

- If a decidable problem has a kernelization algorithm, then it is FPT.
- Any FPT problem admits a kernelization algorithm:
 - Let (x, k) be the input instance.
 - If $|x| \leq f(k)$, then we already have a kernel.
 - Otherwise $f(k) \cdot |x|^c = \mathcal{O}(|x|^{c+1})$.
- Question of existence of any kernel is equivalent to being FPT.
- We are interested in **polynomial kernels**, where *f* is a polynomial.

- If a decidable problem has a kernelization algorithm, then it is FPT.
- Any FPT problem admits a kernelization algorithm:
 - Let (x, k) be the input instance.
 - If $|x| \leq f(k)$, then we already have a kernel.
 - Otherwise $f(k) \cdot |x|^c = \mathcal{O}(|x|^{c+1})$.
- Question of existence of any kernel is equivalent to being FPT.
- We are interested in **polynomial kernels**, where f is a polynomial.
- Before 2008, no tool to classify FPT problems wrt. whether they have polykernels or not.

• Consider the *k*-PATH problem: verify whether the input graph contains a simple path on *k* vertices.

- Consider the *k*-PATH problem: verify whether the input graph contains a simple path on *k* vertices.
- Suppose for a moment that *k*-PATH admits a kernelization algorithm that, say, produces kernels with at most k^3 vertices.

- Consider the *k*-PATH problem: verify whether the input graph contains a simple path on *k* vertices.
- Suppose for a moment that *k*-PATH admits a kernelization algorithm that, say, produces kernels with at most *k*³ vertices.
- Take $t = k^7$ instances $(G_1, k), (G_2, k), \dots, (G_t, k)$.

- Consider the *k*-PATH problem: verify whether the input graph contains a simple path on *k* vertices.
- Suppose for a moment that *k*-PATH admits a kernelization algorithm that, say, produces kernels with at most *k*³ vertices.
- Take $t = k^7$ instances $(G_1, k), (G_2, k), \dots, (G_t, k)$.
- Let H be a disjoint union of G_1, G_2, \ldots, G_t . Then the answer to (H, k) is YES if and only if the answer to any (G_i, k) is YES.

- Consider the *k*-PATH problem: verify whether the input graph contains a simple path on *k* vertices.
- Suppose for a moment that *k*-PATH admits a kernelization algorithm that, say, produces kernels with at most k^3 vertices.
- Take $t = k^7$ instances $(G_1, k), (G_2, k), \dots, (G_t, k)$.
- Let *H* be a disjoint union of G_1, G_2, \ldots, G_t . Then the answer to (H, k) is YES if and only if the answer to any (G_i, k) is YES.
- Apply kernelization to (H, k) obtaining an instance with k^3 vertices, encodable in k^6 bits.

- Consider the *k*-PATH problem: verify whether the input graph contains a simple path on *k* vertices.
- Suppose for a moment that *k*-PATH admits a kernelization algorithm that, say, produces kernels with at most k^3 vertices.
- Take $t = k^7$ instances $(G_1, k), (G_2, k), \dots, (G_t, k)$.
- Let *H* be a disjoint union of G_1, G_2, \ldots, G_t . Then the answer to (H, k) is YES if and only if the answer to any (G_i, k) is YES.
- Apply kernelization to (H, k) obtaining an instance with k^3 vertices, encodable in k^6 bits.

Intuition

The final number of bits is much less than the number input instances. Most of the instances have to be **discarded completely**.

KERNELIZATION

KERNELIZATION

KERNELIZATION

• Intuition: In compression we only care about shrinking the size of the instance to a small size without mixing YES- and NO-instances.

- Intuition: In compression we only care about shrinking the size of the instance to a small size without mixing YES- and NO-instances.
- A polynomial kernelization is always a polynomial compression.

- Intuition: In compression we only care about shrinking the size of the instance to a small size without mixing YES- and NO-instances.
- A polynomial kernelization is always a polynomial compression.
- A polynomial compression can be turned into a polynomial kernelization provided that there is a **P**-reduction from *R* to *L*.

- Intuition: In compression we only care about shrinking the size of the instance to a small size without mixing YES- and NO-instances.
- A polynomial kernelization is always a polynomial compression.
- A polynomial compression can be turned into a polynomial kernelization provided that there is a **P**-reduction from *R* to *L*.
 - For instance, when $R \in \mathbf{NP}$ and L is \mathbf{NP} -hard.

- Intuition: In compression we only care about shrinking the size of the instance to a small size without mixing YES- and NO-instances.
- A polynomial kernelization is always a polynomial compression.
- A polynomial compression can be turned into a polynomial kernelization provided that there is a **P**-reduction from *R* to *L*.
 - For instance, when $R \in \mathbf{NP}$ and L is \mathbf{NP} -hard.
- Note: There are examples when a poly-compression is known but a poly-kernel is not known, because it is unclear whether *R* is in **NP**.

• Let *L*, *R* be *unparameterized* languages.

• Let L, R be unparameterized languages.

