
Lower bounds for polynomial kernelization

Micha l Pilipczuk

Institute of Informatics, University of Warsaw, Poland

Parameterized Complexity Summer School

Vienna, September 2nd, 2017

Micha l Pilipczuk Kernelization lower bounds 1/33

Kernelization — recap

instance of L

k

instance of L

k

instance of L

P-time

instance of L
size 6 f (k)

Micha l Pilipczuk Kernelization lower bounds 2/33

Kernelization — recap

instance of L

k

instance of L

k

instance of L

P-time

instance of L
size 6 f (k)

Micha l Pilipczuk Kernelization lower bounds 2/33

Kernelization — recap

instance of L

k

instance of L

k

instance of L

P-time

instance of L
size 6 f (k)

Micha l Pilipczuk Kernelization lower bounds 2/33

Kernelization — recap

instance of L

k

instance of L

k

instance of L

P-time

instance of L
size 6 f (k)

Micha l Pilipczuk Kernelization lower bounds 2/33

Kernelization — recap

instance of L

k

instance of L

k

instance of L

P-time

instance of L
size 6 f (k)

Micha l Pilipczuk Kernelization lower bounds 2/33

Background in complexity theory

Unparameterized problems

⇔
Languages over Σ, for a finite alphabet Σ

⇔
Subsets of Σ?

Parameterized problems

⇔
Sets of pairs (x , k), where x ∈ Σ? and k is a nonnegative integer

Unparameterized variant: k is appended to x in unary.

Kernelization algorithm takes on input an instance (x , k), and
outputs an instance (x ′, k ′) such that

(x , k) ∈ L⇔ (x ′, k ′) ∈ L and |x ′|+ k ′ 6 f (k)

for some computable function f .

Micha l Pilipczuk Kernelization lower bounds 3/33

Background in complexity theory

Unparameterized problems

⇔
Languages over Σ, for a finite alphabet Σ

⇔
Subsets of Σ?

Parameterized problems

⇔
Sets of pairs (x , k), where x ∈ Σ? and k is a nonnegative integer

Unparameterized variant: k is appended to x in unary.

Kernelization algorithm takes on input an instance (x , k), and
outputs an instance (x ′, k ′) such that

(x , k) ∈ L⇔ (x ′, k ′) ∈ L and |x ′|+ k ′ 6 f (k)

for some computable function f .

Micha l Pilipczuk Kernelization lower bounds 3/33

Background in complexity theory

Unparameterized problems

⇔
Languages over Σ, for a finite alphabet Σ

⇔
Subsets of Σ?

Parameterized problems

⇔
Sets of pairs (x , k), where x ∈ Σ? and k is a nonnegative integer

Unparameterized variant: k is appended to x in unary.

Kernelization algorithm takes on input an instance (x , k), and
outputs an instance (x ′, k ′) such that

(x , k) ∈ L⇔ (x ′, k ′) ∈ L and |x ′|+ k ′ 6 f (k)

for some computable function f .

Micha l Pilipczuk Kernelization lower bounds 3/33

Background in complexity theory

Unparameterized problems

⇔
Languages over Σ, for a finite alphabet Σ

⇔
Subsets of Σ?

Parameterized problems

⇔
Sets of pairs (x , k), where x ∈ Σ? and k is a nonnegative integer

Unparameterized variant: k is appended to x in unary.

Kernelization algorithm takes on input an instance (x , k), and
outputs an instance (x ′, k ′) such that

(x , k) ∈ L⇔ (x ′, k ′) ∈ L and |x ′|+ k ′ 6 f (k)

for some computable function f .

Micha l Pilipczuk Kernelization lower bounds 3/33

Kernelization and FPT

If a decidable problem has a kernelization algorithm, then it is FPT.

Any FPT problem admits a kernelization algorithm:

Let (x , k) be the input instance.
If |x | 6 f (k), then we already have a kernel.
Otherwise f (k) · |x |c = O(|x |c+1).

Question of existence of any kernel is equivalent to being FPT.

We are interested in polynomial kernels, where f is a polynomial.

Before 2008, no tool to classify FPT problems wrt. whether they
have polykernels or not.

Micha l Pilipczuk Kernelization lower bounds 4/33

Kernelization and FPT

If a decidable problem has a kernelization algorithm, then it is FPT.

Any FPT problem admits a kernelization algorithm:

Let (x , k) be the input instance.
If |x | 6 f (k), then we already have a kernel.
Otherwise f (k) · |x |c = O(|x |c+1).

Question of existence of any kernel is equivalent to being FPT.

We are interested in polynomial kernels, where f is a polynomial.

Before 2008, no tool to classify FPT problems wrt. whether they
have polykernels or not.

Micha l Pilipczuk Kernelization lower bounds 4/33

Kernelization and FPT

If a decidable problem has a kernelization algorithm, then it is FPT.

Any FPT problem admits a kernelization algorithm:

Let (x , k) be the input instance.

If |x | 6 f (k), then we already have a kernel.
Otherwise f (k) · |x |c = O(|x |c+1).

Question of existence of any kernel is equivalent to being FPT.

We are interested in polynomial kernels, where f is a polynomial.

Before 2008, no tool to classify FPT problems wrt. whether they
have polykernels or not.

Micha l Pilipczuk Kernelization lower bounds 4/33

Kernelization and FPT

If a decidable problem has a kernelization algorithm, then it is FPT.

Any FPT problem admits a kernelization algorithm:

Let (x , k) be the input instance.
If |x | 6 f (k), then we already have a kernel.

Otherwise f (k) · |x |c = O(|x |c+1).

Question of existence of any kernel is equivalent to being FPT.

We are interested in polynomial kernels, where f is a polynomial.

Before 2008, no tool to classify FPT problems wrt. whether they
have polykernels or not.

Micha l Pilipczuk Kernelization lower bounds 4/33

Kernelization and FPT

If a decidable problem has a kernelization algorithm, then it is FPT.

Any FPT problem admits a kernelization algorithm:

Let (x , k) be the input instance.
If |x | 6 f (k), then we already have a kernel.
Otherwise f (k) · |x |c = O(|x |c+1).

Question of existence of any kernel is equivalent to being FPT.

We are interested in polynomial kernels, where f is a polynomial.

Before 2008, no tool to classify FPT problems wrt. whether they
have polykernels or not.

Micha l Pilipczuk Kernelization lower bounds 4/33

Kernelization and FPT

If a decidable problem has a kernelization algorithm, then it is FPT.

Any FPT problem admits a kernelization algorithm:

Let (x , k) be the input instance.
If |x | 6 f (k), then we already have a kernel.
Otherwise f (k) · |x |c = O(|x |c+1).

Question of existence of any kernel is equivalent to being FPT.

We are interested in polynomial kernels, where f is a polynomial.

Before 2008, no tool to classify FPT problems wrt. whether they
have polykernels or not.

Micha l Pilipczuk Kernelization lower bounds 4/33

Kernelization and FPT

If a decidable problem has a kernelization algorithm, then it is FPT.

Any FPT problem admits a kernelization algorithm:

Let (x , k) be the input instance.
If |x | 6 f (k), then we already have a kernel.
Otherwise f (k) · |x |c = O(|x |c+1).

Question of existence of any kernel is equivalent to being FPT.

We are interested in polynomial kernels, where f is a polynomial.

Before 2008, no tool to classify FPT problems wrt. whether they
have polykernels or not.

Micha l Pilipczuk Kernelization lower bounds 4/33

Kernelization and FPT

If a decidable problem has a kernelization algorithm, then it is FPT.

Any FPT problem admits a kernelization algorithm:

Let (x , k) be the input instance.
If |x | 6 f (k), then we already have a kernel.
Otherwise f (k) · |x |c = O(|x |c+1).

Question of existence of any kernel is equivalent to being FPT.

We are interested in polynomial kernels, where f is a polynomial.

Before 2008, no tool to classify FPT problems wrt. whether they
have polykernels or not.

Micha l Pilipczuk Kernelization lower bounds 4/33

Motivating intuition

Consider the k-Path problem: verify whether the input graph
contains a simple path on k vertices.

Suppose for a moment that k-Path admits a kernelization
algorithm that, say, produces kernels with at most k3 vertices.

Take t = k7 instances (G1, k), (G2, k), . . . , (Gt , k).

Let H be a disjoint union of G1,G2, . . . ,Gt . Then the answer to
(H, k) is YES if and only if the answer to any (Gi , k) is YES.

Apply kernelization to (H, k) obtaining an instance with k3 vertices,
encodable in k6 bits.

Intuition

The final number of bits is much less than the number input instances.
Most of the instances have to be discarded completely.

Micha l Pilipczuk Kernelization lower bounds 5/33

Motivating intuition

Consider the k-Path problem: verify whether the input graph
contains a simple path on k vertices.

Suppose for a moment that k-Path admits a kernelization
algorithm that, say, produces kernels with at most k3 vertices.

Take t = k7 instances (G1, k), (G2, k), . . . , (Gt , k).

Let H be a disjoint union of G1,G2, . . . ,Gt . Then the answer to
(H, k) is YES if and only if the answer to any (Gi , k) is YES.

Apply kernelization to (H, k) obtaining an instance with k3 vertices,
encodable in k6 bits.

Intuition

The final number of bits is much less than the number input instances.
Most of the instances have to be discarded completely.

Micha l Pilipczuk Kernelization lower bounds 5/33

Motivating intuition

Consider the k-Path problem: verify whether the input graph
contains a simple path on k vertices.

Suppose for a moment that k-Path admits a kernelization
algorithm that, say, produces kernels with at most k3 vertices.

Take t = k7 instances (G1, k), (G2, k), . . . , (Gt , k).

Let H be a disjoint union of G1,G2, . . . ,Gt . Then the answer to
(H, k) is YES if and only if the answer to any (Gi , k) is YES.

Apply kernelization to (H, k) obtaining an instance with k3 vertices,
encodable in k6 bits.

Intuition

The final number of bits is much less than the number input instances.
Most of the instances have to be discarded completely.

Micha l Pilipczuk Kernelization lower bounds 5/33

Motivating intuition

Consider the k-Path problem: verify whether the input graph
contains a simple path on k vertices.

Suppose for a moment that k-Path admits a kernelization
algorithm that, say, produces kernels with at most k3 vertices.

Take t = k7 instances (G1, k), (G2, k), . . . , (Gt , k).

Let H be a disjoint union of G1,G2, . . . ,Gt . Then the answer to
(H, k) is YES if and only if the answer to any (Gi , k) is YES.

Apply kernelization to (H, k) obtaining an instance with k3 vertices,
encodable in k6 bits.

Intuition

The final number of bits is much less than the number input instances.
Most of the instances have to be discarded completely.

Micha l Pilipczuk Kernelization lower bounds 5/33

Motivating intuition

Consider the k-Path problem: verify whether the input graph
contains a simple path on k vertices.

Suppose for a moment that k-Path admits a kernelization
algorithm that, say, produces kernels with at most k3 vertices.

Take t = k7 instances (G1, k), (G2, k), . . . , (Gt , k).

Let H be a disjoint union of G1,G2, . . . ,Gt . Then the answer to
(H, k) is YES if and only if the answer to any (Gi , k) is YES.

Apply kernelization to (H, k) obtaining an instance with k3 vertices,
encodable in k6 bits.

Intuition

The final number of bits is much less than the number input instances.
Most of the instances have to be discarded completely.

Micha l Pilipczuk Kernelization lower bounds 5/33

Motivating intuition

Consider the k-Path problem: verify whether the input graph
contains a simple path on k vertices.

Suppose for a moment that k-Path admits a kernelization
algorithm that, say, produces kernels with at most k3 vertices.

Take t = k7 instances (G1, k), (G2, k), . . . , (Gt , k).

Let H be a disjoint union of G1,G2, . . . ,Gt . Then the answer to
(H, k) is YES if and only if the answer to any (Gi , k) is YES.

Apply kernelization to (H, k) obtaining an instance with k3 vertices,
encodable in k6 bits.

Intuition

The final number of bits is much less than the number input instances.
Most of the instances have to be discarded completely.

