Lower bounds for polynomial kernelization

Michał Pilipczuk

Institute of Informatics, University of Warsaw, Poland
Parameterized Complexity Summer School
Vienna, September $2^{\text {nd }}, 2017$

Kernelization - recap

Kernelization - recap

Kernelization - recap

Kernelization - recap

Kernelization - recap

Background in complexity theory

Unparameterized problems
 \Leftrightarrow
 Languages over Σ, for a finite alphabet Σ
 \Leftrightarrow
 Subsets of Σ^{\star}

Background in complexity theory

Unparameterized problems
 \Leftrightarrow
 Languages over Σ, for a finite alphabet Σ
 \Leftrightarrow
 Subsets of Σ^{\star}

Parameterized problems
\Leftrightarrow
Sets of pairs (x, k), where $x \in \Sigma^{\star}$ and k is a nonnegative integer

Background in complexity theory

> Unparameterized problems
> \Leftrightarrow
> Languages over Σ, for a finite alphabet Σ
> \Leftrightarrow
> Subsets of Σ^{\star}

Parameterized problems
\Leftrightarrow
Sets of pairs (x, k), where $x \in \Sigma^{\star}$ and k is a nonnegative integer

- Unparameterized variant: k is appended to x in unary.

Background in complexity theory

Unparameterized problems
\Leftrightarrow
Languages over Σ, for a finite alphabet Σ
\Leftrightarrow
Subsets of Σ^{\star}

Parameterized problems
\Leftrightarrow
Sets of pairs (x, k), where $x \in \Sigma^{\star}$ and k is a nonnegative integer

- Unparameterized variant: k is appended to x in unary.
- Kernelization algorithm takes on input an instance (x, k), and outputs an instance (x^{\prime}, k^{\prime}) such that

$$
(x, k) \in L \Leftrightarrow\left(x^{\prime}, k^{\prime}\right) \in L \quad \text { and } \quad\left|x^{\prime}\right|+k^{\prime} \leqslant f(k)
$$

for some computable function f.

Kernelization and FPT

- If a decidable problem has a kernelization algorithm, then it is FPT.

Kernelization and FPT

- If a decidable problem has a kernelization algorithm, then it is FPT.
- Any FPT problem admits a kernelization algorithm:

Kernelization and FPT

- If a decidable problem has a kernelization algorithm, then it is FPT.
- Any FPT problem admits a kernelization algorithm:
- Let (x, k) be the input instance.

Kernelization and FPT

- If a decidable problem has a kernelization algorithm, then it is FPT.
- Any FPT problem admits a kernelization algorithm:
- Let (x, k) be the input instance.
- If $|x| \leqslant f(k)$, then we already have a kernel.

Kernelization and FPT

- If a decidable problem has a kernelization algorithm, then it is FPT.
- Any FPT problem admits a kernelization algorithm:
- Let (x, k) be the input instance.
- If $|x| \leqslant f(k)$, then we already have a kernel.
- Otherwise $f(k) \cdot|x|^{c}=\mathcal{O}\left(|x|^{c+1}\right)$.

Kernelization and FPT

- If a decidable problem has a kernelization algorithm, then it is FPT.
- Any FPT problem admits a kernelization algorithm:
- Let (x, k) be the input instance.
- If $|x| \leqslant f(k)$, then we already have a kernel.
- Otherwise $f(k) \cdot|x|^{c}=\mathcal{O}\left(|x|^{c+1}\right)$.
- Question of existence of any kernel is equivalent to being FPT.

Kernelization and FPT

- If a decidable problem has a kernelization algorithm, then it is FPT.
- Any FPT problem admits a kernelization algorithm:
- Let (x, k) be the input instance.
- If $|x| \leqslant f(k)$, then we already have a kernel.
- Otherwise $f(k) \cdot|x|^{c}=\mathcal{O}\left(|x|^{c+1}\right)$.
- Question of existence of any kernel is equivalent to being FPT.
- We are interested in polynomial kernels, where f is a polynomial.

Kernelization and FPT

- If a decidable problem has a kernelization algorithm, then it is FPT.
- Any FPT problem admits a kernelization algorithm:
- Let (x, k) be the input instance.
- If $|x| \leqslant f(k)$, then we already have a kernel.
- Otherwise $f(k) \cdot|x|^{c}=\mathcal{O}\left(|x|^{c+1}\right)$.
- Question of existence of any kernel is equivalent to being FPT.
- We are interested in polynomial kernels, where f is a polynomial.
- Before 2008, no tool to classify FPT problems wrt. whether they have polykernels or not.

Motivating intuition

- Consider the k-Path problem: verify whether the input graph contains a simple path on k vertices.

Motivating intuition

- Consider the k-Path problem: verify whether the input graph contains a simple path on k vertices.
- Suppose for a moment that k-Path admits a kernelization algorithm that, say, produces kernels with at most k^{3} vertices.

Motivating intuition

- Consider the k-Path problem: verify whether the input graph contains a simple path on k vertices.
- Suppose for a moment that k-Path admits a kernelization algorithm that, say, produces kernels with at most k^{3} vertices.
- Take $t=k^{7}$ instances $\left(G_{1}, k\right),\left(G_{2}, k\right), \ldots,\left(G_{t}, k\right)$.

Motivating intuition

- Consider the k-Path problem: verify whether the input graph contains a simple path on k vertices.
- Suppose for a moment that k-Path admits a kernelization algorithm that, say, produces kernels with at most k^{3} vertices.
- Take $t=k^{7}$ instances $\left(G_{1}, k\right),\left(G_{2}, k\right), \ldots,\left(G_{t}, k\right)$.
- Let H be a disjoint union of $G_{1}, G_{2}, \ldots, G_{t}$. Then the answer to (H, k) is YES if and only if the answer to any $\left(G_{i}, k\right)$ is YES.

Motivating intuition

- Consider the k-Path problem: verify whether the input graph contains a simple path on k vertices.
- Suppose for a moment that k-Path admits a kernelization algorithm that, say, produces kernels with at most k^{3} vertices.
- Take $t=k^{7}$ instances $\left(G_{1}, k\right),\left(G_{2}, k\right), \ldots,\left(G_{t}, k\right)$.
- Let H be a disjoint union of $G_{1}, G_{2}, \ldots, G_{t}$. Then the answer to (H, k) is YES if and only if the answer to any $\left(G_{i}, k\right)$ is YES.
- Apply kernelization to (H, k) obtaining an instance with k^{3} vertices, encodable in k^{6} bits.

Motivating intuition

- Consider the k-Path problem: verify whether the input graph contains a simple path on k vertices.
- Suppose for a moment that k-Path admits a kernelization algorithm that, say, produces kernels with at most k^{3} vertices.
- Take $t=k^{7}$ instances $\left(G_{1}, k\right),\left(G_{2}, k\right), \ldots,\left(G_{t}, k\right)$.
- Let H be a disjoint union of $G_{1}, G_{2}, \ldots, G_{t}$. Then the answer to (H, k) is YES if and only if the answer to any $\left(G_{i}, k\right)$ is YES.
- Apply kernelization to (H, k) obtaining an instance with k^{3} vertices, encodable in k^{6} bits.