OR-distillation of L into R

Input:	Words x_1, x_2, \ldots, x_t , each of length at most k .
Time:	$\operatorname{poly}(t + \sum_{i=1}^{t} x_i).$
Output:	One word y such that
	(a) $ y = poly(k)$, and
	(b) $y \in R$ if and only if $x_i \in L$ for at least one i .

OR-distillation on picture

Intuition: Necessary loss of information \rightsquigarrow Contradiction for an NP-hard L

Intuition: Necessary loss of information \rightsquigarrow Contradiction for an NP-hard L

Define OR- $L = \{x_1 \# x_2 \# \dots \# x_t : x_i \in L \text{ for at least one } i\}.$ OR-distillation $L \to R$ is a polynomial compression OR- $L/\max |x_i| \to R$

[Fortnow, Santhanam; 2008]

SAT does not admit an OR-distillation algorithm into any language R, unless **NP** \subseteq **coNP**/poly.

[Fortnow, Santhanam; 2008]

SAT does not admit an OR-distillation algorithm into any language R, unless **NP** \subseteq **coNP**/poly.

Corollary

[Fortnow, Santhanam; 2008]

SAT does not admit an OR-distillation algorithm into any language R, unless **NP** \subseteq **coNP**/poly.

Corollary

No **NP**-hard problem admits an OR-distillation algorithm into any language R, unless **NP** \subseteq **coNP**/poly.

• Assumption $NP \subseteq coNP/poly$ may seem mysterious.

[Fortnow, Santhanam; 2008]

SAT does not admit an OR-distillation algorithm into any language R, unless **NP** \subseteq **coNP**/poly.

Corollary

- Assumption $NP \subseteq coNP/poly$ may seem mysterious.
 - Intuition: Verifying proofs in P-time cannot be turned into verifying counterexamples in P-time, even if we allow *polynomial advice*.

[Fortnow, Santhanam; 2008]

SAT does not admit an OR-distillation algorithm into any language R, unless **NP** \subseteq **coNP**/poly.

Corollary

- Assumption $NP \subseteq coNP/poly$ may seem mysterious.
 - Intuition: Verifying proofs in P-time cannot be turned into verifying counterexamples in P-time, even if we allow *polynomial advice*.
 - NP \subseteq coNP/poly implies $PH = \Sigma_3^P$.

[Fortnow, Santhanam; 2008]

SAT does not admit an OR-distillation algorithm into any language R, unless **NP** \subseteq **coNP**/poly.

Corollary

- Assumption $NP \subseteq coNP/poly$ may seem mysterious.
 - Intuition: Verifying proofs in P-time cannot be turned into verifying counterexamples in P-time, even if we allow *polynomial advice*.
 - NP \subseteq coNP/poly implies PH = $\Sigma_3^{\rm P}$.
 - Not as bad as $\mathbf{P} = \mathbf{NP}$, but still considered very unlikely.

[Fortnow, Santhanam; 2008]

SAT does not admit an OR-distillation algorithm into any language R, unless **NP** \subseteq **coNP**/poly.

Corollary

- Assumption $NP \subseteq coNP/poly$ may seem mysterious.
 - Intuition: Verifying proofs in P-time cannot be turned into verifying counterexamples in P-time, even if we allow *polynomial advice*.
 - NP \subseteq coNP/poly implies PH = $\Sigma_3^{\rm P}$.
 - Not as bad as **P** = **NP**, but still considered very unlikely.
- The proof is very short, but very tricky.

• Let *L* be a *parameterized* language.

• Let *L* be a *parameterized* language.

OR-composition algorithm for \boldsymbol{L}

Input:	Instances $(x_1, k), (x_2, k), \dots, (x_t, k)$.
Time:	$\operatorname{poly}(t + \sum_{i=1}^{t} x_i + k).$
Output:	One instance (y, k^*) such that
	(a) $k^{\star} = \operatorname{poly}(k)$, and
	(b) $(y, k^*) \in L$ iff $(x_i, k) \in L$ for at least one i .

OR-composition theorem[BDFH: 2008]Suppose a parameterized problem L admits an OR-composition
algorithm, and the unparameterized version of L is NP-hard.Then L does not admit a polynomial kernel unless $NP \subseteq coNP/poly$.

ĩ

OR-SAT

7

OR-SAT

٦

• **Composition**: Take the disjoint union of the input graphs and the same parameter.

• Composition:

Take the disjoint union of the input graphs and the same parameter.

• A graph admits a *k*-path iff any of its connected components does.

Composition:

Take the disjoint union of the input graphs and the same parameter.

- A graph admits a *k*-path iff any of its connected components does.
- Same for k-CYCLE and many other problems.

Composition:

Take the disjoint union of the input graphs and the same parameter.

- A graph admits a *k*-path iff any of its connected components does.
- Same for k-CYCLE and many other problems.
- Today, investigating the existence of a polynomial kernel is often a secondary goal after showing that a problem is FPT.

• Does the proof actually exclude even polynomial compression into any *R*, not just kernelization?