Micha l Pilipczuk Kernelization lower bounds 5/33

Kernelization and Compression

KERNELIZATION

k

instance of L

P-time

instance of L
size 6 p(k)

COMPRESSION

k

instance of L

P-time
?

instance of R (any)
size 6 p(k)

01000100
01010101
01010000
01000001

instance of R (any)
bitsize 6 p(k)

Micha l Pilipczuk Kernelization lower bounds 6/33

Kernelization and Compression

KERNELIZATION

k

instance of L

P-time

instance of L
size 6 p(k)

COMPRESSION

k

instance of L

P-time
?

instance of R (any)
size 6 p(k)

01000100
01010101
01010000
01000001

instance of R (any)
bitsize 6 p(k)

Micha l Pilipczuk Kernelization lower bounds 6/33

Kernelization and Compression

KERNELIZATION

k

instance of L

P-time

instance of L
size 6 p(k)

COMPRESSION

k

instance of L

P-time
?

instance of R (any)
size 6 p(k)

01000100
01010101
01010000
01000001

instance of R (any)
bitsize 6 p(k)

Micha l Pilipczuk Kernelization lower bounds 6/33

Kernelization and Compression

KERNELIZATION

k

instance of L

P-time

instance of L
size 6 p(k)

COMPRESSION

k

instance of L

P-time

?

instance of R (any)
size 6 p(k)

01000100
01010101
01010000
01000001

instance of R (any)
bitsize 6 p(k)

Micha l Pilipczuk Kernelization lower bounds 6/33

Kernelization and Compression

Intuition: In compression we only care about shrinking the size of
the instance to a small size without mixing YES- and NO-instances.

A polynomial kernelization is always a polynomial compression.

A polynomial compression can be turned into a polynomial
kernelization provided that there is a P-reduction from R to L.

For instance, when R ∈ NP and L is NP-hard.

Note: There are examples when a poly-compression is known but a
poly-kernel is not known, because it is unclear whether R is in NP.

Micha l Pilipczuk Kernelization lower bounds 7/33

Kernelization and Compression

Intuition: In compression we only care about shrinking the size of
the instance to a small size without mixing YES- and NO-instances.

A polynomial kernelization is always a polynomial compression.

A polynomial compression can be turned into a polynomial
kernelization provided that there is a P-reduction from R to L.

For instance, when R ∈ NP and L is NP-hard.

Note: There are examples when a poly-compression is known but a
poly-kernel is not known, because it is unclear whether R is in NP.

Micha l Pilipczuk Kernelization lower bounds 7/33

Kernelization and Compression

Intuition: In compression we only care about shrinking the size of
the instance to a small size without mixing YES- and NO-instances.

A polynomial kernelization is always a polynomial compression.

A polynomial compression can be turned into a polynomial
kernelization provided that there is a P-reduction from R to L.

For instance, when R ∈ NP and L is NP-hard.

Note: There are examples when a poly-compression is known but a
poly-kernel is not known, because it is unclear whether R is in NP.

Micha l Pilipczuk Kernelization lower bounds 7/33

Kernelization and Compression

Intuition: In compression we only care about shrinking the size of
the instance to a small size without mixing YES- and NO-instances.

A polynomial kernelization is always a polynomial compression.

A polynomial compression can be turned into a polynomial
kernelization provided that there is a P-reduction from R to L.

For instance, when R ∈ NP and L is NP-hard.

Note: There are examples when a poly-compression is known but a
poly-kernel is not known, because it is unclear whether R is in NP.

Micha l Pilipczuk Kernelization lower bounds 7/33

Kernelization and Compression

Intuition: In compression we only care about shrinking the size of
the instance to a small size without mixing YES- and NO-instances.

A polynomial kernelization is always a polynomial compression.

A polynomial compression can be turned into a polynomial
kernelization provided that there is a P-reduction from R to L.

For instance, when R ∈ NP and L is NP-hard.

Note: There are examples when a poly-compression is known but a
poly-kernel is not known, because it is unclear whether R is in NP.

Micha l Pilipczuk Kernelization lower bounds 7/33

OR-distillation

Let L,R be unparameterized languages.

OR-distillation of L into R

Input: Words x1, x2, . . . , xt , each of length at most k.

Time: poly(t +
∑t

i=1 |xi |).
Output: One word y such that

(a) |y | = poly(k), and
(b) y ∈ R if and only if xi ∈ L for at least one i .

Micha l Pilipczuk Kernelization lower bounds 8/33

OR-distillation

Let L,R be unparameterized languages.

OR-distillation of L into R

Input: Words x1, x2, . . . , xt , each of length at most k.

Time: poly(t +
∑t

i=1 |xi |).
Output: One word y such that

(a) |y | = poly(k), and
(b) y ∈ R if and only if xi ∈ L for at least one i .

Micha l Pilipczuk Kernelization lower bounds 8/33

OR-distillation on picture

t instances︷ ︸︸ ︷
6 k6 k6 k6 k6 k6 k6 k6 k6 k

P-time

6 poly(k)

Intuition: Necessary loss of information Contradiction for an NP-hard L

Define OR-L = {x1#x2# . . .#xt : xi ∈ L for at least one i}.
OR-distillation L → R is a polynomial compression OR-L/max |xi | → R

Micha l Pilipczuk Kernelization lower bounds 9/33

OR-distillation on picture

t instances︷ ︸︸ ︷
6 k6 k6 k6 k6 k6 k6 k6 k6 k

P-time

6 poly(k)

Intuition: Necessary loss of information Contradiction for an NP-hard L

Define OR-L = {x1#x2# . . .#xt : xi ∈ L for at least one i}.
OR-distillation L → R is a polynomial compression OR-L/max |xi | → R

Micha l Pilipczuk Kernelization lower bounds 9/33

OR-distillation on picture

t instances︷ ︸︸ ︷
6 k6 k6 k6 k6 k6 k6 k6 k6 k

P-time

6 poly(k)

Intuition: Necessary loss of information Contradiction for an NP-hard L

Define OR-L = {x1#x2# . . .#xt : xi ∈ L for at least one i}.
OR-distillation L → R is a polynomial compression OR-L/max |xi | → R

Micha l Pilipczuk Kernelization lower bounds 9/33

OR-distillation on picture

t instances︷ ︸︸ ︷
6 k6 k6 k6 k6 k6 k6 k6 k6 k

P-time

6 poly(k)

Intuition: Necessary loss of information Contradiction for an NP-hard L

Define OR-L = {x1#x2# . . .#xt : xi ∈ L for at least one i}.
OR-distillation L → R is a polynomial compression OR-L/max |xi | → R

Micha l Pilipczuk Kernelization lower bounds 9/33

OR-distillation on picture

t instances︷ ︸︸ ︷
6 k6 k6 k6 k6 k6 k6 k6 k6 k

P-time

6 poly(k)

Intuition: Necessary loss of information Contradiction for an NP-hard L

Define OR-L = {x1#x2# . . .#xt : xi ∈ L for at least one i}.
OR-distillation L → R is a polynomial compression OR-L/max |xi | → R

Micha l Pilipczuk Kernelization lower bounds 9/33

OR-distillation on picture

t instances︷ ︸︸ ︷
6 k6 k6 k6 k6 k6 k6 k6 k6 k

P-time

6 poly(k)

Intuition: Necessary loss of information Contradiction for an NP-hard L

Define OR-L = {x1#x2# . . .#xt : xi ∈ L for at least one i}.
OR-distillation L → R is a polynomial compression OR-L/max |xi | → R

Micha l Pilipczuk Kernelization lower bounds 9/33

Backbone theorem

OR-distillation theorem [Fortnow, Santhanam; 2008]

SAT does not admit an OR-distillation algorithm into any language R,
unless NP ⊆ coNP/poly.

Corollary

No NP-hard problem admits an OR-distillation algorithm into any
language R, unless NP ⊆ coNP/poly.

Assumption NP ⊆ coNP/poly may seem mysterious.

Intuition: Verifying proofs in P-time cannot be turned into verifying
counterexamples in P-time, even if we allow polynomial advice.
NP ⊆ coNP/poly implies PH = ΣP

3 .
Not as bad as P = NP, but still considered very unlikely.

The proof is very short, but very tricky.

Micha l Pilipczuk Kernelization lower bounds 10/33

Backbone theorem

OR-distillation theorem [Fortnow, Santhanam; 2008]

SAT does not admit an OR-distillation algorithm into any language R,
unless NP ⊆ coNP/poly.

Corollary

No NP-hard problem admits an OR-distillation algorithm into any
language R, unless NP ⊆ coNP/poly.

Assumption NP ⊆ coNP/poly may seem mysterious.

Intuition: Verifying proofs in P-time cannot be turned into verifying
counterexamples in P-time, even if we allow polynomial advice.
NP ⊆ coNP/poly implies PH = ΣP

3 .
Not as bad as P = NP, but still considered very unlikely.

The proof is very short, but very tricky.

Micha l Pilipczuk Kernelization lower bounds 10/33

Backbone theorem

OR-distillation theorem [Fortnow, Santhanam; 2008]

SAT does not admit an OR-distillation algorithm into any language R,
unless NP ⊆ coNP/poly.

Corollary

No NP-hard problem admits an OR-distillation algorithm into any
language R, unless NP ⊆ coNP/poly.

Assumption NP ⊆ coNP/poly may seem mysterious.

Intuition: Verifying proofs in P-time cannot be turned into verifying
counterexamples in P-time, even if we allow polynomial advice.
NP ⊆ coNP/poly implies PH = ΣP

3 .
Not as bad as P = NP, but still considered very unlikely.

The proof is very short, but very tricky.

Micha l Pilipczuk Kernelization lower bounds 10/33

Backbone theorem

OR-distillation theorem [Fortnow, Santhanam; 2008]

SAT does not admit an OR-distillation algorithm into any language R,
unless NP ⊆ coNP/poly.

Corollary

No NP-hard problem admits an OR-distillation algorithm into any
language R, unless NP ⊆ coNP/poly.

Assumption NP ⊆ coNP/poly may seem mysterious.

Intuition: Verifying proofs in P-time cannot be turned into verifying
counterexamples in P-time, even if we allow polynomial advice.

NP ⊆ coNP/poly implies PH = ΣP
3 .

Not as bad as P = NP, but still considered very unlikely.

The proof is very short, but very tricky.

Micha l Pilipczuk Kernelization lower bounds 10/33

Backbone theorem

OR-distillation theorem [Fortnow, Santhanam; 2008]

SAT does not admit an OR-distillation algorithm into any language R,
unless NP ⊆ coNP/poly.

Corollary

No NP-hard problem admits an OR-distillation algorithm into any
language R, unless NP ⊆ coNP/poly.

Assumption NP ⊆ coNP/poly may seem mysterious.

Intuition: Verifying proofs in P-time cannot be turned into verifying
counterexamples in P-time, even if we allow polynomial advice.
NP ⊆ coNP/poly implies PH = ΣP

3 .

Not as bad as P = NP, but still considered very unlikely.

The proof is very short, but very tricky.

Micha l Pilipczuk Kernelization lower bounds 10/33

Backbone theorem

OR-distillation theorem [Fortnow, Santhanam; 2008]

SAT does not admit an OR-distillation algorithm into any language R,
unless NP ⊆ coNP/poly.

Corollary

No NP-hard problem admits an OR-distillation algorithm into any
language R, unless NP ⊆ coNP/poly.

Assumption NP ⊆ coNP/poly may seem mysterious.

Intuition: Verifying proofs in P-time cannot be turned into verifying
counterexamples in P-time, even if we allow polynomial advice.
NP ⊆ coNP/poly implies PH = ΣP

3 .
Not as bad as P = NP, but still considered very unlikely.

The proof is very short, but very tricky.

Micha l Pilipczuk Kernelization lower bounds 10/33

Backbone theorem

OR-distillation theorem [Fortnow, Santhanam; 2008]

SAT does not admit an OR-distillation algorithm into any language R,
unless NP ⊆ coNP/poly.

Corollary

No NP-hard problem admits an OR-distillation algorithm into any
language R, unless NP ⊆ coNP/poly.

Assumption NP ⊆ coNP/poly may seem mysterious.

Intuition: Verifying proofs in P-time cannot be turned into verifying
counterexamples in P-time, even if we allow polynomial advice.
NP ⊆ coNP/poly implies PH = ΣP

3 .
Not as bad as P = NP, but still considered very unlikely.

The proof is very short, but very tricky.

Micha l Pilipczuk Kernelization lower bounds 10/33

OR-composition

Let L be a parameterized language.

OR-composition algorithm for L

Input: Instances (x1, k), (x2, k), . . . , (xt , k).

Time: poly(t +
∑t

i=1 |xi |+ k).
Output: One instance (y , k?) such that

(a) k? = poly(k), and
(b) (y , k?) ∈ L iff (xi , k) ∈ L for at least one i .

Micha l Pilipczuk Kernelization lower bounds 11/33

OR-composition

Let L be a parameterized language.

OR-composition algorithm for L

Input: Instances (x1, k), (x2, k), . . . , (xt , k).