Intuition

The final number of bits is much less than the number input instances. Most of the instances have to be discarded completely.

Kernelization and Compression

KERNELIZATION

Kernelization and Compression

KERNELIZATION

COMPRESSION

Kernelization and Compression

KERNELIZATION

COMPRESSION

Kernelization and Compression

- Intuition: In compression we only care about shrinking the size of the instance to a small size without mixing YES- and NO-instances.

Kernelization and Compression

- Intuition: In compression we only care about shrinking the size of the instance to a small size without mixing YES- and NO-instances.
- A polynomial kernelization is always a polynomial compression.

Kernelization and Compression

- Intuition: In compression we only care about shrinking the size of the instance to a small size without mixing YES- and NO-instances.
- A polynomial kernelization is always a polynomial compression.
- A polynomial compression can be turned into a polynomial kernelization provided that there is a \mathbf{P}-reduction from R to L.

Kernelization and Compression

- Intuition: In compression we only care about shrinking the size of the instance to a small size without mixing YES- and NO-instances.
- A polynomial kernelization is always a polynomial compression.
- A polynomial compression can be turned into a polynomial kernelization provided that there is a \mathbf{P}-reduction from R to L.
- For instance, when $R \in \mathbf{N P}$ and L is NP-hard.

Kernelization and Compression

- Intuition: In compression we only care about shrinking the size of the instance to a small size without mixing YES- and NO-instances.
- A polynomial kernelization is always a polynomial compression.
- A polynomial compression can be turned into a polynomial kernelization provided that there is a \mathbf{P}-reduction from R to L.
- For instance, when $R \in \mathbf{N P}$ and L is $\mathbf{N P}$-hard.
- Note: There are examples when a poly-compression is known but a poly-kernel is not known, because it is unclear whether R is in NP.

OR-distillation

- Let L, R be unparameterized languages.

OR-distillation

- Let L, R be unparameterized languages.

OR-distillation of L into R

Input: Words $x_{1}, x_{2}, \ldots, x_{t}$, each of length at most k.
Time: $\quad \operatorname{poly}\left(t+\sum_{i=1}^{t}\left|x_{i}\right|\right)$.
Output: One word y such that
(a) $|y|=\operatorname{poly}(k)$, and
(b) $y \in R$ if and only if $x_{i} \in L$ for at least one i.

OR-distillation on picture

OR-distillation on picture

OR-distillation on picture

OR-distillation on picture

t instances

OR-distillation on picture

Intuition: Necessary loss of information \rightsquigarrow Contradiction for an NP-hard L

OR-distillation on picture

Intuition: Necessary loss of information \rightsquigarrow Contradiction for an NP-hard L Define OR- $L=\left\{x_{1} \# x_{2} \# \ldots \# x_{t}: x_{i} \in L\right.$ for at least one $\left.i\right\}$. OR-distillation $L \rightarrow R$ is a polynomial compression OR-L/max $\left|x_{i}\right| \rightarrow R$

Backbone theorem

OR-distillation theorem
SAT does not admit an OR-distillation algorithm into any language R, unless NP \subseteq coNP/poly.

Backbone theorem

OR-distillation theorem
SAT does not admit an OR-distillation algorithm into any language R, unless NP \subseteq coNP/poly.

Corollary
No NP-hard problem admits an OR-distillation algorithm into any language R, unless $\mathbf{N P} \subseteq$ coNP/poly.

Backbone theorem

OR-distillation theorem
SAT does not admit an OR-distillation algorithm into any language R, unless NP \subseteq coNP/poly.

Corollary
No NP-hard problem admits an OR-distillation algorithm into any language R, unless $\mathbf{N P} \subseteq$ coNP/poly.

- Assumption NP \subseteq coNP/poly may seem mysterious.

Backbone theorem

OR-distillation theorem
SAT does not admit an OR-distillation algorithm into any language R, unless NP \subseteq coNP/poly.

Corollary
No NP-hard problem admits an OR-distillation algorithm into any language R, unless $\mathbf{N P} \subseteq$ coNP/poly.

- Assumption NP \subseteq coNP/poly may seem mysterious.
- Intuition: Verifying proofs in P-time cannot be turned into verifying counterexamples in P-time, even if we allow polynomial advice.

Backbone theorem

OR-distillation theorem
SAT does not admit an OR-distillation algorithm into any language R, unless NP \subseteq coNP/poly.

Corollary

No NP-hard problem admits an OR-distillation algorithm into any language R, unless $\mathbf{N P} \subseteq$ coNP/poly.

- Assumption NP \subseteq coNP/poly may seem mysterious.
- Intuition: Verifying proofs in P-time cannot be turned into verifying counterexamples in \mathbf{P}-time, even if we allow polynomial advice.
- NP \subseteq coNP $/$ poly implies $\mathrm{PH}=\Sigma_{3}^{\mathrm{P}}$.

Backbone theorem

OR-distillation theorem [Fortnow, Santhanam; 2008]
SAT does not admit an OR-distillation algorithm into any language R, unless NP \subseteq coNP/poly.

Corollary

No NP-hard problem admits an OR-distillation algorithm into any language R, unless $\mathbf{N P} \subseteq$ coNP/poly.

- Assumption NP \subseteq coNP/poly may seem mysterious.
- Intuition: Verifying proofs in P-time cannot be turned into verifying counterexamples in \mathbf{P}-time, even if we allow polynomial advice.
- NP \subseteq coNP/poly implies $\mathrm{PH}=\Sigma_{3}^{\mathrm{P}}$.
- Not as bad as $\mathbf{P}=\mathbf{N P}$, but still considered very unlikely.

Backbone theorem

OR-distillation theorem [Fortnow, Santhanam; 2008]
SAT does not admit an OR-distillation algorithm into any language R, unless NP \subseteq coNP/poly.

Corollary

No NP-hard problem admits an OR-distillation algorithm into any language R, unless $\mathbf{N P} \subseteq$ coNP/poly.

- Assumption NP \subseteq coNP/poly may seem mysterious.
- Intuition: Verifying proofs in P-time cannot be turned into verifying counterexamples in \mathbf{P}-time, even if we allow polynomial advice.
- NP \subseteq coNP/poly implies $\mathrm{PH}=\Sigma_{3}^{\mathrm{P}}$.
- Not as bad as $\mathbf{P}=\mathbf{N P}$, but still considered very unlikely.
- The proof is very short, but very tricky.

OR-composition

- Let L be a parameterized language.

OR-composition

- Let L be a parameterized language.