- Does the proof actually exclude even polynomial compression into any *R*, not just kernelization?
 - Sure, we will just end up with an instance of OR-R.

- Does the proof actually exclude even polynomial compression into any *R*, not just kernelization?
 - Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language *L* as we apply the compression to?

- Does the proof actually exclude even polynomial compression into any *R*, not just kernelization?
 - Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language *L* as we apply the compression to?
 - No, the composition algorithm can compose instances of any NP-hard language Q into one instance of L.

- Does the proof actually exclude even polynomial compression into any *R*, not just kernelization?
 - Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language *L* as we apply the compression to?
 - No, the composition algorithm can compose instances of any **NP**-hard language *Q* into one instance of *L*.
- Can we add more refined bucket sorting? For instance, also by the number of vertices in the graph?

- Does the proof actually exclude even polynomial compression into any *R*, not just kernelization?
 - Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language *L* as we apply the compression to?
 - No, the composition algorithm can compose instances of any **NP**-hard language *Q* into one instance of *L*.
- Can we add more refined bucket sorting? For instance, also by the number of vertices in the graph?
 - Yes, as long as we have polynomial number of buckets.

- Does the proof actually exclude even polynomial compression into any *R*, not just kernelization?
 - Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language *L* as we apply the compression to?
 - No, the composition algorithm can compose instances of any **NP**-hard language *Q* into one instance of *L*.
- Can we add more refined bucket sorting? For instance, also by the number of vertices in the graph?
 - Yes, as long as we have polynomial number of buckets.
- How large can t be?

- Does the proof actually exclude even polynomial compression into any *R*, not just kernelization?
 - Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language *L* as we apply the compression to?
 - No, the composition algorithm can compose instances of any **NP**-hard language *Q* into one instance of *L*.
- Can we add more refined bucket sorting? For instance, also by the number of vertices in the graph?
 - Yes, as long as we have polynomial number of buckets.
- How large can t be?
 - Well, not larger than $|\Sigma|^{k+1}$, as we may remove duplicates of the input instances.

- Does the proof actually exclude even polynomial compression into any *R*, not just kernelization?
 - Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language *L* as we apply the compression to?
 - No, the composition algorithm can compose instances of any **NP**-hard language *Q* into one instance of *L*.
- Can we add more refined bucket sorting? For instance, also by the number of vertices in the graph?
 - Yes, as long as we have polynomial number of buckets.
- How large can t be?
 - Well, not larger than $|\Sigma|^{k+1}$, as we may remove duplicates of the input instances.
 - Hence, we may assume that $\log t = O(k)$.

- Does the proof actually exclude even polynomial compression into any *R*, not just kernelization?
 - Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language *L* as we apply the compression to?
 - No, the composition algorithm can compose instances of any **NP**-hard language *Q* into one instance of *L*.
- Can we add more refined bucket sorting? For instance, also by the number of vertices in the graph?
 - Yes, as long as we have polynomial number of buckets.
- How large can t be?
 - Well, not larger than $|\Sigma|^{k+1},$ as we may remove duplicates of the input instances.
 - Hence, we may assume that $\log t = O(k)$.
 - Ergo, the parameter of the composed instance may depend polynomially on **both** *k* and log *t*.

- Does the proof actually exclude even polynomial compression into any *R*, not just kernelization?
 - Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language *L* as we apply the compression to?
 - No, the composition algorithm can compose instances of any **NP**-hard language *Q* into one instance of *L*.
- Can we add more refined bucket sorting? For instance, also by the number of vertices in the graph?
 - Yes, as long as we have polynomial number of buckets.
- How large can t be?
 - Well, not larger than $|\Sigma|^{k+1},$ as we may remove duplicates of the input instances.
 - Hence, we may assume that $\log t = O(k)$.
 - Ergo, the parameter of the composed instance may depend polynomially on **both** *k* and log *t*.
 - Observed also earlier via different arguments. (Dom, Lokshtanov, and Saurabh; 2009)

• After the invention of the technique of OR-compositions, there was a huge number of no-polykernel results.

- After the invention of the technique of OR-compositions, there was a huge number of no-polykernel results.
 - As we'll see later, there can be much more intricate compositions than just "disjoint union".

- After the invention of the technique of OR-compositions, there was a huge number of no-polykernel results.
 - As we'll see later, there can be much more intricate compositions than just "disjoint union".
 - **Examples**: MAX LEAF SUBTREE, SET COVER/*m*, SET COVER/*n*, STEINER TREE, CONNECTED VERTEX COVER, DISJOINT PATHS, DIRECTED MULTIWAY CUT WITH 2 TERMINALS, ...

- After the invention of the technique of OR-compositions, there was a huge number of no-polykernel results.
 - As we'll see later, there can be much more intricate compositions than just "disjoint union".
 - **Examples**: MAX LEAF SUBTREE, SET COVER/*m*, SET COVER/*n*, STEINER TREE, CONNECTED VERTEX COVER, DISJOINT PATHS, DIRECTED MULTIWAY CUT WITH 2 TERMINALS, ...
- Most of the works use a subset of mentioned features.