Time: poly(t +
∑t

i=1 |xi |+ k).
Output: One instance (y , k?) such that

(a) k? = poly(k), and
(b) (y , k?) ∈ L iff (xi , k) ∈ L for at least one i .

Micha l Pilipczuk Kernelization lower bounds 11/33

OR-composition on picture

t instances︷ ︸︸ ︷
kkkkkkkkk

P-time

poly(k)

OR-composition theorem [BDFH; 2008]

Suppose a parameterized problem L admits an OR-composition
algorithm, and the unparameterized version of L is NP-hard.

Then L does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Micha l Pilipczuk Kernelization lower bounds 12/33

OR-composition on picture

t instances︷ ︸︸ ︷
kkkkkkkkk

P-time

poly(k)

OR-composition theorem [BDFH; 2008]

Suppose a parameterized problem L admits an OR-composition
algorithm, and the unparameterized version of L is NP-hard.

Then L does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Micha l Pilipczuk Kernelization lower bounds 12/33

OR-composition on picture

t instances︷ ︸︸ ︷
kkkkkkkkk

P-time

poly(k)

OR-composition theorem [BDFH; 2008]

Suppose a parameterized problem L admits an OR-composition
algorithm, and the unparameterized version of L is NP-hard.

Then L does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Micha l Pilipczuk Kernelization lower bounds 12/33

OR-composition on picture

t instances︷ ︸︸ ︷
kkkkkkkkk

P-time

poly(k)

OR-composition theorem [BDFH; 2008]

Suppose a parameterized problem L admits an OR-composition
algorithm, and the unparameterized version of L is NP-hard.

Then L does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Micha l Pilipczuk Kernelization lower bounds 12/33

OR-composition on picture

t instances︷ ︸︸ ︷
kkkkkkkkk

P-time

poly(k)

OR-composition theorem [BDFH; 2008]

Suppose a parameterized problem L admits an OR-composition
algorithm, and the unparameterized version of L is NP-hard.

Then L does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Micha l Pilipczuk Kernelization lower bounds 12/33

Proof

O
R
-S
A
T

O
R
-S
A
T

L̃

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

L

N
P

-h
rd

1

N
P

-h
rd

1

N
P

-h
rd

1

N
P

-h
rd

2

N
P

-h
rd

2

N
P

-h
rd

2

N
P

-h
rd

k′

N
P

-h
rd

k′

N
P

-h
rd

k′

L

cm
p

poly(k)

cm
p

poly(k)

cm
p

poly(k)

L

kern

kern

kern

O
R
-L

O
R
-L

Micha l Pilipczuk Kernelization lower bounds 13/33

Proof

O
R
-S
A
T

O
R
-S
A
T

L̃

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

L

N
P

-h
rd

1

N
P

-h
rd

1

N
P

-h
rd

1

N
P

-h
rd

2

N
P

-h
rd

2

N
P

-h
rd

2

N
P

-h
rd

k′

N
P

-h
rd

k′

N
P

-h
rd

k′

L

cm
p

poly(k)

cm
p

poly(k)

cm
p

poly(k)

L

kern

kern

kern

O
R
-L

O
R
-L

Micha l Pilipczuk Kernelization lower bounds 13/33

Proof

O
R
-S
A
T

O
R
-S
A
T

L̃

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

L

N
P

-h
rd

1

N
P

-h
rd

1

N
P

-h
rd

1

N
P

-h
rd

2

N
P

-h
rd

2

N
P

-h
rd

2

N
P

-h
rd

k′

N
P

-h
rd

k′

N
P

-h
rd

k′

L

cm
p

poly(k)

cm
p

poly(k)

cm
p

poly(k)

L

kern

kern

kern

O
R
-L

O
R
-L

Micha l Pilipczuk Kernelization lower bounds 13/33

Proof

O
R
-S
A
T

O
R
-S
A
T

L̃

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

L

N
P

-h
rd

1

N
P

-h
rd

1

N
P

-h
rd

1

N
P

-h
rd

2

N
P

-h
rd

2

N
P

-h
rd

2

N
P

-h
rd

k′

N
P

-h
rd

k′

N
P

-h
rd

k′

L

cm
p

poly(k)

cm
p

poly(k)

cm
p

poly(k)

L

kern

kern

kern

O
R
-L

O
R
-L

Micha l Pilipczuk Kernelization lower bounds 13/33

Proof

O
R
-S
A
T

O
R
-S
A
T

L̃

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

L

N
P

-h
rd

1

N
P

-h
rd

1

N
P

-h
rd

1

N
P

-h
rd

2

N
P

-h
rd

2

N
P

-h
rd

2

N
P

-h
rd

k′

N
P

-h
rd

k′

N
P

-h
rd

k′

L

cm
p

poly(k)

cm
p

poly(k)

cm
p

poly(k)

L

kern

kern

kern

O
R
-L

O
R
-L

Micha l Pilipczuk Kernelization lower bounds 13/33

Proof

O
R
-S
A
T

O
R
-S
A
T

L̃

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

L

N
P

-h
rd

1

N
P

-h
rd

1

N
P

-h
rd

1

N
P

-h
rd

2

N
P

-h
rd

2

N
P

-h
rd

2

N
P

-h
rd

k′

N
P

-h
rd

k′

N
P

-h
rd

k′

L

cm
p

poly(k)

cm
p

poly(k)

cm
p

poly(k)

L

kern

kern

kern

O
R
-L

O
R
-L

Micha l Pilipczuk Kernelization lower bounds 13/33

Proof

O
R
-S
A
T

O
R
-S
A
T

L̃

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

L

N
P

-h
rd

1

N
P

-h
rd

1

N
P

-h
rd

1

N
P

-h
rd

2

N
P

-h
rd

2

N
P

-h
rd

2

N
P

-h
rd

k′

N
P

-h
rd

k′

N
P

-h
rd

k′

L

cm
p

poly(k)

cm
p

poly(k)

cm
p

poly(k)

L

kern

kern

kern

O
R
-L

O
R
-L

Micha l Pilipczuk Kernelization lower bounds 13/33

Proof

O
R
-S
A
T

O
R
-S
A
T

L̃

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

N
P

-h
rd

L

N
P

-h
rd

1

N
P

-h
rd

1

N
P

-h
rd

1

N
P

-h
rd

2

N
P

-h
rd

2

N
P

-h
rd

2

N
P

-h
rd

k′

N
P

-h
rd

k′

N
P

-h
rd

k′

L

cm
p

poly(k)

cm
p

poly(k)

cm
p

poly(k)

L

kern

kern

kern

O
R
-L

O
R
-L

Micha l Pilipczuk Kernelization lower bounds 13/33

Corollaries

k-Path does not admit a polykernel, unless NP ⊆ coNP/poly.

Composition:
Take the disjoint union of the input graphs and the same parameter.

A graph admits a k-path iff any of its connected components does.

Same for k-Cycle and many other problems.

Today, investigating the existence of a polynomial kernel is often a
secondary goal after showing that a problem is FPT.

Micha l Pilipczuk Kernelization lower bounds 14/33

Corollaries

k-Path does not admit a polykernel, unless NP ⊆ coNP/poly.

Composition:
Take the disjoint union of the input graphs and the same parameter.

A graph admits a k-path iff any of its connected components does.

Same for k-Cycle and many other problems.

Today, investigating the existence of a polynomial kernel is often a
secondary goal after showing that a problem is FPT.

Micha l Pilipczuk Kernelization lower bounds 14/33

Corollaries

k-Path does not admit a polykernel, unless NP ⊆ coNP/poly.

Composition:
Take the disjoint union of the input graphs and the same parameter.

A graph admits a k-path iff any of its connected components does.

Same for k-Cycle and many other problems.

Today, investigating the existence of a polynomial kernel is often a
secondary goal after showing that a problem is FPT.

Micha l Pilipczuk Kernelization lower bounds 14/33

Corollaries

k-Path does not admit a polykernel, unless NP ⊆ coNP/poly.

Composition:
Take the disjoint union of the input graphs and the same parameter.

A graph admits a k-path iff any of its connected components does.

Same for k-Cycle and many other problems.

Today, investigating the existence of a polynomial kernel is often a
secondary goal after showing that a problem is FPT.

Micha l Pilipczuk Kernelization lower bounds 14/33

Corollaries

k-Path does not admit a polykernel, unless NP ⊆ coNP/poly.

Composition:
Take the disjoint union of the input graphs and the same parameter.

A graph admits a k-path iff any of its connected components does.

Same for k-Cycle and many other problems.

Today, investigating the existence of a polynomial kernel is often a
secondary goal after showing that a problem is FPT.

Micha l Pilipczuk Kernelization lower bounds 14/33

Adding features

Does the proof actually exclude even polynomial compression into
any R, not just kernelization?

Sure, we will just end up with an instance of OR-R.

Do we need to start the composition with the same language L as
we apply the compression to?

No, the composition algorithm can compose instances of any
NP-hard language Q into one instance of L.

Can we add more refined bucket sorting? For instance, also by the
number of vertices in the graph?

Yes, as long as we have polynomial number of buckets.

How large can t be?

Well, not larger than |Σ|k+1, as we may remove duplicates of the
input instances.
Hence, we may assume that log t = O(k).
Ergo, the parameter of the composed instance may depend
polynomially on both k and log t.
Observed also earlier via different arguments.
(Dom, Lokshtanov, and Saurabh; 2009)

Micha l Pilipczuk Kernelization lower bounds 15/33

Adding features

Does the proof actually exclude even polynomial compression into
any R, not just kernelization?

Sure, we will just end up with an instance of OR-R.

Do we need to start the composition with the same language L as
we apply the compression to?

No, the composition algorithm can compose instances of any
NP-hard language Q into one instance of L.

Can we add more refined bucket sorting? For instance, also by the
number of vertices in the graph?

Yes, as long as we have polynomial number of buckets.

How large can t be?

Well, not larger than |Σ|k+1, as we may remove duplicates of the
input instances.
Hence, we may assume that log t = O(k).
Ergo, the parameter of the composed instance may depend
polynomially on both k and log t.
Observed also earlier via different arguments.
(Dom, Lokshtanov, and Saurabh; 2009)

Micha l Pilipczuk Kernelization lower bounds 15/33

Adding features

Does the proof actually exclude even polynomial compression into
any R, not just kernelization?

Sure, we will just end up with an instance of OR-R.

Do we need to start the composition with the same language L as
we apply the compression to?

No, the composition algorithm can compose instances of any
NP-hard language Q into one instance of L.

Can we add more refined bucket sorting? For instance, also by the
number of vertices in the graph?

Yes, as long as we have polynomial number of buckets.

How large can t be?

Well, not larger than |Σ|k+1, as we may remove duplicates of the
input instances.
Hence, we may assume that log t = O(k).
Ergo, the parameter of the composed instance may depend
polynomially on both k and log t.
Observed also earlier via different arguments.
(Dom, Lokshtanov, and Saurabh; 2009)

Micha l Pilipczuk Kernelization lower bounds 15/33

Adding features

Does the proof actually exclude even polynomial compression into
any R, not just kernelization?

Sure, we will just end up with an instance of OR-R.

Do we need to start the composition with the same language L as
we apply the compression to?

No, the composition algorithm can compose instances of any
NP-hard language Q into one instance of L.

Can we add more refined bucket sorting? For instance, also by the
number of vertices in the graph?

Yes, as long as we have polynomial number of buckets.

How large can t be?

Well, not larger than |Σ|k+1, as we may remove duplicates of the
input instances.
Hence, we may assume that log t = O(k).
Ergo, the parameter of the composed instance may depend
polynomially on both k and log t.
Observed also earlier via different arguments.
(Dom, Lokshtanov, and Saurabh; 2009)

Micha l Pilipczuk Kernelization lower bounds 15/33

Adding features

Does the proof actually exclude even polynomial compression into
any R, not just kernelization?

Sure, we will just end up with an instance of OR-R.

Do we need to start the composition with the same language L as
we apply the compression to?

No, the composition algorithm can compose instances of any
NP-hard language Q into one instance of L.

Can we add more refined bucket sorting? For instance, also by the
number of vertices in the graph?

Yes, as long as we have polynomial number of buckets.

How large can t be?

Well, not larger than |Σ|k+1, as we may remove duplicates of the
input instances.
Hence, we may assume that log t = O(k).
Ergo, the parameter of the composed instance may depend
polynomially on both k and log t.
Observed also earlier via different arguments.
(Dom, Lokshtanov, and Saurabh; 2009)

Micha l Pilipczuk Kernelization lower bounds 15/33

Adding features

Does the proof actually exclude even polynomial compression into
any R, not just kernelization?

Sure, we will just end up with an instance of OR-R.

Do we need to start the composition with the same language L as
we apply the compression to?