OR-composition algorithm for L
Input: Instances $\left(x_{1}, k\right),\left(x_{2}, k\right), \ldots,\left(x_{t}, k\right)$.
Time: $\quad \operatorname{poly}\left(t+\sum_{i=1}^{t}\left|x_{i}\right|+k\right)$.
Output: One instance $\left(y, k^{\star}\right)$ such that
(a) $k^{\star}=\operatorname{poly}(k)$, and
(b) $\left(y, k^{\star}\right) \in L$ iff $\left(x_{i}, k\right) \in L$ for at least one i.

OR-composition on picture

OR-composition on picture

OR-composition on picture

OR-composition on picture

OR-composition on picture

OR-composition theorem

Suppose a parameterized problem L admits an OR-composition algorithm, and the unparameterized version of L is NP-hard. Then L does not admit a polynomial kernel unless NP \subseteq coNP/poly.

Proof

Proof

Proof

Proof

Proof

Proof

Corollaries

- k-Path does not admit a polykernel, unless NP \subseteq coNP/poly.

Corollaries

- k-PAth does not admit a polykernel, unless NP \subseteq coNP/poly.
- Composition:

Take the disjoint union of the input graphs and the same parameter.

Corollaries

- k-PAth does not admit a polykernel, unless NP \subseteq coNP/poly.
- Composition:

Take the disjoint union of the input graphs and the same parameter.

- A graph admits a k-path iff any of its connected components does.

Corollaries

- k-PAth does not admit a polykernel, unless NP \subseteq coNP/poly.
- Composition:

Take the disjoint union of the input graphs and the same parameter.

- A graph admits a k-path iff any of its connected components does.
- Same for k-Cycle and many other problems.

Corollaries

- k-Path does not admit a polykernel, unless NP \subseteq coNP/poly.
- Composition:

Take the disjoint union of the input graphs and the same parameter.

- A graph admits a k-path iff any of its connected components does.
- Same for k-Cycle and many other problems.
- Today, investigating the existence of a polynomial kernel is often a secondary goal after showing that a problem is FPT.

Adding features

- Does the proof actually exclude even polynomial compression into any R, not just kernelization?

Adding features

- Does the proof actually exclude even polynomial compression into any R, not just kernelization?
- Sure, we will just end up with an instance of OR-R.

Adding features

- Does the proof actually exclude even polynomial compression into any R, not just kernelization?
- Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language L as we apply the compression to?

Adding features

- Does the proof actually exclude even polynomial compression into any R, not just kernelization?
- Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language L as we apply the compression to?
- No, the composition algorithm can compose instances of any NP-hard language Q into one instance of L.

Adding features

- Does the proof actually exclude even polynomial compression into any R, not just kernelization?
- Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language L as we apply the compression to?
- No, the composition algorithm can compose instances of any NP-hard language Q into one instance of L.
- Can we add more refined bucket sorting? For instance, also by the number of vertices in the graph?

Adding features

- Does the proof actually exclude even polynomial compression into any R, not just kernelization?
- Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language L as we apply the compression to?
- No, the composition algorithm can compose instances of any NP-hard language Q into one instance of L.
- Can we add more refined bucket sorting? For instance, also by the number of vertices in the graph?
- Yes, as long as we have polynomial number of buckets.

Adding features

- Does the proof actually exclude even polynomial compression into any R, not just kernelization?
- Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language L as we apply the compression to?
- No, the composition algorithm can compose instances of any NP-hard language Q into one instance of L.
- Can we add more refined bucket sorting? For instance, also by the number of vertices in the graph?
- Yes, as long as we have polynomial number of buckets.
- How large can t be?

Adding features

- Does the proof actually exclude even polynomial compression into any R, not just kernelization?
- Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language L as we apply the compression to?
- No, the composition algorithm can compose instances of any NP-hard language Q into one instance of L.
- Can we add more refined bucket sorting? For instance, also by the number of vertices in the graph?
- Yes, as long as we have polynomial number of buckets.
- How large can t be?
- Well, not larger than $|\Sigma|^{k+1}$, as we may remove duplicates of the input instances.

Adding features

- Does the proof actually exclude even polynomial compression into any R, not just kernelization?
- Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language L as we apply the compression to?
- No, the composition algorithm can compose instances of any NP-hard language Q into one instance of L.
- Can we add more refined bucket sorting? For instance, also by the number of vertices in the graph?
- Yes, as long as we have polynomial number of buckets.
- How large can t be?
- Well, not larger than $|\Sigma|^{k+1}$, as we may remove duplicates of the input instances.
- Hence, we may assume that $\log t=\mathcal{O}(k)$.

Adding features

- Does the proof actually exclude even polynomial compression into any R, not just kernelization?
- Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language L as we apply the compression to?
- No, the composition algorithm can compose instances of any NP-hard language Q into one instance of L.
- Can we add more refined bucket sorting? For instance, also by the number of vertices in the graph?
- Yes, as long as we have polynomial number of buckets.
- How large can t be?
- Well, not larger than $|\Sigma|^{k+1}$, as we may remove duplicates of the input instances.
- Hence, we may assume that $\log t=\mathcal{O}(k)$.
- Ergo, the parameter of the composed instance may depend polynomially on both k and $\log t$.

Adding features

- Does the proof actually exclude even polynomial compression into any R, not just kernelization?
- Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language L as we apply the compression to?
- No, the composition algorithm can compose instances of any NP-hard language Q into one instance of L.
- Can we add more refined bucket sorting? For instance, also by the number of vertices in the graph?
- Yes, as long as we have polynomial number of buckets.
- How large can t be?
- Well, not larger than $|\Sigma|^{k+1}$, as we may remove duplicates of the input instances.
- Hence, we may assume that $\log t=\mathcal{O}(k)$.
- Ergo, the parameter of the composed instance may depend polynomially on both k and $\log t$.
- Observed also earlier via different arguments.
(Dom, Lokshtanov, and Saurabh; 2009)

Towards a unified methodology

- After the invention of the technique of OR-compositions, there was a huge number of no-polykernel results.

Towards a unified methodology

- After the invention of the technique of OR-compositions, there was a huge number of no-polykernel results.
- As we'll see later, there can be much more intricate compositions than just "disjoint union".

Towards a unified methodology

- After the invention of the technique of OR-compositions, there was a huge number of no-polykernel results.
- As we'll see later, there can be much more intricate compositions than just "disjoint union".
- Examples: Max Leaf Subtree, Set Cover/m, Set Cover/n, Steiner Tree, Connected Vertex Cover, Disjoint Paths, Directed Multiway Cut with 2 terminals, ...

Towards a unified methodology

- After the invention of the technique of OR-compositions, there was a huge number of no-polykernel results.
- As we'll see later, there can be much more intricate compositions than just "disjoint union".
- Examples: Max Leaf Subtree, Set Cover/m, Set Cover/n, Steiner Tree, Connected Vertex Cover, Disjoint Paths, Directed Multiway Cut with 2 terminals, ...
- Most of the works use a subset of mentioned features.