- After the invention of the technique of OR-compositions, there was a huge number of no-polykernel results.
 - As we'll see later, there can be much more intricate compositions than just "disjoint union".
 - **Examples**: MAX LEAF SUBTREE, SET COVER/*m*, SET COVER/*n*, STEINER TREE, CONNECTED VERTEX COVER, DISJOINT PATHS, DIRECTED MULTIWAY CUT WITH 2 TERMINALS, ...
- Most of the works use a subset of mentioned features.
- Later: a new formalism cross-composition gathers all the features. (Bodlaender, Jansen, and Kratsch; 2011)

Equivalence relation \sim on Σ^{\star} is a polynomial equivalence relation if:

- checking whether two words $x, y \in \Sigma^*$ are \sim -equivalent can be done in poly(|x| + |y|) time; and
- ~ partitions words of length $\leq n$ into poly(n) equivalence classes.

Equivalence relation \sim on Σ^{\star} is a polynomial equivalence relation if:

- checking whether two words $x, y \in \Sigma^*$ are \sim -equivalent can be done in poly(|x| + |y|) time; and
- ~ partitions words of length $\leq n$ into poly(n) equivalence classes.

Equivalence relation \sim on Σ^* is a **polynomial equivalence relation** if:

- checking whether two words $x, y \in \Sigma^*$ are \sim -equivalent can be done in poly(|x| + |y|) time; and
- ~ partitions words of length $\leq n$ into poly(n) equivalence classes.
- Examples, supposing some reasonable graph encoding:

Equivalence relation \sim on Σ^* is a **polynomial equivalence relation** if:

- checking whether two words $x, y \in \Sigma^*$ are \sim -equivalent can be done in poly(|x| + |y|) time; and
- ~ partitions words of length $\leq n$ into poly(n) equivalence classes.
- Examples, supposing some reasonable graph encoding:
 - partitioning with respect to the number of vertices of the graph;

Equivalence relation \sim on Σ^* is a **polynomial equivalence relation** if:

- checking whether two words $x, y \in \Sigma^*$ are \sim -equivalent can be done in poly(|x| + |y|) time; and
- ~ partitions words of length $\leq n$ into poly(n) equivalence classes.
- Examples, supposing some reasonable graph encoding:
 - partitioning with respect to the number of vertices of the graph;
 - or with respect to (i) the number of vertices, (ii) the number of edges, (iii) size of the maximum matching, (iv) budget.

Cross-composition

An unparameterized problem Q cross-composes into a parameterized problem L, if there exists a polynomial equivalence relation \sim and an algorithm that, given \sim -equivalent strings x_1, x_2, \ldots, x_t , in time poly $\left(t + \sum_{i=1}^{t} |x_i|\right)$ produces one instance (y, k^*) such that

•
$$(y, k^*) \in L$$
 iff $x_i \in Q$ for at least one $i = 1, 2, \ldots, t$,

•
$$k^* = \text{poly}(\log t + \max_{i=1}^t |x_i|).$$

Cross-composition

An unparameterized problem Q cross-composes into a parameterized problem L, if there exists a polynomial equivalence relation \sim and an algorithm that, given \sim -equivalent strings x_1, x_2, \ldots, x_t , in time poly $\left(t + \sum_{i=1}^{t} |x_i|\right)$ produces one instance (y, k^*) such that

•
$$(y, k^*) \in L$$
 iff $x_i \in Q$ for at least one $i = 1, 2, \ldots, t$,

•
$$k^* = \text{poly}(\log t + \max_{i=1}^t |x_i|).$$

Cross-composition theorem

[Bodlaender, Jansen, Kratsch]

If some **NP**-hard problem Q cross-composes into L, then L has no polynomial compression into any language R, unless **NP** \subseteq **coNP**/poly.

Proof

• Original application of Bodlaender, Jansen and Kratsch was that of structural parameters.

- Original application of Bodlaender, Jansen and Kratsch was that of structural parameters.
- In fact, cross-composition is a good framework to express also all the previous results.

- Original application of Bodlaender, Jansen and Kratsch was that of structural parameters.
- In fact, cross-composition is a good framework to express also all the previous results.
- **Plan for now**: show some non-trivial cross-composition to give an intuition about basic tricks.

- I: Universe U and family of subsets $\mathcal{F} \subseteq 2^U$
- **P**: |U|
- $\begin{aligned} \mathbf{Q}: \quad \text{Is there a coloring } \mathcal{C}: \ U \to \{\mathbf{B}, \mathbf{W}\} \text{ such that every set } X \in \mathcal{F} \\ \text{ is split, i.e., contains a black and a white element?} \end{aligned}$

- I: Universe U and family of subsets $\mathcal{F} \subseteq 2^U$
- **P**: |*U*|
- **Q**: Is there a coloring $C : U \to {\mathbf{B}, \mathbf{W}}$ such that every set $X \in \mathcal{F}$ is split, i.e., contains a black and a white element?
 - \bullet We show a cross-composition of SET $\operatorname{Splitting}$ into itself.