No, the composition algorithm can compose instances of any
NP-hard language Q into one instance of L.

Can we add more refined bucket sorting? For instance, also by the
number of vertices in the graph?

Yes, as long as we have polynomial number of buckets.

How large can t be?

Well, not larger than |Σ|k+1, as we may remove duplicates of the
input instances.
Hence, we may assume that log t = O(k).
Ergo, the parameter of the composed instance may depend
polynomially on both k and log t.
Observed also earlier via different arguments.
(Dom, Lokshtanov, and Saurabh; 2009)

Micha l Pilipczuk Kernelization lower bounds 15/33

Adding features

Does the proof actually exclude even polynomial compression into
any R, not just kernelization?

Sure, we will just end up with an instance of OR-R.

Do we need to start the composition with the same language L as
we apply the compression to?

No, the composition algorithm can compose instances of any
NP-hard language Q into one instance of L.

Can we add more refined bucket sorting? For instance, also by the
number of vertices in the graph?

Yes, as long as we have polynomial number of buckets.

How large can t be?

Well, not larger than |Σ|k+1, as we may remove duplicates of the
input instances.
Hence, we may assume that log t = O(k).
Ergo, the parameter of the composed instance may depend
polynomially on both k and log t.
Observed also earlier via different arguments.
(Dom, Lokshtanov, and Saurabh; 2009)

Micha l Pilipczuk Kernelization lower bounds 15/33

Adding features

Does the proof actually exclude even polynomial compression into
any R, not just kernelization?

Sure, we will just end up with an instance of OR-R.

Do we need to start the composition with the same language L as
we apply the compression to?

No, the composition algorithm can compose instances of any
NP-hard language Q into one instance of L.

Can we add more refined bucket sorting? For instance, also by the
number of vertices in the graph?

Yes, as long as we have polynomial number of buckets.

How large can t be?

Well, not larger than |Σ|k+1, as we may remove duplicates of the
input instances.

Hence, we may assume that log t = O(k).
Ergo, the parameter of the composed instance may depend
polynomially on both k and log t.
Observed also earlier via different arguments.
(Dom, Lokshtanov, and Saurabh; 2009)

Micha l Pilipczuk Kernelization lower bounds 15/33

Adding features

Does the proof actually exclude even polynomial compression into
any R, not just kernelization?

Sure, we will just end up with an instance of OR-R.

Do we need to start the composition with the same language L as
we apply the compression to?

No, the composition algorithm can compose instances of any
NP-hard language Q into one instance of L.

Can we add more refined bucket sorting? For instance, also by the
number of vertices in the graph?

Yes, as long as we have polynomial number of buckets.

How large can t be?

Well, not larger than |Σ|k+1, as we may remove duplicates of the
input instances.
Hence, we may assume that log t = O(k).

Ergo, the parameter of the composed instance may depend
polynomially on both k and log t.
Observed also earlier via different arguments.
(Dom, Lokshtanov, and Saurabh; 2009)

Micha l Pilipczuk Kernelization lower bounds 15/33

Adding features

Does the proof actually exclude even polynomial compression into
any R, not just kernelization?

Sure, we will just end up with an instance of OR-R.

Do we need to start the composition with the same language L as
we apply the compression to?

No, the composition algorithm can compose instances of any
NP-hard language Q into one instance of L.

Can we add more refined bucket sorting? For instance, also by the
number of vertices in the graph?

Yes, as long as we have polynomial number of buckets.

How large can t be?

Well, not larger than |Σ|k+1, as we may remove duplicates of the
input instances.
Hence, we may assume that log t = O(k).
Ergo, the parameter of the composed instance may depend
polynomially on both k and log t.

Observed also earlier via different arguments.
(Dom, Lokshtanov, and Saurabh; 2009)

Micha l Pilipczuk Kernelization lower bounds 15/33

Adding features

Does the proof actually exclude even polynomial compression into
any R, not just kernelization?

Sure, we will just end up with an instance of OR-R.

Do we need to start the composition with the same language L as
we apply the compression to?

No, the composition algorithm can compose instances of any
NP-hard language Q into one instance of L.

Can we add more refined bucket sorting? For instance, also by the
number of vertices in the graph?

Yes, as long as we have polynomial number of buckets.

How large can t be?

Well, not larger than |Σ|k+1, as we may remove duplicates of the
input instances.
Hence, we may assume that log t = O(k).
Ergo, the parameter of the composed instance may depend
polynomially on both k and log t.
Observed also earlier via different arguments.
(Dom, Lokshtanov, and Saurabh; 2009)

Micha l Pilipczuk Kernelization lower bounds 15/33

Towards a unified methodology

After the invention of the technique of OR-compositions, there was
a huge number of no-polykernel results.

As we’ll see later, there can be much more intricate compositions
than just “disjoint union”.
Examples: Max Leaf Subtree, Set Cover/m, Set Cover/n,
Steiner Tree, Connected Vertex Cover, Disjoint Paths,
Directed Multiway Cut with 2 terminals, ...

Most of the works use a subset of mentioned features.

Later: a new formalism cross-composition gathers all the features.
(Bodlaender, Jansen, and Kratsch; 2011)

Micha l Pilipczuk Kernelization lower bounds 16/33

Towards a unified methodology

After the invention of the technique of OR-compositions, there was
a huge number of no-polykernel results.

As we’ll see later, there can be much more intricate compositions
than just “disjoint union”.

Examples: Max Leaf Subtree, Set Cover/m, Set Cover/n,
Steiner Tree, Connected Vertex Cover, Disjoint Paths,
Directed Multiway Cut with 2 terminals, ...

Most of the works use a subset of mentioned features.

Later: a new formalism cross-composition gathers all the features.
(Bodlaender, Jansen, and Kratsch; 2011)

Micha l Pilipczuk Kernelization lower bounds 16/33

Towards a unified methodology

After the invention of the technique of OR-compositions, there was
a huge number of no-polykernel results.

As we’ll see later, there can be much more intricate compositions
than just “disjoint union”.
Examples: Max Leaf Subtree, Set Cover/m, Set Cover/n,
Steiner Tree, Connected Vertex Cover, Disjoint Paths,
Directed Multiway Cut with 2 terminals, ...

Most of the works use a subset of mentioned features.

Later: a new formalism cross-composition gathers all the features.
(Bodlaender, Jansen, and Kratsch; 2011)

Micha l Pilipczuk Kernelization lower bounds 16/33

Towards a unified methodology

After the invention of the technique of OR-compositions, there was
a huge number of no-polykernel results.

As we’ll see later, there can be much more intricate compositions
than just “disjoint union”.
Examples: Max Leaf Subtree, Set Cover/m, Set Cover/n,
Steiner Tree, Connected Vertex Cover, Disjoint Paths,
Directed Multiway Cut with 2 terminals, ...

Most of the works use a subset of mentioned features.

Later: a new formalism cross-composition gathers all the features.
(Bodlaender, Jansen, and Kratsch; 2011)

Micha l Pilipczuk Kernelization lower bounds 16/33

Towards a unified methodology

After the invention of the technique of OR-compositions, there was
a huge number of no-polykernel results.

As we’ll see later, there can be much more intricate compositions
than just “disjoint union”.
Examples: Max Leaf Subtree, Set Cover/m, Set Cover/n,
Steiner Tree, Connected Vertex Cover, Disjoint Paths,
Directed Multiway Cut with 2 terminals, ...

Most of the works use a subset of mentioned features.

Later: a new formalism cross-composition gathers all the features.
(Bodlaender, Jansen, and Kratsch; 2011)

Micha l Pilipczuk Kernelization lower bounds 16/33

Polynomial equivalence relation

Polynomial equivalence relation

Equivalence relation ∼ on Σ? is a polynomial equivalence relation if:

checking whether two words x , y ∈ Σ? are ∼-equivalent can be done
in poly(|x |+ |y |) time; and

∼ partitions words of length 6 n into poly(n) equivalence classes.

Examples, supposing some reasonable graph encoding:

partitioning with respect to the number of vertices of the graph;
or with respect to (i) the number of vertices, (ii) the number of
edges, (iii) size of the maximum matching, (iv) budget.

Micha l Pilipczuk Kernelization lower bounds 17/33

Polynomial equivalence relation

Polynomial equivalence relation

Equivalence relation ∼ on Σ? is a polynomial equivalence relation if:

checking whether two words x , y ∈ Σ? are ∼-equivalent can be done
in poly(|x |+ |y |) time; and

∼ partitions words of length 6 n into poly(n) equivalence classes.

Examples, supposing some reasonable graph encoding:

partitioning with respect to the number of vertices of the graph;
or with respect to (i) the number of vertices, (ii) the number of
edges, (iii) size of the maximum matching, (iv) budget.

Micha l Pilipczuk Kernelization lower bounds 17/33

Polynomial equivalence relation

Polynomial equivalence relation

Equivalence relation ∼ on Σ? is a polynomial equivalence relation if:

checking whether two words x , y ∈ Σ? are ∼-equivalent can be done
in poly(|x |+ |y |) time; and

∼ partitions words of length 6 n into poly(n) equivalence classes.

Examples, supposing some reasonable graph encoding:

partitioning with respect to the number of vertices of the graph;
or with respect to (i) the number of vertices, (ii) the number of
edges, (iii) size of the maximum matching, (iv) budget.

Micha l Pilipczuk Kernelization lower bounds 17/33

Polynomial equivalence relation

Polynomial equivalence relation

Equivalence relation ∼ on Σ? is a polynomial equivalence relation if:

checking whether two words x , y ∈ Σ? are ∼-equivalent can be done
in poly(|x |+ |y |) time; and

∼ partitions words of length 6 n into poly(n) equivalence classes.

Examples, supposing some reasonable graph encoding:

partitioning with respect to the number of vertices of the graph;

or with respect to (i) the number of vertices, (ii) the number of
edges, (iii) size of the maximum matching, (iv) budget.

Micha l Pilipczuk Kernelization lower bounds 17/33

Polynomial equivalence relation

Polynomial equivalence relation

Equivalence relation ∼ on Σ? is a polynomial equivalence relation if:

checking whether two words x , y ∈ Σ? are ∼-equivalent can be done
in poly(|x |+ |y |) time; and

∼ partitions words of length 6 n into poly(n) equivalence classes.

Examples, supposing some reasonable graph encoding:

partitioning with respect to the number of vertices of the graph;
or with respect to (i) the number of vertices, (ii) the number of
edges, (iii) size of the maximum matching, (iv) budget.

Micha l Pilipczuk Kernelization lower bounds 17/33

Cross-composition

Cross-composition

An unparameterized problem Q cross-composes into a parameterized
problem L, if there exists a polynomial equivalence relation ∼ and an
algorithm that, given ∼-equivalent strings x1, x2, . . . , xt , in time
poly

(
t +

∑t
i=1 |xi |

)
produces one instance (y , k?) such that

(y , k?) ∈ L iff xi ∈ Q for at least one i = 1, 2, . . . , t,

k? = poly (log t + maxti=1 |xi |).

Cross-composition theorem [Bodlaender, Jansen, Kratsch]

If some NP-hard problem Q cross-composes into L, then L has no
polynomial compression into any language R, unless NP ⊆ coNP/poly.

Micha l Pilipczuk Kernelization lower bounds 18/33

Cross-composition

Cross-composition

An unparameterized problem Q cross-composes into a parameterized
problem L, if there exists a polynomial equivalence relation ∼ and an
algorithm that, given ∼-equivalent strings x1, x2, . . . , xt , in time
poly

(
t +

∑t
i=1 |xi |

)
produces one instance (y , k?) such that

(y , k?) ∈ L iff xi ∈ Q for at least one i = 1, 2, . . . , t,

k? = poly (log t + maxti=1 |xi |).

Cross-composition theorem [Bodlaender, Jansen, Kratsch]

If some NP-hard problem Q cross-composes into L, then L has no
polynomial compression into any language R, unless NP ⊆ coNP/poly.