Towards a unified methodology

- After the invention of the technique of OR-compositions, there was a huge number of no-polykernel results.
- As we'll see later, there can be much more intricate compositions than just "disjoint union".
- Examples: Max Leaf Subtree, Set Cover/m, Set Cover/n, Steiner Tree, Connected Vertex Cover, Disjoint Paths, Directed Multiway Cut with 2 terminals, ...
- Most of the works use a subset of mentioned features.
- Later: a new formalism cross-composition gathers all the features. (Bodlaender, Jansen, and Kratsch; 2011)

Polynomial equivalence relation

Polynomial equivalence relation

Equivalence relation \sim on Σ^{\star} is a polynomial equivalence relation if:

- checking whether two words $x, y \in \Sigma^{\star}$ are \sim-equivalent can be done in poly $(|x|+|y|)$ time; and
- \sim partitions words of length $\leqslant n$ into poly (n) equivalence classes.

Polynomial equivalence relation

Polynomial equivalence relation

Equivalence relation \sim on Σ^{\star} is a polynomial equivalence relation if:

- checking whether two words $x, y \in \Sigma^{\star}$ are \sim-equivalent can be done in poly $(|x|+|y|)$ time; and
- \sim partitions words of length $\leqslant n$ into poly (n) equivalence classes.

Polynomial equivalence relation

Polynomial equivalence relation

Equivalence relation \sim on Σ^{\star} is a polynomial equivalence relation if:

- checking whether two words $x, y \in \Sigma^{\star}$ are \sim-equivalent can be done in poly $(|x|+|y|)$ time; and
- \sim partitions words of length $\leqslant n$ into $\operatorname{poly}(n)$ equivalence classes.
- Examples, supposing some reasonable graph encoding:

Polynomial equivalence relation

Polynomial equivalence relation

Equivalence relation \sim on Σ^{\star} is a polynomial equivalence relation if:

- checking whether two words $x, y \in \Sigma^{\star}$ are \sim-equivalent can be done in poly $(|x|+|y|)$ time; and
- \sim partitions words of length $\leqslant n$ into poly (n) equivalence classes.
- Examples, supposing some reasonable graph encoding:
- partitioning with respect to the number of vertices of the graph;

Polynomial equivalence relation

Polynomial equivalence relation

Equivalence relation \sim on Σ^{\star} is a polynomial equivalence relation if:

- checking whether two words $x, y \in \Sigma^{\star}$ are \sim-equivalent can be done in poly $(|x|+|y|)$ time; and
- \sim partitions words of length $\leqslant n$ into poly (n) equivalence classes.
- Examples, supposing some reasonable graph encoding:
- partitioning with respect to the number of vertices of the graph;
- or with respect to (i) the number of vertices, (ii) the number of edges, (iii) size of the maximum matching, (iv) budget.

Cross-composition

Cross-composition

An unparameterized problem Q cross-composes into a parameterized problem L, if there exists a polynomial equivalence relation \sim and an algorithm that, given \sim-equivalent strings $x_{1}, x_{2}, \ldots, x_{t}$, in time poly $\left(t+\sum_{i=1}^{t}\left|x_{i}\right|\right)$ produces one instance $\left(y, k^{\star}\right)$ such that

- $\left(y, k^{\star}\right) \in L$ iff $x_{i} \in Q$ for at least one $i=1,2, \ldots, t$,
- $k^{\star}=\operatorname{poly}\left(\log t+\max _{i=1}^{t}\left|x_{i}\right|\right)$.

Cross-composition

Cross-composition

An unparameterized problem Q cross-composes into a parameterized problem L, if there exists a polynomial equivalence relation \sim and an algorithm that, given \sim-equivalent strings $x_{1}, x_{2}, \ldots, x_{t}$, in time poly $\left(t+\sum_{i=1}^{t}\left|x_{i}\right|\right)$ produces one instance $\left(y, k^{\star}\right)$ such that

- $\left(y, k^{\star}\right) \in L$ iff $x_{i} \in Q$ for at least one $i=1,2, \ldots, t$,
- $k^{\star}=\operatorname{poly}\left(\log t+\max _{i=1}^{t}\left|x_{i}\right|\right)$.

Cross-composition theorem

If some NP-hard problem Q cross-composes into L, then L has no polynomial compression into any language R, unless NP \subseteq coNP/poly.

Proof

Proof

$$
\begin{aligned}
& k=\max \left|x_{i}\right|, \quad \log t=\mathcal{O}(k)
\end{aligned}
$$

Proof

Proof

Proof

Proof

Proof

Applications

- Original application of Bodlaender, Jansen and Kratsch was that of structural parameters.

Applications

- Original application of Bodlaender, Jansen and Kratsch was that of structural parameters.
- In fact, cross-composition is a good framework to express also all the previous results.

Applications

- Original application of Bodlaender, Jansen and Kratsch was that of structural parameters.
- In fact, cross-composition is a good framework to express also all the previous results.
- Plan for now: show some non-trivial cross-composition to give an intuition about basic tricks.

Application 1: Set Splitting

SET Splitting

I: Universe U and family of subsets $\mathcal{F} \subseteq 2^{U}$
P: $\quad|U|$
Q: Is there a coloring $\mathcal{C}: U \rightarrow\{\mathbf{B}, \mathbf{W}\}$ such that every set $X \in \mathcal{F}$ is split, i.e., contains a black and a white element?

Application 1: Set Splitting

Set Splitting

I: Universe U and family of subsets $\mathcal{F} \subseteq 2^{U}$
P: $\quad|U|$
Q: Is there a coloring $\mathcal{C}: U \rightarrow\{\mathbf{B}, \mathbf{W}\}$ such that every set $X \in \mathcal{F}$ is split, i.e., contains a black and a white element?

- We show a cross-composition of Set Splitting into itself.

Application 1: Set Splitting

Set Splitting

I: Universe U and family of subsets $\mathcal{F} \subseteq 2^{U}$
P: $|U|$
Q: Is there a coloring $\mathcal{C}: U \rightarrow\{\mathbf{B}, \mathbf{W}\}$ such that every set $X \in \mathcal{F}$ is split, i.e., contains a black and a white element?

- We show a cross-composition of Set Splitting into itself.
- We may assume that the universes are of the same size, hence we think of them as of one, common universe.

Application 1: Set Splitting

Set Splitting

I: Universe U and family of subsets $\mathcal{F} \subseteq 2^{U}$
P: $|U|$
Q: Is there a coloring $\mathcal{C}: U \rightarrow\{\mathbf{B}, \mathbf{W}\}$ such that every set $X \in \mathcal{F}$ is split, i.e., contains a black and a white element?

- We show a cross-composition of Set Splitting into itself.
- We may assume that the universes are of the same size, hence we think of them as of one, common universe.
- Assume that t is a power of 2 (by copying the instances).