- I: Universe U and family of subsets $\mathcal{F} \subseteq 2^U$
- \mathbf{P} : |U|
- **Q**: Is there a coloring $C : U \to {\mathbf{B}, \mathbf{W}}$ such that every set $X \in \mathcal{F}$ is split, i.e., contains a black and a white element?
 - We show a cross-composition of SET SPLITTING into itself.
 - We may assume that the universes are of the same size, hence we think of them as of one, common universe.

- I: Universe U and family of subsets $\mathcal{F} \subseteq 2^U$
- \mathbf{P} : |U|
- **Q**: Is there a coloring $C : U \to {\mathbf{B}, \mathbf{W}}$ such that every set $X \in \mathcal{F}$ is split, i.e., contains a black and a white element?
 - We show a cross-composition of SET SPLITTING into itself.
 - We may assume that the universes are of the same size, hence we think of them as of one, common universe.
 - Assume that t is a power of 2 (by copying the instances).

Input: Instances (U, \mathcal{F}^{i})

Output: Instance (U^*, \mathcal{F}^*)

Input: Instances (U, \mathcal{F}^{i})

Output: Instance (U^*, \mathcal{F}^*)

Cross-composing into SET SPLITTING

Input: Instances (U, \mathcal{F}^i)

Output: Instance (U^*, \mathcal{F}^*)

joint universe U

 $1 + \log t$ pairs of vertices

Output: Instance (U^*, \mathcal{F}^*)

 $|U^*| = |U| + 2 \log t + 2$

 \mathcal{F}^* consists of: 1 + log t 2-element sets for pairs,

• Unparameterized SET SPLITTING cross-composes into SET SPLITTING parameterized by |U|.

- Unparameterized SET SPLITTING cross-composes into SET SPLITTING parameterized by |U|.
- Unparameterized SET SPLITTING is **NP**-hard.

- Unparameterized SET SPLITTING cross-composes into SET SPLITTING parameterized by |U|.
- Unparameterized SET SPLITTING is **NP**-hard.
- Hence, SET SPLITTING parameterized by |U| does not admit a polynomial kernel, unless NP ⊆ coNP/poly.

- Unparameterized SET SPLITTING cross-composes into SET SPLITTING parameterized by |U|.
- Unparameterized SET SPLITTING is **NP**-hard.
- Hence, SET SPLITTING parameterized by |U| does not admit a polynomial kernel, unless NP ⊆ coNP/poly.
- Main lesson:

- Unparameterized SET SPLITTING cross-composes into SET SPLITTING parameterized by |U|.
- Unparameterized SET SPLITTING is **NP**-hard.
- Hence, SET SPLITTING parameterized by |U| does not admit a polynomial kernel, unless NP ⊆ coNP/poly.
- Main lesson:
 - Model the choice of the instance to be solved.

- Unparameterized SET SPLITTING cross-composes into SET SPLITTING parameterized by |U|.
- Unparameterized SET SPLITTING is **NP**-hard.
- Hence, SET SPLITTING parameterized by |U| does not admit a polynomial kernel, unless NP ⊆ coNP/poly.
- Main lesson:
 - Model the **choice** of the instance to be solved.
 - Idea: choose log t bits of its index on an appropriate gadget.

- Unparameterized SET SPLITTING cross-composes into SET SPLITTING parameterized by |U|.
- Unparameterized SET SPLITTING is **NP**-hard.
- Hence, SET SPLITTING parameterized by |U| does not admit a polynomial kernel, unless NP ⊆ coNP/poly.
- Main lesson:
 - Model the **choice** of the instance to be solved.
 - Idea: choose log t bits of its index on an appropriate gadget.
 - Choice of the index makes the instance active, while the other instances are "switched off".

Polynomial parameter transformation (PPT)

A **polynomial parameter transformation** from a parameterized problem P to a parameterized problem Q is a polynomial-time algorithm that transforms a given instance (x, k) of P into an equivalent instance (x', k') of Q such that k' = poly(k).

Polynomial parameter transformation (PPT)

A **polynomial parameter transformation** from a parameterized problem P to a parameterized problem Q is a polynomial-time algorithm that transforms a given instance (x, k) of P into an equivalent instance (x', k') of Q such that k' = poly(k).

Observation

If problem P PPT-reduces to Q, and P does not admit a polynomial compression algorithm (into any language R), then neither does Q.

Polynomial parameter transformation (PPT)

A **polynomial parameter transformation** from a parameterized problem P to a parameterized problem Q is a polynomial-time algorithm that transforms a given instance (x, k) of P into an equivalent instance (x', k') of Q such that k' = poly(k).

Observation

If problem P PPT-reduces to Q, and P does not admit a polynomial compression algorithm (into any language R), then neither does Q.

• Proof:

Compose the PPT with the assumed compression for Q.