Micha l Pilipczuk Kernelization lower bounds 18/33

Proof

Q Q

k = max |xi |, log t = O(k)

L

co
m

p
o

poly(k)

co
m

p
o

poly(k)

co
m

p
o

poly(k)

R

cm
p

r

cm
p

r

cm
p

r

O
R
-R

O
R
-R

Micha l Pilipczuk Kernelization lower bounds 19/33

Proof

Q Q

k = max |xi |, log t = O(k)

L

co
m

p
o

poly(k)

co
m

p
o

poly(k)

co
m

p
o

poly(k)

R

cm
p

r

cm
p

r

cm
p

r

O
R
-R

O
R
-R

Micha l Pilipczuk Kernelization lower bounds 19/33

Proof

Q Q

k = max |xi |, log t = O(k)

L

co
m

p
o

poly(k)

co
m

p
o

poly(k)

co
m

p
o

poly(k)

R

cm
p

r

cm
p

r

cm
p

r

O
R
-R

O
R
-R

Micha l Pilipczuk Kernelization lower bounds 19/33

Proof

Q Q

k = max |xi |, log t = O(k)

L

co
m

p
o

poly(k)

co
m

p
o

poly(k)

co
m

p
o

poly(k)

R

cm
p

r

cm
p

r

cm
p

r

O
R
-R

O
R
-R

Micha l Pilipczuk Kernelization lower bounds 19/33

Proof

Q Q

k = max |xi |, log t = O(k)

L

co
m

p
o

poly(k)

co
m

p
o

poly(k)

co
m

p
o

poly(k)

R

cm
p

r

cm
p

r

cm
p

r

O
R
-R

O
R
-R

Micha l Pilipczuk Kernelization lower bounds 19/33

Proof

Q Q

k = max |xi |, log t = O(k)

L

co
m

p
o

poly(k)

co
m

p
o

poly(k)

co
m

p
o

poly(k)

R

cm
p

r

cm
p

r

cm
p

r

O
R
-R

O
R
-R

Micha l Pilipczuk Kernelization lower bounds 19/33

Proof

Q Q

k = max |xi |, log t = O(k)

L

co
m

p
o

poly(k)

co
m

p
o

poly(k)

co
m

p
o

poly(k)

R

cm
p

r

cm
p

r

cm
p

r

O
R
-R

O
R
-R

Micha l Pilipczuk Kernelization lower bounds 19/33

Applications

Original application of Bodlaender, Jansen and Kratsch was that of
structural parameters.

In fact, cross-composition is a good framework to express also all the
previous results.

Plan for now: show some non-trivial cross-composition to give an
intuition about basic tricks.

Micha l Pilipczuk Kernelization lower bounds 20/33

Applications

Original application of Bodlaender, Jansen and Kratsch was that of
structural parameters.

In fact, cross-composition is a good framework to express also all the
previous results.

Plan for now: show some non-trivial cross-composition to give an
intuition about basic tricks.

Micha l Pilipczuk Kernelization lower bounds 20/33

Applications

Original application of Bodlaender, Jansen and Kratsch was that of
structural parameters.

In fact, cross-composition is a good framework to express also all the
previous results.

Plan for now: show some non-trivial cross-composition to give an
intuition about basic tricks.

Micha l Pilipczuk Kernelization lower bounds 20/33

Application 1: Set Splitting

Set Splitting

I: Universe U and family of subsets F ⊆ 2U

P: |U|
Q: Is there a coloring C : U → {B,W} such that every set X ∈ F

is split, i.e., contains a black and a white element?

We show a cross-composition of Set Splitting into itself.

We may assume that the universes are of the same size, hence we
think of them as of one, common universe.

Assume that t is a power of 2 (by copying the instances).

Micha l Pilipczuk Kernelization lower bounds 21/33

Application 1: Set Splitting

Set Splitting

I: Universe U and family of subsets F ⊆ 2U

P: |U|
Q: Is there a coloring C : U → {B,W} such that every set X ∈ F

is split, i.e., contains a black and a white element?

We show a cross-composition of Set Splitting into itself.

We may assume that the universes are of the same size, hence we
think of them as of one, common universe.

Assume that t is a power of 2 (by copying the instances).

Micha l Pilipczuk Kernelization lower bounds 21/33

Application 1: Set Splitting

Set Splitting

I: Universe U and family of subsets F ⊆ 2U

P: |U|
Q: Is there a coloring C : U → {B,W} such that every set X ∈ F

is split, i.e., contains a black and a white element?

We show a cross-composition of Set Splitting into itself.

We may assume that the universes are of the same size, hence we
think of them as of one, common universe.

Assume that t is a power of 2 (by copying the instances).

Micha l Pilipczuk Kernelization lower bounds 21/33

Application 1: Set Splitting

Set Splitting

I: Universe U and family of subsets F ⊆ 2U

P: |U|
Q: Is there a coloring C : U → {B,W} such that every set X ∈ F

is split, i.e., contains a black and a white element?

We show a cross-composition of Set Splitting into itself.

We may assume that the universes are of the same size, hence we
think of them as of one, common universe.

Assume that t is a power of 2 (by copying the instances).

Micha l Pilipczuk Kernelization lower bounds 21/33

Cross-composing into Set Splitting

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

|U∗| = |U| + 2 log t + 2 |U∗| = |U| + 2 log t + 2

F∗ consists of: F∗ consists of:

1 + log t 2-element sets for pairs, 1 + log t 2-element sets for pairs,

∀X ∈ F i , two sets X∗0 , X∗1 ∀X ∈ F i , two sets X∗0 , X∗1

X∗0 : X , left special vertex,

and binary encoding of i in IS

X∗1 : reverse X∗0 on IS

Take any solution C

There is exactly one index i with

monochromatic parts from IS.

(⇒): C on IS defines, which instance must be

solved in PL

(⇐): If (U,F i) is solvable, we set IS

accordingly, and solve this instance in PL.

Remaining sets are split for free.

PLAYGROUND
joint universe U

INSTANCE SELECTOR
1 + log t pairs of vertices

Micha l Pilipczuk Kernelization lower bounds 22/33

Cross-composing into Set Splitting

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

|U∗| = |U| + 2 log t + 2 |U∗| = |U| + 2 log t + 2

F∗ consists of: F∗ consists of:

1 + log t 2-element sets for pairs, 1 + log t 2-element sets for pairs,

∀X ∈ F i , two sets X∗0 , X∗1 ∀X ∈ F i , two sets X∗0 , X∗1

X∗0 : X , left special vertex,

and binary encoding of i in IS

X∗1 : reverse X∗0 on IS

Take any solution C

There is exactly one index i with

monochromatic parts from IS.

(⇒): C on IS defines, which instance must be

solved in PL

(⇐): If (U,F i) is solvable, we set IS

accordingly, and solve this instance in PL.

Remaining sets are split for free.

PLAYGROUND
joint universe U

INSTANCE SELECTOR
1 + log t pairs of vertices

Micha l Pilipczuk Kernelization lower bounds 22/33

Cross-composing into Set Splitting

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

|U∗| = |U| + 2 log t + 2 |U∗| = |U| + 2 log t + 2

F∗ consists of: F∗ consists of:

1 + log t 2-element sets for pairs, 1 + log t 2-element sets for pairs,

∀X ∈ F i , two sets X∗0 , X∗1 ∀X ∈ F i , two sets X∗0 , X∗1

X∗0 : X , left special vertex,

and binary encoding of i in IS

X∗1 : reverse X∗0 on IS

Take any solution C

There is exactly one index i with

monochromatic parts from IS.

(⇒): C on IS defines, which instance must be

solved in PL

(⇐): If (U,F i) is solvable, we set IS

accordingly, and solve this instance in PL.

Remaining sets are split for free.

PLAYGROUND
joint universe U

INSTANCE SELECTOR
1 + log t pairs of vertices

Micha l Pilipczuk Kernelization lower bounds 22/33

Cross-composing into Set Splitting

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

|U∗| = |U| + 2 log t + 2 |U∗| = |U| + 2 log t + 2

F∗ consists of: F∗ consists of:

1 + log t 2-element sets for pairs, 1 + log t 2-element sets for pairs,

∀X ∈ F i , two sets X∗0 , X∗1 ∀X ∈ F i , two sets X∗0 , X∗1

X∗0 : X , left special vertex,

and binary encoding of i in IS

X∗1 : reverse X∗0 on IS

Take any solution C

There is exactly one index i with

monochromatic parts from IS.

(⇒): C on IS defines, which instance must be

solved in PL

(⇐): If (U,F i) is solvable, we set IS

accordingly, and solve this instance in PL.

Remaining sets are split for free.

PLAYGROUND
joint universe U

INSTANCE SELECTOR
1 + log t pairs of vertices

Micha l Pilipczuk Kernelization lower bounds 22/33

Cross-composing into Set Splitting

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

|U∗| = |U| + 2 log t + 2 |U∗| = |U| + 2 log t + 2

F∗ consists of: F∗ consists of:

1 + log t 2-element sets for pairs, 1 + log t 2-element sets for pairs,

∀X ∈ F i , two sets X∗0 , X∗1 ∀X ∈ F i , two sets X∗0 , X∗1

X∗0 : X , left special vertex,

and binary encoding of i in IS

X∗1 : reverse X∗0 on IS

Take any solution C

There is exactly one index i with

monochromatic parts from IS.

(⇒): C on IS defines, which instance must be

solved in PL

(⇐): If (U,F i) is solvable, we set IS

accordingly, and solve this instance in PL.

Remaining sets are split for free.

PLAYGROUND
joint universe U

INSTANCE SELECTOR
1 + log t pairs of vertices

Micha l Pilipczuk Kernelization lower bounds 22/33

Cross-composing into Set Splitting

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

|U∗| = |U| + 2 log t + 2 |U∗| = |U| + 2 log t + 2

F∗ consists of: F∗ consists of:

1 + log t 2-element sets for pairs, 1 + log t 2-element sets for pairs,

∀X ∈ F i , two sets X∗0 , X∗1 ∀X ∈ F i , two sets X∗0 , X∗1

X∗0 : X , left special vertex,

and binary encoding of i in IS

X∗1 : reverse X∗0 on IS

Take any solution C

There is exactly one index i with

monochromatic parts from IS.

(⇒): C on IS defines, which instance must be

solved in PL

(⇐): If (U,F i) is solvable, we set IS

accordingly, and solve this instance in PL.

Remaining sets are split for free.

PLAYGROUND
joint universe U

INSTANCE SELECTOR
1 + log t pairs of vertices

Micha l Pilipczuk Kernelization lower bounds 22/33

Cross-composing into Set Splitting

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

|U∗| = |U| + 2 log t + 2 |U∗| = |U| + 2 log t + 2

F∗ consists of: F∗ consists of:

1 + log t 2-element sets for pairs, 1 + log t 2-element sets for pairs,

∀X ∈ F i , two sets X∗0 , X∗1 ∀X ∈ F i , two sets X∗0 , X∗1

X∗0 : X , left special vertex,

and binary encoding of i in IS

X∗1 : reverse X∗0 on IS

Take any solution C

There is exactly one index i with

monochromatic parts from IS.

(⇒): C on IS defines, which instance must be

solved in PL

(⇐): If (U,F i) is solvable, we set IS

accordingly, and solve this instance in PL.

Remaining sets are split for free.

PLAYGROUND
joint universe U

INSTANCE SELECTOR
1 + log t pairs of vertices

Micha l Pilipczuk Kernelization lower bounds 22/33

Cross-composing into Set Splitting

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

|U∗| = |U| + 2 log t + 2 |U∗| = |U| + 2 log t + 2

F∗ consists of: F∗ consists of:

1 + log t 2-element sets for pairs, 1 + log t 2-element sets for pairs,

∀X ∈ F i , two sets X∗0 , X∗1 ∀X ∈ F i , two sets X∗0 , X∗1

X∗0 : X , left special vertex,

and binary encoding of i in IS

X∗1 : reverse X∗0 on IS

Take any solution C

There is exactly one index i with

monochromatic parts from IS.

(⇒): C on IS defines, which instance must be

solved in PL

(⇐): If (U,F i) is solvable, we set IS

accordingly, and solve this instance in PL.

Remaining sets are split for free.

PLAYGROUND
joint universe U

INSTANCE SELECTOR
1 + log t pairs of vertices

Micha l Pilipczuk Kernelization lower bounds 22/33

Cross-composing into Set Splitting

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

|U∗| = |U| + 2 log t + 2 |U∗| = |U| + 2 log t + 2

F∗ consists of: F∗ consists of:

1 + log t 2-element sets for pairs, 1 + log t 2-element sets for pairs,

∀X ∈ F i , two sets X∗0 , X∗1 ∀X ∈ F i , two sets X∗0 , X∗1

X∗0 : X , left special vertex,

and binary encoding of i in IS

X∗1 : reverse X∗0 on IS

Take any solution C

There is exactly one index i with

monochromatic parts from IS.

(⇒): C on IS defines, which instance must be

solved in PL

(⇐): If (U,F i) is solvable, we set IS

accordingly, and solve this instance in PL.

Remaining sets are split for free.