Cross-composing into SET Splitting

Input: Instances $\left(U, \mathcal{F}^{i}\right)$
Output: Instance $\left(U^{*}, \mathcal{F}^{*}\right)$

Cross-composing into Set Splitting

Input: Instances $\left(U, \mathcal{F}^{i}\right)$
Output: Instance $\left(U^{*}, \mathcal{F}^{*}\right)$

joint universe U

Cross-composing into SET Splitting

INSTANCE SELECTOR

$1+\log t$ pairs of vertices
Input: Instances $\left(U, \mathcal{F}^{i}\right)$
Output: Instance $\left(U^{*}, \mathcal{F}^{*}\right)$

joint universe U

Cross-composing into SET Splitting

INSTANCE SELECTOR

$1+\log t$ pairs of vertices
Input: Instances $\left(U, \mathcal{F}^{i}\right)$
Output: Instance $\left(U^{*}, \mathcal{F}^{*}\right)$
$\left|U^{*}\right|=|U|+2 \log t+2$

PLAYGROUND
joint universe U

Cross-composing into SET Splitting

INSTANCE SELECTOR

$1+\log t$ pairs of vertices

```
Input: Instances (U, \mathcal{F}}\mp@subsup{}{}{i}
Output: Instance ( }\mp@subsup{U}{}{*},\mp@subsup{\mathcal{F}}{}{*}
|U*| = |U| +2 log}t+
    \mathcal{F}}\mp@subsup{}{}{*}\mathrm{ consists of:
```


PLAYGROUND
joint universe U

Cross-composing into Set Splitting

INSTANCE SELECTOR

$1+\log t$ pairs of vertices
Input: Instances $\left(U, \mathcal{F}^{i}\right)$
Output: Instance $\left(U^{*}, \mathcal{F}^{*}\right)$
$\left|U^{*}\right|=|U|+2 \log t+2$
\mathcal{F}^{*} consists of:
$1+\log t 2$-element sets for pairs,

joint universe U

Cross-composing into SET Splitting

INSTANCE SELECTOR

$1+\log t$ pairs of vertices
Input: Instances $\left(U, \mathcal{F}^{i}\right)$
Output: Instance $\left(U^{*}, \mathcal{F}^{*}\right)$
$\left|U^{*}\right|=|U|+2 \log t+2$
\mathcal{F}^{*} consists of:
$1+\log t$ 2-element sets for pairs,
$\forall X \in \mathcal{F}^{i}$, two sets X_{0}^{*}, X_{1}^{*}

joint universe U

Cross-composing into Set Splitting

INSTANCE SELECTOR

$1+\log t$ pairs of vertices
Input: Instances $\left(U, \mathcal{F}^{i}\right)$
Output: Instance $\left(U^{*}, \mathcal{F}^{*}\right)$
$\left|U^{*}\right|=|U|+2 \log t+2$
\mathcal{F}^{*} consists of:
$1+\log t 2$-element sets for pairs,
$\forall X \in \mathcal{F}^{i}$, two sets X_{0}^{*}, X_{1}^{*}

$X_{0}^{*}: \quad X$, left special vertex, and binary encoding of i in IS

joint universe U

Cross-composing into Set Splitting

INSTANCE SELECTOR

$1+\log t$ pairs of vertices
Input: Instances $\left(U, \mathcal{F}^{i}\right)$
Output: Instance $\left(U^{*}, \mathcal{F}^{*}\right)$
$\left|U^{*}\right|=|U|+2 \log t+2$
\mathcal{F}^{*} consists of:
$1+\log t$ 2-element sets for pairs,
$\forall X \in \mathcal{F}^{i}$, two sets X_{0}^{*}, X_{1}^{*}

$X_{0}^{*}: \quad X$, left special vertex, and binary encoding of i in IS
$X_{1}^{*}: \quad$ reverse X_{0}^{*} on IS

joint universe U

Cross-composing into Set Splitting

INSTANCE SELECTOR

$1+\log t$ pairs of vertices

```
    Input: Instances (U, \mathcal{F}}\mp@subsup{}{}{i}
```



```
    |U*| = |U| +2 log}t+
    F}\mp@subsup{\mathcal{F}}{}{*}\mathrm{ consists of:
1+\operatorname{log}t 2-element sets for pairs,
    \forallX\in \mathcal{F}
```


PLAYGROUND
joint universe U

Cross-composing into Set Splitting

INSTANCE SELECTOR

$1+\log t$ pairs of vertices

> Input: Instances $\left(U, \mathcal{F}^{i}\right)$
> Output: Instance $\left(U^{*}, \mathcal{F}^{*}\right)$
> $\left|U^{*}\right|=|U|+2 \log t+2$
> \mathcal{F}^{*} consists of:
> $1+\log t$ 2-element sets for pairs, $\forall X \in \mathcal{F}^{i}$, two sets X_{0}^{*}, X_{1}^{*}

Take any solution \mathcal{C}

There is exactly one index i with monochromatic parts from IS.

PLAYGROUND
joint universe U

Cross-composing into Set Splitting

INSTANCE SELECTOR

$1+\log t$ pairs of vertices

```
Input: Instances \(\left(U, \mathcal{F}^{i}\right)\)
Output: Instance \(\left(U^{*}, \mathcal{F}^{*}\right)\)
\(\left|U^{*}\right|=|U|+2 \log t+2\)
\(\mathcal{F}^{*}\) consists of:
\(1+\log t\) 2-element sets for pairs, \(\forall X \in \mathcal{F}^{i}\), two sets \(X_{0}^{*}, X_{1}^{*}\)
```

Take any solution \mathcal{C}

There is exactly one index i with monochromatic parts from IS.

PLAYGROUND

joint universe U

Cross-composing into Set Splitting

INSTANCE SELECTOR

$1+\log t$ pairs of vertices
Input: Instances $\left(U, \mathcal{F}^{i}\right)$
Output: Instance $\left(U^{*}, \mathcal{F}^{*}\right)$
$\left|U^{*}\right|=|U|+2 \log t+2$
\mathcal{F}^{*} consists of:
$1+\log t$ 2-element sets for pairs, $\forall X \in \mathcal{F}^{i}$, two sets X_{0}^{*}, X_{1}^{*}

Take any solution \mathcal{C}

There is exactly one index i with monochromatic parts from IS.