STEINER TREE

- I: Graph G with terminals $T \subseteq V(G)$, $k \in \mathbb{N}$
- **P**: k + |T|

Q: Is there a set
$$X \subseteq V(G) \setminus T$$
, such that $|X| \leq k$ and $G[T \cup X]$ is connected?

STEINER TREE

- I: Graph G with terminals $T \subseteq V(G)$, $k \in \mathbb{N}$
- **P**: k + |T|

Q: Is there a set
$$X \subseteq V(G) \setminus T$$
, such that $|X| \leq k$ and $G[T \cup X]$ is connected?

• We show that STEINER TREE has no polykernel (unless...) using a PPT from a auxiliary problem.

• Introduce a simpler problem *P*, which is almost trivially compositional.

- Introduce a simpler problem *P*, which is almost trivially compositional.
- Then design a PPT from *P* to the target problem.

- Introduce a simpler problem *P*, which is almost trivially compositional.
- Then design a PPT from *P* to the target problem.
- Idea: Move the weight of the proof to the transformation and the actual definition of *P*.

- Introduce a simpler problem *P*, which is almost trivially compositional.
- Then design a PPT from *P* to the target problem.
- Idea: Move the weight of the proof to the transformation and the actual definition of *P*.
- **High level**: Extract the essence of the original problem into the auxiliary problem.

Colorful Graph Motif

- I: Graph G and a coloring function $\phi: V(G) \rightarrow \{1, 2, \dots, k\}$
- **P**: *k*
- **Q**: Does there exists a connected subgraph of *G* that contains exactly one vertex of each color?

Colorful Graph Motif

- I: Graph G and a coloring function $\phi: V(G) \rightarrow \{1, 2, \dots, k\}$
- **P**: *k*
- **Q**: Does there exists a connected subgraph of *G* that contains exactly one vertex of each color?

• The problem is **NP**-hard even on trees.

- The problem is **NP**-hard even on trees.
- FPT algorithms for various variants using the algebraic approach.

- The problem is **NP**-hard even on trees.
- FPT algorithms for various variants using the algebraic approach.
- Composition: Take the disjoint union of instances, reuse colors.

- The problem is **NP**-hard even on trees.
- FPT algorithms for various variants using the algebraic approach.
- Composition: Take the disjoint union of instances, reuse colors.
 - There is a connected colorful motif in the composed instance iff there is one in any of the input instances.

- The problem is **NP**-hard even on trees.
- FPT algorithms for various variants using the algebraic approach.
- Composition: Take the disjoint union of instances, reuse colors.
 - There is a connected colorful motif in the composed instance iff there is one in any of the input instances.
- Corollary: no polykernel for CGM unless $NP \subseteq coNP/poly$.

- The problem is **NP**-hard even on trees.
- FPT algorithms for various variants using the algebraic approach.
- Composition: Take the disjoint union of instances, reuse colors.
 - There is a connected colorful motif in the composed instance iff there is one in any of the input instances.
- Corollary: no polykernel for CGM unless $NP \subseteq coNP/poly$.
- \bullet Now: PPT from ${\rm CGM}$ to ${\rm ST}.$

From ${\rm CGM}$ to ${\rm ST}$

From ${\rm CGM}$ to ${\rm ST}$

Attach a terminal to every color class.

Give budget k for connecting nodes.

From ${\rm CGM}$ to ${\rm ST}$

Attach a terminal to every color class.

Give budget k for connecting nodes.

• CGM has no polynomial kernel, unless $NP \subseteq coNP/poly$.

- CGM has no polynomial kernel, unless $NP \subseteq coNP/poly$.
- CGM PPT-reduces to STEINER TREE par. by k + |T|.

- CGM has no polynomial kernel, unless $NP \subseteq coNP/poly$.
- CGM PPT-reduces to STEINER TREE par. by k + |T|.
- Hence STEINER TREE par. by k + |T| does not admit a polynomial kernel, unless NP ⊆ coNP/poly.

- CGM has no polynomial kernel, unless $NP \subseteq coNP/poly$.
- CGM PPT-reduces to STEINER TREE par. by k + |T|.
- Hence STEINER TREE par. by k + |T| does not admit a polynomial kernel, unless NP ⊆ coNP/poly.
- Note: Composition for CGM is far simpler than trying to do this directly for STEINER TREE.

• In the compositionality framework, we used the OR function to compose instances.

- In the compositionality framework, we used the OR function to compose instances.
- What about replacing it with, say, AND?

- In the compositionality framework, we used the OR function to compose instances.
- What about replacing it with, say, AND?
- AND-distillation, AND-(cross)-composition: Same as before, but with AND instead of OR.

- In the compositionality framework, we used the OR function to compose instances.
- What about replacing it with, say, AND?
- AND-distillation, AND-(cross)-composition: Same as before, but with AND instead of OR.
 - \bullet Example of problem admitting an AND-composition: $\ensuremath{\mathrm{TREEWIDTH}}$.