PLAYGROUND
joint universe U

INSTANCE SELECTOR
1 + log t pairs of vertices

Micha l Pilipczuk Kernelization lower bounds 22/33

Cross-composing into Set Splitting

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

|U∗| = |U| + 2 log t + 2 |U∗| = |U| + 2 log t + 2

F∗ consists of: F∗ consists of:

1 + log t 2-element sets for pairs, 1 + log t 2-element sets for pairs,

∀X ∈ F i , two sets X∗0 , X∗1 ∀X ∈ F i , two sets X∗0 , X∗1

X∗0 : X , left special vertex,

and binary encoding of i in IS

X∗1 : reverse X∗0 on IS

Take any solution C

There is exactly one index i with

monochromatic parts from IS.

(⇒): C on IS defines, which instance must be

solved in PL

(⇐): If (U,F i) is solvable, we set IS

accordingly, and solve this instance in PL.

Remaining sets are split for free.

PLAYGROUND
joint universe U

INSTANCE SELECTOR
1 + log t pairs of vertices

Micha l Pilipczuk Kernelization lower bounds 22/33

Cross-composing into Set Splitting

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

|U∗| = |U| + 2 log t + 2 |U∗| = |U| + 2 log t + 2

F∗ consists of: F∗ consists of:

1 + log t 2-element sets for pairs, 1 + log t 2-element sets for pairs,

∀X ∈ F i , two sets X∗0 , X∗1 ∀X ∈ F i , two sets X∗0 , X∗1

X∗0 : X , left special vertex,

and binary encoding of i in IS

X∗1 : reverse X∗0 on IS

Take any solution C

There is exactly one index i with

monochromatic parts from IS.

(⇒): C on IS defines, which instance must be

solved in PL

(⇐): If (U,F i) is solvable, we set IS

accordingly, and solve this instance in PL.

Remaining sets are split for free.

PLAYGROUND
joint universe U

INSTANCE SELECTOR
1 + log t pairs of vertices

Micha l Pilipczuk Kernelization lower bounds 22/33

Cross-composing into Set Splitting

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

|U∗| = |U| + 2 log t + 2 |U∗| = |U| + 2 log t + 2

F∗ consists of: F∗ consists of:

1 + log t 2-element sets for pairs, 1 + log t 2-element sets for pairs,

∀X ∈ F i , two sets X∗0 , X∗1 ∀X ∈ F i , two sets X∗0 , X∗1

X∗0 : X , left special vertex,

and binary encoding of i in IS

X∗1 : reverse X∗0 on IS

Take any solution C

There is exactly one index i with

monochromatic parts from IS.

(⇒): C on IS defines, which instance must be

solved in PL

(⇐): If (U,F i) is solvable, we set IS

accordingly, and solve this instance in PL.

Remaining sets are split for free.

PLAYGROUND
joint universe U

INSTANCE SELECTOR
1 + log t pairs of vertices

Micha l Pilipczuk Kernelization lower bounds 22/33

Cross-composing into Set Splitting

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

|U∗| = |U| + 2 log t + 2 |U∗| = |U| + 2 log t + 2

F∗ consists of: F∗ consists of:

1 + log t 2-element sets for pairs, 1 + log t 2-element sets for pairs,

∀X ∈ F i , two sets X∗0 , X∗1 ∀X ∈ F i , two sets X∗0 , X∗1

X∗0 : X , left special vertex,

and binary encoding of i in IS

X∗1 : reverse X∗0 on IS

Take any solution C

There is exactly one index i with

monochromatic parts from IS.

(⇒): C on IS defines, which instance must be

solved in PL

(⇐): If (U,F i) is solvable, we set IS

accordingly, and solve this instance in PL.

Remaining sets are split for free.

PLAYGROUND
joint universe U

INSTANCE SELECTOR
1 + log t pairs of vertices

Micha l Pilipczuk Kernelization lower bounds 22/33

Cross-composing into Set Splitting

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

|U∗| = |U| + 2 log t + 2 |U∗| = |U| + 2 log t + 2

F∗ consists of: F∗ consists of:

1 + log t 2-element sets for pairs, 1 + log t 2-element sets for pairs,

∀X ∈ F i , two sets X∗0 , X∗1 ∀X ∈ F i , two sets X∗0 , X∗1

X∗0 : X , left special vertex,

and binary encoding of i in IS

X∗1 : reverse X∗0 on IS

Take any solution C

There is exactly one index i with

monochromatic parts from IS.

(⇒): C on IS defines, which instance must be

solved in PL

(⇐): If (U,F i) is solvable, we set IS

accordingly, and solve this instance in PL.

Remaining sets are split for free.

PLAYGROUND
joint universe U

INSTANCE SELECTOR
1 + log t pairs of vertices

Micha l Pilipczuk Kernelization lower bounds 22/33

Cross-composing into Set Splitting

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

Input: Instances (U,F i)

Output: Instance (U∗,F∗)

|U∗| = |U| + 2 log t + 2 |U∗| = |U| + 2 log t + 2

F∗ consists of: F∗ consists of:

1 + log t 2-element sets for pairs, 1 + log t 2-element sets for pairs,

∀X ∈ F i , two sets X∗0 , X∗1 ∀X ∈ F i , two sets X∗0 , X∗1

X∗0 : X , left special vertex,

and binary encoding of i in IS

X∗1 : reverse X∗0 on IS

Take any solution C

There is exactly one index i with

monochromatic parts from IS.

(⇒): C on IS defines, which instance must be

solved in PL

(⇐): If (U,F i) is solvable, we set IS

accordingly, and solve this instance in PL.

Remaining sets are split for free.

PLAYGROUND
joint universe U

INSTANCE SELECTOR
1 + log t pairs of vertices

Micha l Pilipczuk Kernelization lower bounds 22/33

Set Splitting: wrap up

Unparameterized Set Splitting cross-composes into
Set Splitting parameterized by |U|.

Unparameterized Set Splitting is NP-hard.

Hence, Set Splitting parameterized by |U| does not admit a
polynomial kernel, unless NP ⊆ coNP/poly.

Main lesson:

Model the choice of the instance to be solved.
Idea: choose log t bits of its index on an appropriate gadget.
Choice of the index makes the instance active, while the other
instances are “switched off”.

Micha l Pilipczuk Kernelization lower bounds 23/33

Set Splitting: wrap up

Unparameterized Set Splitting cross-composes into
Set Splitting parameterized by |U|.
Unparameterized Set Splitting is NP-hard.

Hence, Set Splitting parameterized by |U| does not admit a
polynomial kernel, unless NP ⊆ coNP/poly.

Main lesson:

Model the choice of the instance to be solved.
Idea: choose log t bits of its index on an appropriate gadget.
Choice of the index makes the instance active, while the other
instances are “switched off”.

Micha l Pilipczuk Kernelization lower bounds 23/33

Set Splitting: wrap up

Unparameterized Set Splitting cross-composes into
Set Splitting parameterized by |U|.
Unparameterized Set Splitting is NP-hard.

Hence, Set Splitting parameterized by |U| does not admit a
polynomial kernel, unless NP ⊆ coNP/poly.

Main lesson:

Model the choice of the instance to be solved.
Idea: choose log t bits of its index on an appropriate gadget.
Choice of the index makes the instance active, while the other
instances are “switched off”.

Micha l Pilipczuk Kernelization lower bounds 23/33

Set Splitting: wrap up

Unparameterized Set Splitting cross-composes into
Set Splitting parameterized by |U|.
Unparameterized Set Splitting is NP-hard.

Hence, Set Splitting parameterized by |U| does not admit a
polynomial kernel, unless NP ⊆ coNP/poly.

Main lesson:

Model the choice of the instance to be solved.
Idea: choose log t bits of its index on an appropriate gadget.
Choice of the index makes the instance active, while the other
instances are “switched off”.

Micha l Pilipczuk Kernelization lower bounds 23/33

Set Splitting: wrap up

Unparameterized Set Splitting cross-composes into
Set Splitting parameterized by |U|.
Unparameterized Set Splitting is NP-hard.

Hence, Set Splitting parameterized by |U| does not admit a
polynomial kernel, unless NP ⊆ coNP/poly.

Main lesson:

Model the choice of the instance to be solved.

Idea: choose log t bits of its index on an appropriate gadget.
Choice of the index makes the instance active, while the other
instances are “switched off”.

Micha l Pilipczuk Kernelization lower bounds 23/33

Set Splitting: wrap up

Unparameterized Set Splitting cross-composes into
Set Splitting parameterized by |U|.
Unparameterized Set Splitting is NP-hard.

Hence, Set Splitting parameterized by |U| does not admit a
polynomial kernel, unless NP ⊆ coNP/poly.

Main lesson:

Model the choice of the instance to be solved.
Idea: choose log t bits of its index on an appropriate gadget.

Choice of the index makes the instance active, while the other
instances are “switched off”.

Micha l Pilipczuk Kernelization lower bounds 23/33

Set Splitting: wrap up

Unparameterized Set Splitting cross-composes into
Set Splitting parameterized by |U|.
Unparameterized Set Splitting is NP-hard.

Hence, Set Splitting parameterized by |U| does not admit a
polynomial kernel, unless NP ⊆ coNP/poly.

Main lesson:

Model the choice of the instance to be solved.
Idea: choose log t bits of its index on an appropriate gadget.
Choice of the index makes the instance active, while the other
instances are “switched off”.

Micha l Pilipczuk Kernelization lower bounds 23/33

PPTs

Idea: Hardness of kernelization can be transferred via reductions,
similarly to NP-hardness.

Polynomial parameter transformation (PPT)

A polynomial parameter transformation from a parameterized problem
P to a parameterized problem Q is a polynomial-time algorithm that
transforms a given instance (x , k) of P into an equivalent instance
(x ′, k ′) of Q such that k ′ = poly(k).

Observation

If problem P PPT-reduces to Q, and P does not admit a polynomial
compression algorithm (into any language R), then neither does Q.

Proof:
Compose the PPT with the assumed compression for Q.

Micha l Pilipczuk Kernelization lower bounds 24/33

PPTs

Idea: Hardness of kernelization can be transferred via reductions,
similarly to NP-hardness.

Polynomial parameter transformation (PPT)

A polynomial parameter transformation from a parameterized problem
P to a parameterized problem Q is a polynomial-time algorithm that
transforms a given instance (x , k) of P into an equivalent instance
(x ′, k ′) of Q such that k ′ = poly(k).

Observation

If problem P PPT-reduces to Q, and P does not admit a polynomial
compression algorithm (into any language R), then neither does Q.

Proof:
Compose the PPT with the assumed compression for Q.

Micha l Pilipczuk Kernelization lower bounds 24/33

PPTs

Idea: Hardness of kernelization can be transferred via reductions,
similarly to NP-hardness.

Polynomial parameter transformation (PPT)

A polynomial parameter transformation from a parameterized problem
P to a parameterized problem Q is a polynomial-time algorithm that
transforms a given instance (x , k) of P into an equivalent instance
(x ′, k ′) of Q such that k ′ = poly(k).

Observation

If problem P PPT-reduces to Q, and P does not admit a polynomial
compression algorithm (into any language R), then neither does Q.

Proof:
Compose the PPT with the assumed compression for Q.

Micha l Pilipczuk Kernelization lower bounds 24/33

PPTs

Idea: Hardness of kernelization can be transferred via reductions,
similarly to NP-hardness.

Polynomial parameter transformation (PPT)

A polynomial parameter transformation from a parameterized problem
P to a parameterized problem Q is a polynomial-time algorithm that
transforms a given instance (x , k) of P into an equivalent instance
(x ′, k ′) of Q such that k ′ = poly(k).

Observation

If problem P PPT-reduces to Q, and P does not admit a polynomial
compression algorithm (into any language R), then neither does Q.

Proof:
Compose the PPT with the assumed compression for Q.

Micha l Pilipczuk Kernelization lower bounds 24/33

Application 2: Steiner Tree

Steiner Tree

I: Graph G with terminals T ⊆ V (G), k ∈ N
P: k + |T |
Q: Is there a set X ⊆ V (G) \ T , such that |X | 6 k and

G [T ∪ X] is connected?

We show that Steiner Tree has no polykernel (unless...) using a
PPT from a auxiliary problem.

Micha l Pilipczuk Kernelization lower bounds 25/33

Application 2: Steiner Tree

Steiner Tree

I: Graph G with terminals T ⊆ V (G), k ∈ N
P: k + |T |
Q: Is there a set X ⊆ V (G) \ T , such that |X | 6 k and

G [T ∪ X] is connected?

We show that Steiner Tree has no polykernel (unless...) using a
PPT from a auxiliary problem.

Micha l Pilipczuk Kernelization lower bounds 25/33

The auxiliary problem technique

Introduce a simpler problem P, which is almost trivially
compositional.