PLAYGROUND

joint universe U

Cross-composing into Set Splitting

INSTANCE SELECTOR

$1+\log t$ pairs of vertices
Input: Instances $\left(U, \mathcal{F}^{i}\right)$
Output: Instance $\left(U^{*}, \mathcal{F}^{*}\right)$
$\left|U^{*}\right|=|U|+2 \log t+2$
\mathcal{F}^{*} consists of:
$1+\log t$ 2-element sets for pairs, $\forall X \in \mathcal{F}^{i}$, two sets X_{0}^{*}, X_{1}^{*}

Take any solution \mathcal{C}

There is exactly one index i with monochromatic parts from IS.
\mathcal{C} on IS defines, which instance must be solved in PL

PLAYGROUND

joint universe U

Cross-composing into Set Splitting

INSTANCE SELECTOR

$1+\log t$ pairs of vertices

```
Input: Instances \(\left(U, \mathcal{F}^{i}\right)\)
Output: Instance \(\left(U^{*}, \mathcal{F}^{*}\right)\)
\(\left|U^{*}\right|=|U|+2 \log t+2\)
\(\mathcal{F}^{*}\) consists of:
\(1+\log t\) 2-element sets for pairs, \(\forall X \in \mathcal{F}^{i}\), two sets \(X_{0}^{*}, X_{1}^{*}\)
```


Take any solution \mathcal{C}

There is exactly one index i with monochromatic parts from IS.
$(\Leftarrow):$
$(\Rightarrow): \quad \mathcal{C}$ on IS defines, which instance must be solved in PL

If $\left(U, \mathcal{F}^{i}\right)$ is solvable, we set IS accordingly, and solve this instance in PL.

Remaining sets are split for free.

PLAYGROUND

joint universe U

SEt Splitting: wrap up

- Unparameterized Set Splitting cross-composes into Set Splitting parameterized by $|U|$.

SEt Splitting: wrap up

- Unparameterized Set Splitting cross-composes into Set Splitting parameterized by $|U|$.
- Unparameterized Set Splitting is NP-hard.

Set Splitting: wrap up

- Unparameterized Set Splitting cross-composes into Set Splitting parameterized by $|U|$.
- Unparameterized Set Splitting is NP-hard.
- Hence, Set Splitting parameterized by $|U|$ does not admit a polynomial kernel, unless NP \subseteq coNP/poly.

Set Splitting: wrap up

- Unparameterized Set Splitting cross-composes into Set Splitting parameterized by $|U|$.
- Unparameterized Set Splitting is NP-hard.
- Hence, Set Splitting parameterized by $|U|$ does not admit a polynomial kernel, unless NP \subseteq coNP/poly.
- Main lesson:

Set Splitting: wrap up

- Unparameterized Set Splitting cross-composes into Set Splitting parameterized by $|U|$.
- Unparameterized Set Splitting is NP-hard.
- Hence, Set Splitting parameterized by $|U|$ does not admit a polynomial kernel, unless NP \subseteq coNP/poly.
- Main lesson:
- Model the choice of the instance to be solved.

Set Splitting: wrap up

- Unparameterized Set Splitting cross-composes into Set Splitting parameterized by $|U|$.
- Unparameterized Set Splitting is NP-hard.
- Hence, Set Splitting parameterized by $|U|$ does not admit a polynomial kernel, unless NP \subseteq coNP/poly.
- Main lesson:
- Model the choice of the instance to be solved.
- Idea: choose $\log t$ bits of its index on an appropriate gadget.

Set Splitting: wrap up

- Unparameterized Set Splitting cross-composes into Set Splitting parameterized by $|U|$.
- Unparameterized Set Splitting is NP-hard.
- Hence, Set Splitting parameterized by $|U|$ does not admit a polynomial kernel, unless NP \subseteq coNP/poly.
- Main lesson:
- Model the choice of the instance to be solved.
- Idea: choose $\log t$ bits of its index on an appropriate gadget.
- Choice of the index makes the instance active, while the other instances are "switched off".

PPTs

- Idea: Hardness of kernelization can be transferred via reductions, similarly to NP-hardness.
- Idea: Hardness of kernelization can be transferred via reductions, similarly to NP-hardness.

Polynomial parameter transformation (PPT)

A polynomial parameter transformation from a parameterized problem P to a parameterized problem Q is a polynomial-time algorithm that transforms a given instance (x, k) of P into an equivalent instance $\left(x^{\prime}, k^{\prime}\right)$ of Q such that $k^{\prime}=\operatorname{poly}(k)$.

PPTs

- Idea: Hardness of kernelization can be transferred via reductions, similarly to NP-hardness.

Polynomial parameter transformation (PPT)

A polynomial parameter transformation from a parameterized problem P to a parameterized problem Q is a polynomial-time algorithm that transforms a given instance (x, k) of P into an equivalent instance $\left(x^{\prime}, k^{\prime}\right)$ of Q such that $k^{\prime}=\operatorname{poly}(k)$.

Observation

If problem P PPT-reduces to Q, and P does not admit a polynomial compression algorithm (into any language R), then neither does Q.

PPTs

- Idea: Hardness of kernelization can be transferred via reductions, similarly to NP-hardness.

Polynomial parameter transformation (PPT)

A polynomial parameter transformation from a parameterized problem P to a parameterized problem Q is a polynomial-time algorithm that transforms a given instance (x, k) of P into an equivalent instance $\left(x^{\prime}, k^{\prime}\right)$ of Q such that $k^{\prime}=\operatorname{poly}(k)$.

Observation

If problem P PPT-reduces to Q, and P does not admit a polynomial compression algorithm (into any language R), then neither does Q.

- Proof:

Compose the PPT with the assumed compression for Q.

Application 2: Steiner Tree

Steiner Tree

I: Graph G with terminals $T \subseteq V(G), k \in \mathbb{N}$
P: $\quad k+|T|$
Q: Is there a set $X \subseteq V(G) \backslash T$, such that $|X| \leqslant k$ and $G[T \cup X]$ is connected?

Application 2: Steiner Tree

Steiner Tree

I: \quad Graph G with terminals $T \subseteq V(G), k \in \mathbb{N}$
P: $\quad k+|T|$
Q: Is there a set $X \subseteq V(G) \backslash T$, such that $|X| \leqslant k$ and $G[T \cup X]$ is connected?

- We show that Steiner Tree has no polykernel (unless...) using a PPT from a auxiliary problem.

The auxiliary problem technique

- Introduce a simpler problem P, which is almost trivially compositional.
- Introduce a simpler problem P, which is almost trivially compositional.
- Then design a PPT from P to the target problem.
- Introduce a simpler problem P, which is almost trivially compositional.
- Then design a PPT from P to the target problem.
- Idea: Move the weight of the proof to the transformation and the actual definition of P.
- Introduce a simpler problem P, which is almost trivially compositional.
- Then design a PPT from P to the target problem.
- Idea: Move the weight of the proof to the transformation and the actual definition of P.
- High level: Extract the essence of the original problem into the auxiliary problem.

Colorful Graph Motif

Colorful Graph Motif
I: Graph G and a coloring function $\phi: V(G) \rightarrow\{1,2, \ldots, k\}$
P: k
Q: Does there exists a connected subgraph of G that contains exactly one vertex of each color?