- In the compositionality framework, we used the OR function to compose instances.
- What about replacing it with, say, AND?
- AND-distillation, AND-(cross)-composition: Same as before, but with AND instead of OR.
 - Example of problem admitting an AND-composition: TREEWIDTH.
- AND-conjecture: If 3SAT has an AND-distillation, then $NP \subseteq coNP/poly$.

- In the compositionality framework, we used the OR function to compose instances.
- What about replacing it with, say, AND?
- AND-distillation, AND-(cross)-composition: Same as before, but with AND instead of OR.
 - Example of problem admitting an AND-composition: TREEWIDTH.
- AND-conjecture:
 - If 3SAT has an AND-distillation, then $NP \subseteq coNP/poly$.
 - The proof of Fortnow and Santhanam fails for AND.

- In the compositionality framework, we used the OR function to compose instances.
- What about replacing it with, say, AND?
- AND-distillation, AND-(cross)-composition: Same as before, but with AND instead of OR.
 - Example of problem admitting an AND-composition: TREEWIDTH.

AND-conjecture:

- If 3SAT has an AND-distillation, then $NP \subseteq coNP/poly$.
 - The proof of Fortnow and Santhanam fails for AND.
 - The conjecture was proved by Drucker in 2012.

- In the compositionality framework, we used the OR function to compose instances.
- What about replacing it with, say, AND?
- AND-distillation, AND-(cross)-composition: Same as before, but with AND instead of OR.
 - Example of problem admitting an AND-composition: TREEWIDTH.

AND-conjecture:

- If 3SAT has an AND-distillation, then $NP \subseteq coNP/poly$.
 - The proof of Fortnow and Santhanam fails for AND.
 - The conjecture was proved by Drucker in 2012.

• Corollary: The whole framework works for AND instead of OR.

• Idea: Inspect the proof of FS to get precise estimates.

- Idea: Inspect the proof of FS to get precise estimates.
 - Cor: A framework for lower bounds on kernel sizes.

- Idea: Inspect the proof of FS to get precise estimates.
 - Cor: A framework for lower bounds on kernel sizes.

Weak cross-composition

A weak cross-composition of dimension d from an unpar. problem Q to a par. problem L, is an algorithm that, given \sim -equivalent strings x_1, x_2, \ldots, x_t for some polynomial equivalence relation \sim , in time poly $\left(t + \sum_{i=1}^{t} |x_i|\right)$ produces one instance (y, k^*) such that

•
$$(y, k^{\star}) \in L$$
 iff $x_i \in Q$ for at least one $i = 1, 2, \dots, t$,

•
$$k^{\star} = t^{1/d} \cdot \operatorname{poly}(\max_{i=1}^{t} |x_i|).$$

- Idea: Inspect the proof of FS to get precise estimates.
 - Cor: A framework for lower bounds on kernel sizes.

Weak cross-composition

A weak cross-composition of dimension d from an unpar. problem Q to a par. problem L, is an algorithm that, given \sim -equivalent strings x_1, x_2, \ldots, x_t for some polynomial equivalence relation \sim , in time poly $\left(t + \sum_{i=1}^{t} |x_i|\right)$ produces one instance (y, k^*) such that

•
$$(y, k^*) \in L$$
 iff $x_i \in Q$ for at least one $i = 1, 2, \dots, t$,

•
$$k^{\star} = t^{1/d} \cdot \operatorname{poly}\left(\max_{i=1}^{t} |x_i|\right).$$

Weak cross-composition theorem

Suppose **NP** $\not\subseteq$ **coNP**/poly. If some **NP**-hard problem Q has a cross-composition of dimension d into L, then L does not admit a compression into any language R with bitsize $\mathcal{O}(k^{d-\varepsilon})$ for any $\varepsilon > 0$.

- Idea: Inspect the proof of FS to get precise estimates.
 - Cor: A framework for lower bounds on kernel sizes.

Weak cross-composition

A weak cross-composition of dimension d from an unpar. problem Q to a par. problem L, is an algorithm that, given \sim -equivalent strings x_1, x_2, \ldots, x_t for some polynomial equivalence relation \sim , in time poly $\left(t + \sum_{i=1}^{t} |x_i|\right)$ produces one instance (y, k^*) such that

•
$$(y, k^{\star}) \in L$$
 iff $x_i \in Q$ for at least one $i = 1, 2, ..., t$,

•
$$k^* = t^{1/d} \cdot \operatorname{poly}(\max_{i=1}^t |x_i|).$$

Weak cross-composition theorem

Suppose **NP** $\not\subseteq$ **coNP**/poly. If some **NP**-hard problem Q has a cross-composition of dimension d into L, then L does not admit a compression into any language R with bitsize $\mathcal{O}(k^{d-\varepsilon})$ for any $\varepsilon > 0$.

• **Ex**: VERTEX COVER has no compression into bitsize $\mathcal{O}(k^{2-\varepsilon})$.

- Idea: Inspect the proof of FS to get precise estimates.
 - Cor: A framework for lower bounds on kernel sizes.