Then design a PPT from P to the target problem.

Idea: Move the weight of the proof to the transformation and the
actual definition of P.

High level: Extract the essence of the original problem into the
auxiliary problem.

Micha l Pilipczuk Kernelization lower bounds 26/33

The auxiliary problem technique

Introduce a simpler problem P, which is almost trivially
compositional.

Then design a PPT from P to the target problem.

Idea: Move the weight of the proof to the transformation and the
actual definition of P.

High level: Extract the essence of the original problem into the
auxiliary problem.

Micha l Pilipczuk Kernelization lower bounds 26/33

The auxiliary problem technique

Introduce a simpler problem P, which is almost trivially
compositional.

Then design a PPT from P to the target problem.

Idea: Move the weight of the proof to the transformation and the
actual definition of P.

High level: Extract the essence of the original problem into the
auxiliary problem.

Micha l Pilipczuk Kernelization lower bounds 26/33

The auxiliary problem technique

Introduce a simpler problem P, which is almost trivially
compositional.

Then design a PPT from P to the target problem.

Idea: Move the weight of the proof to the transformation and the
actual definition of P.

High level: Extract the essence of the original problem into the
auxiliary problem.

Micha l Pilipczuk Kernelization lower bounds 26/33

Colorful Graph Motif

Colorful Graph Motif

I: Graph G and a coloring function φ : V (G)→ {1, 2, . . . , k}
P: k
Q: Does there exists a connected subgraph of G that contains

exactly one vertex of each color?

Micha l Pilipczuk Kernelization lower bounds 27/33

Colorful Graph Motif

Colorful Graph Motif

I: Graph G and a coloring function φ : V (G)→ {1, 2, . . . , k}
P: k
Q: Does there exists a connected subgraph of G that contains

exactly one vertex of each color?

Micha l Pilipczuk Kernelization lower bounds 27/33

About CGM

The problem is NP-hard even on trees.

FPT algorithms for various variants using the algebraic approach.

Composition: Take the disjoint union of instances, reuse colors.

There is a connected colorful motif in the composed instance iff
there is one in any of the input instances.

Corollary: no polykernel for CGM unless NP ⊆ coNP/poly.

Now: PPT from CGM to ST.

Micha l Pilipczuk Kernelization lower bounds 28/33

About CGM

The problem is NP-hard even on trees.

FPT algorithms for various variants using the algebraic approach.

Composition: Take the disjoint union of instances, reuse colors.

There is a connected colorful motif in the composed instance iff
there is one in any of the input instances.

Corollary: no polykernel for CGM unless NP ⊆ coNP/poly.

Now: PPT from CGM to ST.

Micha l Pilipczuk Kernelization lower bounds 28/33

About CGM

The problem is NP-hard even on trees.

FPT algorithms for various variants using the algebraic approach.

Composition: Take the disjoint union of instances, reuse colors.

There is a connected colorful motif in the composed instance iff
there is one in any of the input instances.

Corollary: no polykernel for CGM unless NP ⊆ coNP/poly.

Now: PPT from CGM to ST.

Micha l Pilipczuk Kernelization lower bounds 28/33

About CGM

The problem is NP-hard even on trees.

FPT algorithms for various variants using the algebraic approach.

Composition: Take the disjoint union of instances, reuse colors.

There is a connected colorful motif in the composed instance iff
there is one in any of the input instances.

Corollary: no polykernel for CGM unless NP ⊆ coNP/poly.

Now: PPT from CGM to ST.

Micha l Pilipczuk Kernelization lower bounds 28/33

About CGM

The problem is NP-hard even on trees.

FPT algorithms for various variants using the algebraic approach.

Composition: Take the disjoint union of instances, reuse colors.

There is a connected colorful motif in the composed instance iff
there is one in any of the input instances.

Corollary: no polykernel for CGM unless NP ⊆ coNP/poly.

Now: PPT from CGM to ST.

Micha l Pilipczuk Kernelization lower bounds 28/33

About CGM

The problem is NP-hard even on trees.

FPT algorithms for various variants using the algebraic approach.

Composition: Take the disjoint union of instances, reuse colors.

There is a connected colorful motif in the composed instance iff
there is one in any of the input instances.

Corollary: no polykernel for CGM unless NP ⊆ coNP/poly.

Now: PPT from CGM to ST.

Micha l Pilipczuk Kernelization lower bounds 28/33

From CGM to ST

Attach a terminal to every color class.

Give budget k for connecting nodes.

Micha l Pilipczuk Kernelization lower bounds 29/33

From CGM to ST

Attach a terminal to every color class.

Give budget k for connecting nodes.

Micha l Pilipczuk Kernelization lower bounds 29/33

From CGM to ST

Attach a terminal to every color class.

Give budget k for connecting nodes.

Micha l Pilipczuk Kernelization lower bounds 29/33

CGM: wrap up

CGM has no polynomial kernel, unless NP ⊆ coNP/poly.

CGM PPT-reduces to Steiner Tree par. by k + |T |.
Hence Steiner Tree par. by k + |T | does not admit a polynomial
kernel, unless NP ⊆ coNP/poly.

Note: Composition for CGM is far simpler than trying to do this
directly for Steiner Tree.

Micha l Pilipczuk Kernelization lower bounds 30/33

CGM: wrap up

CGM has no polynomial kernel, unless NP ⊆ coNP/poly.

CGM PPT-reduces to Steiner Tree par. by k + |T |.

Hence Steiner Tree par. by k + |T | does not admit a polynomial
kernel, unless NP ⊆ coNP/poly.

Note: Composition for CGM is far simpler than trying to do this
directly for Steiner Tree.

Micha l Pilipczuk Kernelization lower bounds 30/33

CGM: wrap up

CGM has no polynomial kernel, unless NP ⊆ coNP/poly.

CGM PPT-reduces to Steiner Tree par. by k + |T |.
Hence Steiner Tree par. by k + |T | does not admit a polynomial
kernel, unless NP ⊆ coNP/poly.

Note: Composition for CGM is far simpler than trying to do this
directly for Steiner Tree.

Micha l Pilipczuk Kernelization lower bounds 30/33

CGM: wrap up

CGM has no polynomial kernel, unless NP ⊆ coNP/poly.

CGM PPT-reduces to Steiner Tree par. by k + |T |.
Hence Steiner Tree par. by k + |T | does not admit a polynomial
kernel, unless NP ⊆ coNP/poly.

Note: Composition for CGM is far simpler than trying to do this
directly for Steiner Tree.

Micha l Pilipczuk Kernelization lower bounds 30/33

AND-compositions

In the compositionality framework, we used the OR function to
compose instances.

What about replacing it with, say, AND?

AND-distillation, AND-(cross)-composition:
Same as before, but with AND instead of OR.

Example of problem admitting an AND-composition: Treewidth.

AND-conjecture:
If 3SAT has an AND-distillation, then NP ⊆ coNP/poly.

The proof of Fortnow and Santhanam fails for AND.
The conjecture was proved by Drucker in 2012.

Corollary: The whole framework works for AND instead of OR.

Micha l Pilipczuk Kernelization lower bounds 31/33

AND-compositions

In the compositionality framework, we used the OR function to
compose instances.

What about replacing it with, say, AND?

AND-distillation, AND-(cross)-composition:
Same as before, but with AND instead of OR.

Example of problem admitting an AND-composition: Treewidth.

AND-conjecture:
If 3SAT has an AND-distillation, then NP ⊆ coNP/poly.

The proof of Fortnow and Santhanam fails for AND.
The conjecture was proved by Drucker in 2012.

Corollary: The whole framework works for AND instead of OR.

Micha l Pilipczuk Kernelization lower bounds 31/33

AND-compositions

In the compositionality framework, we used the OR function to
compose instances.

What about replacing it with, say, AND?

AND-distillation, AND-(cross)-composition:
Same as before, but with AND instead of OR.

Example of problem admitting an AND-composition: Treewidth.

AND-conjecture:
If 3SAT has an AND-distillation, then NP ⊆ coNP/poly.

The proof of Fortnow and Santhanam fails for AND.
The conjecture was proved by Drucker in 2012.

Corollary: The whole framework works for AND instead of OR.

Micha l Pilipczuk Kernelization lower bounds 31/33

AND-compositions

In the compositionality framework, we used the OR function to
compose instances.

What about replacing it with, say, AND?

AND-distillation, AND-(cross)-composition:
Same as before, but with AND instead of OR.

Example of problem admitting an AND-composition: Treewidth.

AND-conjecture:
If 3SAT has an AND-distillation, then NP ⊆ coNP/poly.

The proof of Fortnow and Santhanam fails for AND.
The conjecture was proved by Drucker in 2012.

Corollary: The whole framework works for AND instead of OR.

Micha l Pilipczuk Kernelization lower bounds 31/33

AND-compositions

In the compositionality framework, we used the OR function to
compose instances.

What about replacing it with, say, AND?

AND-distillation, AND-(cross)-composition:
Same as before, but with AND instead of OR.

Example of problem admitting an AND-composition: Treewidth.

AND-conjecture:
If 3SAT has an AND-distillation, then NP ⊆ coNP/poly.

The proof of Fortnow and Santhanam fails for AND.
The conjecture was proved by Drucker in 2012.

Corollary: The whole framework works for AND instead of OR.

Micha l Pilipczuk Kernelization lower bounds 31/33

AND-compositions

In the compositionality framework, we used the OR function to
compose instances.

What about replacing it with, say, AND?

AND-distillation, AND-(cross)-composition:
Same as before, but with AND instead of OR.

Example of problem admitting an AND-composition: Treewidth.

AND-conjecture:
If 3SAT has an AND-distillation, then NP ⊆ coNP/poly.

The proof of Fortnow and Santhanam fails for AND.

The conjecture was proved by Drucker in 2012.

Corollary: The whole framework works for AND instead of OR.

Micha l Pilipczuk Kernelization lower bounds 31/33

AND-compositions

In the compositionality framework, we used the OR function to
compose instances.

What about replacing it with, say, AND?

AND-distillation, AND-(cross)-composition:
Same as before, but with AND instead of OR.

Example of problem admitting an AND-composition: Treewidth.

AND-conjecture:
If 3SAT has an AND-distillation, then NP ⊆ coNP/poly.

The proof of Fortnow and Santhanam fails for AND.
The conjecture was proved by Drucker in 2012.

Corollary: The whole framework works for AND instead of OR.

Micha l Pilipczuk Kernelization lower bounds 31/33

AND-compositions

In the compositionality framework, we used the OR function to
compose instances.

What about replacing it with, say, AND?

AND-distillation, AND-(cross)-composition:
Same as before, but with AND instead of OR.

Example of problem admitting an AND-composition: Treewidth.

AND-conjecture:
If 3SAT has an AND-distillation, then NP ⊆ coNP/poly.

The proof of Fortnow and Santhanam fails for AND.
The conjecture was proved by Drucker in 2012.

Corollary: The whole framework works for AND instead of OR.

Micha l Pilipczuk Kernelization lower bounds 31/33

Weak compositions

Idea: Inspect the proof of FS to get precise estimates.

Cor: A framework for lower bounds on kernel sizes.

Weak cross-composition

A weak cross-composition of dimension d from an unpar. problem Q
to a par. problem L, is an algorithm that, given ∼-equivalent strings
x1, x2, . . . , xt for some polynomial equivalence relation ∼, in time
poly

(
t +

∑t
i=1 |xi |

)
produces one instance (y , k?) such that

(y , k?) ∈ L iff xi ∈ Q for at least one i = 1, 2, . . . , t,

k? = t1/d · poly (maxti=1 |xi |).

Weak cross-composition theorem

Suppose NP * coNP/poly. If some NP-hard problem Q has a
cross-composition of dimension d into L, then L does not admit a
compression into any language R with bitsize O(kd−ε) for any ε > 0.

Ex: Vertex Cover has no compression into bitsize O(k2−ε).

Note: The 2k-kernel for VC needs O(k2) bits for the encoding.

Micha l Pilipczuk Kernelization lower bounds 32/33

Weak compositions

Idea: Inspect the proof of FS to get precise estimates.
Cor: A framework for lower bounds on kernel sizes.

Weak cross-composition

A weak cross-composition of dimension d from an unpar. problem Q
to a par. problem L, is an algorithm that, given ∼-equivalent strings
x1, x2, . . . , xt for some polynomial equivalence relation ∼, in time
poly

(
t +

∑t
i=1 |xi |

)
produces one instance (y , k?) such that

(y , k?) ∈ L iff xi ∈ Q for at least one i = 1, 2, . . . , t,

k? = t1/d · poly (maxti=1 |xi |).