Colorful Graph Motif

Colorful Graph Motif

I: Graph G and a coloring function $\phi: V(G) \rightarrow\{1,2, \ldots, k\}$
P: k
Q: Does there exists a connected subgraph of G that contains exactly one vertex of each color?

About CGM

- The problem is NP-hard even on trees.

About CGM

- The problem is NP-hard even on trees.
- FPT algorithms for various variants using the algebraic approach.

About CGM

- The problem is NP-hard even on trees.
- FPT algorithms for various variants using the algebraic approach.
- Composition: Take the disjoint union of instances, reuse colors.

About CGM

- The problem is NP-hard even on trees.
- FPT algorithms for various variants using the algebraic approach.
- Composition: Take the disjoint union of instances, reuse colors.
- There is a connected colorful motif in the composed instance iff there is one in any of the input instances.

About CGM

- The problem is NP-hard even on trees.
- FPT algorithms for various variants using the algebraic approach.
- Composition: Take the disjoint union of instances, reuse colors.
- There is a connected colorful motif in the composed instance iff there is one in any of the input instances.
- Corollary: no polykernel for CGM unless NP \subseteq coNP/poly.

About CGM

- The problem is NP-hard even on trees.
- FPT algorithms for various variants using the algebraic approach.
- Composition: Take the disjoint union of instances, reuse colors.
- There is a connected colorful motif in the composed instance iff there is one in any of the input instances.
- Corollary: no polykernel for CGM unless NP \subseteq coNP/poly.
- Now: PPT from CGM to ST.

From CGM to ST

Attach a terminal to every color class.
Give budget k for connecting nodes.

Attach a terminal to every color class.
Give budget k for connecting nodes.

CGM: wrap up

- CGM has no polynomial kernel, unless NP \subseteq coNP/poly.

CGM: wrap up

- CGM has no polynomial kernel, unless NP \subseteq coNP/poly.
- CGM PPT-reduces to Steiner Tree par. by $k+|T|$.

CGM: wrap up

- CGM has no polynomial kernel, unless NP \subseteq coNP/poly.
- CGM PPT-reduces to Steiner Tree par. by $k+|T|$.
- Hence Steiner Tree par. by $k+|T|$ does not admit a polynomial kernel, unless NP \subseteq coNP/poly.

CGM: wrap up

- CGM has no polynomial kernel, unless NP \subseteq coNP/poly.
- CGM PPT-reduces to Steiner Tree par. by $k+|T|$.
- Hence Steiner Tree par. by $k+|T|$ does not admit a polynomial kernel, unless NP \subseteq coNP/poly.
- Note: Composition for CGM is far simpler than trying to do this directly for Steiner Tree.

AND-compositions

- In the compositionality framework, we used the OR function to compose instances.

AND-compositions

- In the compositionality framework, we used the OR function to compose instances.
- What about replacing it with, say, AND?

AND-compositions

- In the compositionality framework, we used the OR function to compose instances.
- What about replacing it with, say, AND?
- AND-distillation, AND-(cross)-composition: Same as before, but with AND instead of OR.

AND-compositions

- In the compositionality framework, we used the OR function to compose instances.
- What about replacing it with, say, AND?
- AND-distillation, AND-(cross)-composition: Same as before, but with AND instead of OR.
- Example of problem admitting an AND-composition: Treewidth.

AND-compositions

- In the compositionality framework, we used the OR function to compose instances.
- What about replacing it with, say, AND?
- AND-distillation, AND-(cross)-composition: Same as before, but with AND instead of OR.
- Example of problem admitting an AND-composition: Treewidth.
- AND-conjecture:

If 3 SAT has an AND-distillation, then $\mathbf{N P} \subseteq$ coNP/poly.

AND-compositions

- In the compositionality framework, we used the OR function to compose instances.
- What about replacing it with, say, AND?
- AND-distillation, AND-(cross)-composition: Same as before, but with AND instead of OR.
- Example of problem admitting an AND-composition: Treewidth.
- AND-conjecture:

If 3 SAT has an AND-distillation, then $\mathbf{N P} \subseteq$ coNP/poly.

- The proof of Fortnow and Santhanam fails for AND.

AND-compositions

- In the compositionality framework, we used the OR function to compose instances.
- What about replacing it with, say, AND?
- AND-distillation, AND-(cross)-composition: Same as before, but with AND instead of OR.
- Example of problem admitting an AND-composition: Treewidth.
- AND-conjecture:

If 3 SAT has an AND-distillation, then $\mathbf{N P} \subseteq$ coNP/poly.

- The proof of Fortnow and Santhanam fails for AND.
- The conjecture was proved by Drucker in 2012.

AND-compositions

- In the compositionality framework, we used the OR function to compose instances.
- What about replacing it with, say, AND?
- AND-distillation, AND-(cross)-composition: Same as before, but with AND instead of OR.
- Example of problem admitting an AND-composition: Treewidth.
- AND-conjecture:

If 3 SAT has an AND-distillation, then $\mathbf{N P} \subseteq$ coNP/poly.

- The proof of Fortnow and Santhanam fails for AND.
- The conjecture was proved by Drucker in 2012.
- Corollary: The whole framework works for AND instead of OR.

Weak compositions

- Idea: Inspect the proof of FS to get precise estimates.

Weak compositions

- Idea: Inspect the proof of FS to get precise estimates.
- Cor: A framework for lower bounds on kernel sizes.

Weak compositions

- Idea: Inspect the proof of FS to get precise estimates.
- Cor: A framework for lower bounds on kernel sizes.

Weak cross-composition

A weak cross-composition of dimension d from an unpar. problem Q to a par. problem L, is an algorithm that, given \sim-equivalent strings $x_{1}, x_{2}, \ldots, x_{t}$ for some polynomial equivalence relation \sim, in time poly $\left(t+\sum_{i=1}^{t}\left|x_{i}\right|\right)$ produces one instance $\left(y, k^{\star}\right)$ such that

- $\left(y, k^{\star}\right) \in L$ iff $x_{i} \in Q$ for at least one $i=1,2, \ldots, t$,
- $k^{\star}=t^{1 / d} \cdot \operatorname{poly}\left(\max _{i=1}^{t}\left|x_{i}\right|\right)$.

Weak compositions

- Idea: Inspect the proof of FS to get precise estimates.
- Cor: A framework for lower bounds on kernel sizes.

Weak cross-composition

A weak cross-composition of dimension d from an unpar. problem Q to a par. problem L, is an algorithm that, given \sim-equivalent strings $x_{1}, x_{2}, \ldots, x_{t}$ for some polynomial equivalence relation \sim, in time poly $\left(t+\sum_{i=1}^{t}\left|x_{i}\right|\right)$ produces one instance $\left(y, k^{\star}\right)$ such that

- $\left(y, k^{\star}\right) \in L$ iff $x_{i} \in Q$ for at least one $i=1,2, \ldots, t$,
- $k^{\star}=t^{1 / d} \cdot \operatorname{poly}\left(\max _{i=1}^{t}\left|x_{i}\right|\right)$.