Weak cross-composition

A weak cross-composition of dimension d from an unpar. problem Q to a par. problem L, is an algorithm that, given \sim -equivalent strings x_1, x_2, \ldots, x_t for some polynomial equivalence relation \sim , in time poly $\left(t + \sum_{i=1}^{t} |x_i|\right)$ produces one instance (y, k^*) such that

•
$$(y, k^{\star}) \in L$$
 iff $x_i \in Q$ for at least one $i = 1, 2, \dots, t$,

•
$$k^{\star} = t^{1/d} \cdot \operatorname{poly}(\max_{i=1}^{t} |x_i|).$$

Weak cross-composition theorem

Suppose **NP** $\not\subseteq$ **coNP**/poly. If some **NP**-hard problem *Q* has a cross-composition of dimension *d* into *L*, then *L* does not admit a compression into any language *R* with bitsize $\mathcal{O}(k^{d-\varepsilon})$ for any $\varepsilon > 0$.

- **Ex**: VERTEX COVER has no compression into bitsize $O(k^{2-\varepsilon})$.
- Note: The 2*k*-kernel for VC needs $\mathcal{O}(k^2)$ bits for the encoding.

• **Composition**: a versatile framework for proving lower bounds for polynomial kernelization.

- **Composition**: a versatile framework for proving lower bounds for polynomial kernelization.
 - Message 1: What is hard for kernelization is unbounded choice.

- **Composition**: a versatile framework for proving lower bounds for polynomial kernelization.
 - Message 1: What is hard for kernelization is unbounded choice.
 - Message 2: Turning intuition into a lower bound via cross-composition often needs a good understanding of the problem.

- **Composition**: a versatile framework for proving lower bounds for polynomial kernelization.
 - Message 1: What is hard for kernelization is unbounded choice.
 - **Message 2**: Turning intuition into a lower bound via cross-composition often needs a good understanding of the problem.
- Turing kernelization: A Turing kernel is a poly-time algorithm that has oracle access to solving instances of size poly(k).

- **Composition**: a versatile framework for proving lower bounds for polynomial kernelization.
 - Message 1: What is hard for kernelization is unbounded choice.
 - **Message 2**: Turning intuition into a lower bound via cross-composition often needs a good understanding of the problem.
- **Turing kernelization**: A Turing kernel is a poly-time algorithm that has oracle access to solving instances of size poly(k).
 - Composition framework does not apply.

- **Composition**: a versatile framework for proving lower bounds for polynomial kernelization.
 - Message 1: What is hard for kernelization is unbounded choice.
 - **Message 2**: Turning intuition into a lower bound via cross-composition often needs a good understanding of the problem.
- Turing kernelization: A Turing kernel is a poly-time algorithm that has oracle access to solving instances of size poly(k).
 - Composition framework does not apply.
 - There are problems that have polynomial Turing kernels, but no polynomial kernel under NP ⊈ coNP/poly.

- **Composition**: a versatile framework for proving lower bounds for polynomial kernelization.
 - Message 1: What is hard for kernelization is unbounded choice.
 - Message 2: Turning intuition into a lower bound via cross-composition often needs a good understanding of the problem.
- Turing kernelization: A Turing kernel is a poly-time algorithm that has oracle access to solving instances of size poly(k).
 - Composition framework does not apply.
 - There are problems that have polynomial Turing kernels, but no polynomial kernel under NP ⊈ coNP/poly.
 - Open: A technique for ruling out Turing kernels.

- **Composition**: a versatile framework for proving lower bounds for polynomial kernelization.
 - Message 1: What is hard for kernelization is unbounded choice.
 - **Message 2**: Turning intuition into a lower bound via cross-composition often needs a good understanding of the problem.
- Turing kernelization: A Turing kernel is a poly-time algorithm that has oracle access to solving instances of size poly(k).
 - Composition framework does not apply.
 - There are problems that have polynomial Turing kernels, but no polynomial kernel under NP ⊈ coNP/poly.
 - **Open**: A technique for ruling out Turing kernels.
- **Complexity theory for kernelization**: Using PPT as reductions, one can build a hierarchy of complexity classes [HKSWW].

- **Composition**: a versatile framework for proving lower bounds for polynomial kernelization.
 - Message 1: What is hard for kernelization is unbounded choice.
 - **Message 2**: Turning intuition into a lower bound via cross-composition often needs a good understanding of the problem.
- Turing kernelization: A Turing kernel is a poly-time algorithm that has oracle access to solving instances of size poly(k).
 - Composition framework does not apply.
 - There are problems that have polynomial Turing kernels, but no polynomial kernel under NP ⊈ coNP/poly.
 - **Open**: A technique for ruling out Turing kernels.
- **Complexity theory for kernelization**: Using PPT as reductions, one can build a hierarchy of complexity classes [HKSWW].
- Thank you for your attention!

Tikz faces based on a code by Raoul Kessels, http://www.texample.net/tikz/examples/emoticons/,

under Creative Commons Attribution 2.5 license (CC BY 2.5)