Weak cross-composition theorem

Suppose NP * coNP/poly. If some NP-hard problem Q has a
cross-composition of dimension d into L, then L does not admit a
compression into any language R with bitsize O(kd−ε) for any ε > 0.

Ex: Vertex Cover has no compression into bitsize O(k2−ε).

Note: The 2k-kernel for VC needs O(k2) bits for the encoding.

Micha l Pilipczuk Kernelization lower bounds 32/33

Weak compositions

Idea: Inspect the proof of FS to get precise estimates.
Cor: A framework for lower bounds on kernel sizes.

Weak cross-composition

A weak cross-composition of dimension d from an unpar. problem Q
to a par. problem L, is an algorithm that, given ∼-equivalent strings
x1, x2, . . . , xt for some polynomial equivalence relation ∼, in time
poly

(
t +

∑t
i=1 |xi |

)
produces one instance (y , k?) such that

(y , k?) ∈ L iff xi ∈ Q for at least one i = 1, 2, . . . , t,

k? = t1/d · poly (maxti=1 |xi |).

Weak cross-composition theorem

Suppose NP * coNP/poly. If some NP-hard problem Q has a
cross-composition of dimension d into L, then L does not admit a
compression into any language R with bitsize O(kd−ε) for any ε > 0.

Ex: Vertex Cover has no compression into bitsize O(k2−ε).

Note: The 2k-kernel for VC needs O(k2) bits for the encoding.

Micha l Pilipczuk Kernelization lower bounds 32/33

Weak compositions

Idea: Inspect the proof of FS to get precise estimates.
Cor: A framework for lower bounds on kernel sizes.

Weak cross-composition

A weak cross-composition of dimension d from an unpar. problem Q
to a par. problem L, is an algorithm that, given ∼-equivalent strings
x1, x2, . . . , xt for some polynomial equivalence relation ∼, in time
poly

(
t +

∑t
i=1 |xi |

)
produces one instance (y , k?) such that

(y , k?) ∈ L iff xi ∈ Q for at least one i = 1, 2, . . . , t,

k? = t1/d · poly (maxti=1 |xi |).

Weak cross-composition theorem

Suppose NP * coNP/poly. If some NP-hard problem Q has a
cross-composition of dimension d into L, then L does not admit a
compression into any language R with bitsize O(kd−ε) for any ε > 0.

Ex: Vertex Cover has no compression into bitsize O(k2−ε).

Note: The 2k-kernel for VC needs O(k2) bits for the encoding.

Micha l Pilipczuk Kernelization lower bounds 32/33

Weak compositions

Idea: Inspect the proof of FS to get precise estimates.
Cor: A framework for lower bounds on kernel sizes.

Weak cross-composition

A weak cross-composition of dimension d from an unpar. problem Q
to a par. problem L, is an algorithm that, given ∼-equivalent strings
x1, x2, . . . , xt for some polynomial equivalence relation ∼, in time
poly

(
t +

∑t
i=1 |xi |

)
produces one instance (y , k?) such that

(y , k?) ∈ L iff xi ∈ Q for at least one i = 1, 2, . . . , t,

k? = t1/d · poly (maxti=1 |xi |).

Weak cross-composition theorem

Suppose NP * coNP/poly. If some NP-hard problem Q has a
cross-composition of dimension d into L, then L does not admit a
compression into any language R with bitsize O(kd−ε) for any ε > 0.

Ex: Vertex Cover has no compression into bitsize O(k2−ε).

Note: The 2k-kernel for VC needs O(k2) bits for the encoding.

Micha l Pilipczuk Kernelization lower bounds 32/33

Weak compositions

Idea: Inspect the proof of FS to get precise estimates.
Cor: A framework for lower bounds on kernel sizes.

Weak cross-composition

A weak cross-composition of dimension d from an unpar. problem Q
to a par. problem L, is an algorithm that, given ∼-equivalent strings
x1, x2, . . . , xt for some polynomial equivalence relation ∼, in time
poly

(
t +

∑t
i=1 |xi |

)
produces one instance (y , k?) such that

(y , k?) ∈ L iff xi ∈ Q for at least one i = 1, 2, . . . , t,

k? = t1/d · poly (maxti=1 |xi |).

Weak cross-composition theorem

Suppose NP * coNP/poly. If some NP-hard problem Q has a
cross-composition of dimension d into L, then L does not admit a
compression into any language R with bitsize O(kd−ε) for any ε > 0.

Ex: Vertex Cover has no compression into bitsize O(k2−ε).

Note: The 2k-kernel for VC needs O(k2) bits for the encoding.

Micha l Pilipczuk Kernelization lower bounds 32/33

Conclusions

Composition: a versatile framework for proving lower bounds for
polynomial kernelization.

Message 1: What is hard for kernelization is unbounded choice.
Message 2: Turning intuition into a lower bound via
cross-composition often needs a good understanding of the problem.

Turing kernelization: A Turing kernel is a poly-time algorithm that
has oracle access to solving instances of size poly(k).

Composition framework does not apply.
There are problems that have polynomial Turing kernels, but no
polynomial kernel under NP * coNP/poly.
Open: A technique for ruling out Turing kernels.

Complexity theory for kernelization: Using PPT as reductions,
one can build a hierarchy of complexity classes [HKSWW].

Thank you for your attention!

Tikz faces based on a code by Raoul Kessels, http://www.texample.net/tikz/examples/emoticons/,

under Creative Commons Attribution 2.5 license (CC BY 2.5)

Micha l Pilipczuk Kernelization lower bounds 33/33

Conclusions

Composition: a versatile framework for proving lower bounds for
polynomial kernelization.

Message 1: What is hard for kernelization is unbounded choice.

Message 2: Turning intuition into a lower bound via
cross-composition often needs a good understanding of the problem.

Turing kernelization: A Turing kernel is a poly-time algorithm that
has oracle access to solving instances of size poly(k).

Composition framework does not apply.
There are problems that have polynomial Turing kernels, but no
polynomial kernel under NP * coNP/poly.
Open: A technique for ruling out Turing kernels.

Complexity theory for kernelization: Using PPT as reductions,
one can build a hierarchy of complexity classes [HKSWW].

Thank you for your attention!

Tikz faces based on a code by Raoul Kessels, http://www.texample.net/tikz/examples/emoticons/,

under Creative Commons Attribution 2.5 license (CC BY 2.5)

Micha l Pilipczuk Kernelization lower bounds 33/33

Conclusions

Composition: a versatile framework for proving lower bounds for
polynomial kernelization.

Message 1: What is hard for kernelization is unbounded choice.
Message 2: Turning intuition into a lower bound via
cross-composition often needs a good understanding of the problem.

Turing kernelization: A Turing kernel is a poly-time algorithm that
has oracle access to solving instances of size poly(k).

Composition framework does not apply.
There are problems that have polynomial Turing kernels, but no
polynomial kernel under NP * coNP/poly.
Open: A technique for ruling out Turing kernels.

Complexity theory for kernelization: Using PPT as reductions,
one can build a hierarchy of complexity classes [HKSWW].

Thank you for your attention!

Tikz faces based on a code by Raoul Kessels, http://www.texample.net/tikz/examples/emoticons/,

under Creative Commons Attribution 2.5 license (CC BY 2.5)

Micha l Pilipczuk Kernelization lower bounds 33/33

Conclusions

Composition: a versatile framework for proving lower bounds for
polynomial kernelization.

Message 1: What is hard for kernelization is unbounded choice.
Message 2: Turning intuition into a lower bound via
cross-composition often needs a good understanding of the problem.

Turing kernelization: A Turing kernel is a poly-time algorithm that
has oracle access to solving instances of size poly(k).

Composition framework does not apply.
There are problems that have polynomial Turing kernels, but no
polynomial kernel under NP * coNP/poly.
Open: A technique for ruling out Turing kernels.

Complexity theory for kernelization: Using PPT as reductions,
one can build a hierarchy of complexity classes [HKSWW].

Thank you for your attention!

Tikz faces based on a code by Raoul Kessels, http://www.texample.net/tikz/examples/emoticons/,

under Creative Commons Attribution 2.5 license (CC BY 2.5)

Micha l Pilipczuk Kernelization lower bounds 33/33

Conclusions

Composition: a versatile framework for proving lower bounds for
polynomial kernelization.

Message 1: What is hard for kernelization is unbounded choice.
Message 2: Turning intuition into a lower bound via
cross-composition often needs a good understanding of the problem.

Turing kernelization: A Turing kernel is a poly-time algorithm that
has oracle access to solving instances of size poly(k).

Composition framework does not apply.

There are problems that have polynomial Turing kernels, but no
polynomial kernel under NP * coNP/poly.
Open: A technique for ruling out Turing kernels.

Complexity theory for kernelization: Using PPT as reductions,
one can build a hierarchy of complexity classes [HKSWW].

Thank you for your attention!

Tikz faces based on a code by Raoul Kessels, http://www.texample.net/tikz/examples/emoticons/,

under Creative Commons Attribution 2.5 license (CC BY 2.5)

Micha l Pilipczuk Kernelization lower bounds 33/33

Conclusions

Composition: a versatile framework for proving lower bounds for
polynomial kernelization.

Message 1: What is hard for kernelization is unbounded choice.
Message 2: Turning intuition into a lower bound via
cross-composition often needs a good understanding of the problem.

Turing kernelization: A Turing kernel is a poly-time algorithm that
has oracle access to solving instances of size poly(k).

Composition framework does not apply.
There are problems that have polynomial Turing kernels, but no
polynomial kernel under NP * coNP/poly.

Open: A technique for ruling out Turing kernels.

Complexity theory for kernelization: Using PPT as reductions,
one can build a hierarchy of complexity classes [HKSWW].

Thank you for your attention!

Tikz faces based on a code by Raoul Kessels, http://www.texample.net/tikz/examples/emoticons/,

under Creative Commons Attribution 2.5 license (CC BY 2.5)

Micha l Pilipczuk Kernelization lower bounds 33/33

Conclusions

Composition: a versatile framework for proving lower bounds for
polynomial kernelization.

Message 1: What is hard for kernelization is unbounded choice.
Message 2: Turning intuition into a lower bound via
cross-composition often needs a good understanding of the problem.

Turing kernelization: A Turing kernel is a poly-time algorithm that
has oracle access to solving instances of size poly(k).

Composition framework does not apply.
There are problems that have polynomial Turing kernels, but no
polynomial kernel under NP * coNP/poly.
Open: A technique for ruling out Turing kernels.

Complexity theory for kernelization: Using PPT as reductions,
one can build a hierarchy of complexity classes [HKSWW].

Thank you for your attention!

Tikz faces based on a code by Raoul Kessels, http://www.texample.net/tikz/examples/emoticons/,

under Creative Commons Attribution 2.5 license (CC BY 2.5)

Micha l Pilipczuk Kernelization lower bounds 33/33

Conclusions

Composition: a versatile framework for proving lower bounds for
polynomial kernelization.

Message 1: What is hard for kernelization is unbounded choice.
Message 2: Turning intuition into a lower bound via
cross-composition often needs a good understanding of the problem.

Turing kernelization: A Turing kernel is a poly-time algorithm that
has oracle access to solving instances of size poly(k).

Composition framework does not apply.
There are problems that have polynomial Turing kernels, but no
polynomial kernel under NP * coNP/poly.
Open: A technique for ruling out Turing kernels.

Complexity theory for kernelization: Using PPT as reductions,
one can build a hierarchy of complexity classes [HKSWW].

Thank you for your attention!

Tikz faces based on a code by Raoul Kessels, http://www.texample.net/tikz/examples/emoticons/,

under Creative Commons Attribution 2.5 license (CC BY 2.5)

Micha l Pilipczuk Kernelization lower bounds 33/33

Conclusions

Composition: a versatile framework for proving lower bounds for
polynomial kernelization.

Message 1: What is hard for kernelization is unbounded choice.
Message 2: Turning intuition into a lower bound via
cross-composition often needs a good understanding of the problem.

Turing kernelization: A Turing kernel is a poly-time algorithm that
has oracle access to solving instances of size poly(k).

Composition framework does not apply.
There are problems that have polynomial Turing kernels, but no
polynomial kernel under NP * coNP/poly.
Open: A technique for ruling out Turing kernels.

Complexity theory for kernelization: Using PPT as reductions,
one can build a hierarchy of complexity classes [HKSWW].

Thank you for your attention!

Tikz faces based on a code by Raoul Kessels, http://www.texample.net/tikz/examples/emoticons/,

under Creative Commons Attribution 2.5 license (CC BY 2.5)

Micha l Pilipczuk Kernelization lower bounds 33/33