Weak cross-composition theorem

Suppose NP \nsubseteq coNP/poly. If some NP-hard problem Q has a cross-composition of dimension d into L, then L does not admit a compression into any language R with bitsize $\mathcal{O}\left(k^{d-\varepsilon}\right)$ for any $\varepsilon>0$.

Weak compositions

- Idea: Inspect the proof of FS to get precise estimates.
- Cor: A framework for lower bounds on kernel sizes.

Weak cross-composition

A weak cross-composition of dimension d from an unpar. problem Q to a par. problem L, is an algorithm that, given \sim-equivalent strings $x_{1}, x_{2}, \ldots, x_{t}$ for some polynomial equivalence relation \sim, in time poly $\left(t+\sum_{i=1}^{t}\left|x_{i}\right|\right)$ produces one instance $\left(y, k^{\star}\right)$ such that

- $\left(y, k^{\star}\right) \in L$ iff $x_{i} \in Q$ for at least one $i=1,2, \ldots, t$,
- $k^{\star}=t^{1 / d} \cdot \operatorname{poly}\left(\max _{i=1}^{t}\left|x_{i}\right|\right)$.

Weak cross-composition theorem

Suppose NP \nsubseteq coNP/poly. If some NP-hard problem Q has a cross-composition of dimension d into L, then L does not admit a compression into any language R with bitsize $\mathcal{O}\left(k^{d-\varepsilon}\right)$ for any $\varepsilon>0$.

- Ex: Vertex Cover has no compression into bitsize $\mathcal{O}\left(k^{2-\varepsilon}\right)$.

Weak compositions

- Idea: Inspect the proof of FS to get precise estimates.
- Cor: A framework for lower bounds on kernel sizes.

Weak cross-composition

A weak cross-composition of dimension d from an unpar. problem Q to a par. problem L, is an algorithm that, given \sim-equivalent strings $x_{1}, x_{2}, \ldots, x_{t}$ for some polynomial equivalence relation \sim, in time poly $\left(t+\sum_{i=1}^{t}\left|x_{i}\right|\right)$ produces one instance $\left(y, k^{\star}\right)$ such that

- $\left(y, k^{\star}\right) \in L$ iff $x_{i} \in Q$ for at least one $i=1,2, \ldots, t$,
- $k^{\star}=t^{1 / d} \cdot \operatorname{poly}\left(\max _{i=1}^{t}\left|x_{i}\right|\right)$.

Weak cross-composition theorem

Suppose NP \nsubseteq coNP/poly. If some NP-hard problem Q has a cross-composition of dimension d into L, then L does not admit a compression into any language R with bitsize $\mathcal{O}\left(k^{d-\varepsilon}\right)$ for any $\varepsilon>0$.

- Ex: Vertex Cover has no compression into bitsize $\mathcal{O}\left(k^{2-\varepsilon}\right)$.
- Note: The $2 k$-kernel for VC needs $\mathcal{O}\left(k^{2}\right)$ bits for the encoding.

Conclusions

- Composition: a versatile framework for proving lower bounds for polynomial kernelization.

Conclusions

- Composition: a versatile framework for proving lower bounds for polynomial kernelization.
- Message 1: What is hard for kernelization is unbounded choice.

Conclusions

- Composition: a versatile framework for proving lower bounds for polynomial kernelization.
- Message 1: What is hard for kernelization is unbounded choice.
- Message 2: Turning intuition into a lower bound via cross-composition often needs a good understanding of the problem.

Conclusions

- Composition: a versatile framework for proving lower bounds for polynomial kernelization.
- Message 1: What is hard for kernelization is unbounded choice.
- Message 2: Turning intuition into a lower bound via cross-composition often needs a good understanding of the problem.
- Turing kernelization: A Turing kernel is a poly-time algorithm that has oracle access to solving instances of size poly (k).

Conclusions

- Composition: a versatile framework for proving lower bounds for polynomial kernelization.
- Message 1: What is hard for kernelization is unbounded choice.
- Message 2: Turning intuition into a lower bound via cross-composition often needs a good understanding of the problem.
- Turing kernelization: A Turing kernel is a poly-time algorithm that has oracle access to solving instances of size poly (k).
- Composition framework does not apply.

Conclusions

- Composition: a versatile framework for proving lower bounds for polynomial kernelization.
- Message 1: What is hard for kernelization is unbounded choice.
- Message 2: Turning intuition into a lower bound via cross-composition often needs a good understanding of the problem.
- Turing kernelization: A Turing kernel is a poly-time algorithm that has oracle access to solving instances of size poly (k).
- Composition framework does not apply.
- There are problems that have polynomial Turing kernels, but no polynomial kernel under NP \nsubseteq coNP/poly.

Conclusions

- Composition: a versatile framework for proving lower bounds for polynomial kernelization.
- Message 1: What is hard for kernelization is unbounded choice.
- Message 2: Turning intuition into a lower bound via cross-composition often needs a good understanding of the problem.
- Turing kernelization: A Turing kernel is a poly-time algorithm that has oracle access to solving instances of size poly (k).
- Composition framework does not apply.
- There are problems that have polynomial Turing kernels, but no polynomial kernel under NP \nsubseteq coNP/poly.
- Open: A technique for ruling out Turing kernels.

Conclusions

- Composition: a versatile framework for proving lower bounds for polynomial kernelization.
- Message 1: What is hard for kernelization is unbounded choice.
- Message 2: Turning intuition into a lower bound via cross-composition often needs a good understanding of the problem.
- Turing kernelization: A Turing kernel is a poly-time algorithm that has oracle access to solving instances of size poly (k).
- Composition framework does not apply.
- There are problems that have polynomial Turing kernels, but no polynomial kernel under NP \nsubseteq coNP/poly.
- Open: A technique for ruling out Turing kernels.
- Complexity theory for kernelization: Using PPT as reductions, one can build a hierarchy of complexity classes [HKSWW].

Conclusions

- Composition: a versatile framework for proving lower bounds for polynomial kernelization.
- Message 1: What is hard for kernelization is unbounded choice.
- Message 2: Turning intuition into a lower bound via cross-composition often needs a good understanding of the problem.
- Turing kernelization: A Turing kernel is a poly-time algorithm that has oracle access to solving instances of size poly (k).
- Composition framework does not apply.
- There are problems that have polynomial Turing kernels, but no polynomial kernel under NP \nsubseteq coNP/poly.
- Open: A technique for ruling out Turing kernels.
- Complexity theory for kernelization: Using PPT as reductions, one can build a hierarchy of complexity classes [HKSWW].
- Thank you for your attention!

Tikz faces based on a code by Raoul Kessels, http://www.texample.net/tikz/examples/emoticons/,
under Creative Commons Attribution 2.5 license (CC BY 2.5)

