ETH and SETH lower bounds

Michat Pilipczuk

\A\\JERS'CI
N \\ %)/ »

L2 ¥XEF* o
£ V\c}
SOVIE

Institute of Informatics, University of Warsaw, Poland

Parameterized Complexity Summer School

Vienna, September 15, 2017

Michat Pilipczuk ETH&SETH

o Take the HAMILTONIAN CYCLE problem.

Michat Pilipczuk ETH&SETH 2/28

o Take the HAMILTONIAN CYCLE problem.
e Algorithms:

Michat Pilipczuk ETH&SETH 2/28

o Take the HAMILTONIAN CYCLE problem.
o Algorithms:
o Brute-force O(n!).

Michat Pilipczuk ETH&SETH 2/28

o Take the HAMILTONIAN CYCLE problem.
o Algorithms:

o Brute-force O(n!).
e O0*(2") Held-Karp dynamic programming.

Michat Pilipczuk ETH&SETH 2/28

o Take the HAMILTONIAN CYCLE problem.
o Algorithms:

o Brute-force O(n!).
o 0*(2") Held-Karp dynamic programming.
o Currently fastest: O(1.657") [Bjorklund, 2010].

Michat Pilipczuk ETH&SETH 2/28

o Take the HAMILTONIAN CYCLE problem.
o Algorithms:

o Brute-force O(n!).
o 0*(2") Held-Karp dynamic programming.
o Currently fastest: O(1.657") [Bjorklund, 2010].

@ Lower bounds:

Michat Pilipczuk ETH&SETH 2/28

o Take the HAMILTONIAN CYCLE problem.
o Algorithms:

o Brute-force O(n!).
o 0*(2") Held-Karp dynamic programming.
o Currently fastest: O(1.657") [Bjorklund, 2010].

o Lower bounds:
e No poly-time algorithm under P £ NP.

Michat Pilipczuk ETH&SETH 2/28

o Take the HAMILTONIAN CYCLE problem.
o Algorithms:

o Brute-force O(n!).

o 0*(2") Held-Karp dynamic programming.

o Currently fastest: O(1.657") [Bjorklund, 2010].
o Lower bounds:

o No poly-time algorithm under P £ NP.
e How much can you improve the constant 1.6577

Michat Pilipczuk ETH&SETH 2/28

o Take the HAMILTONIAN CYCLE problem.
o Algorithms:

o Brute-force O(n!).

o 0*(2") Held-Karp dynamic programming.

o Currently fastest: O(1.657") [Bjorklund, 2010].
o Lower bounds:

o No poly-time algorithm under P £ NP.
o How much can you improve the constant 1.6577
o Can you do significantly better, e.g. 2°("/1087) op 2017

Michat Pilipczuk ETH&SETH 2/28

Take the HAMILTONIAN CYCLE problem.
Algorithms:

o Brute-force O(n!).
o 0*(2") Held-Karp dynamic programming.
o Currently fastest: O(1.657") [Bjorklund, 2010].

o Lower bounds:

o No poly-time algorithm under P £ NP.
e How much can you improve the constant 1.6577
o Can you do significantly better, e.g. 2°("/1087) op 2017

Assumption P # NP seems too weak to answer these questions.

Michat Pilipczuk ETH&SETH 2/28

Take the HAMILTONIAN CYCLE problem.
Algorithms:

o Brute-force O(n!).
o 0*(2") Held-Karp dynamic programming.
o Currently fastest: O(1.657") [Bjorklund, 2010].

o Lower bounds:
o No poly-time algorithm under P £ NP.
e How much can you improve the constant 1.6577
o Can you do significantly better, e.g. 29("/ 18" o 20(V1)7

Assumption P £ NP seems too weak to answer these questions.

Parameterized complexity:

Michat Pilipczuk ETH&SETH 2/28

Take the HAMILTONIAN CYCLE problem.
Algorithms:

o Brute-force O(n!).
o 0*(2") Held-Karp dynamic programming.
o Currently fastest: O(1.657") [Bjorklund, 2010].

o Lower bounds:
o No poly-time algorithm under P £ NP.
e How much can you improve the constant 1.6577
o Can you do significantly better, e.g. 29("/ 18" o 20(V1)7

Assumption P £ NP seems too weak to answer these questions.

(]

Parameterized complexity:
o FPT: 0*(2°0V0) 0% (290 0*(kOK), 0* (227", .

Michat Pilipczuk ETH&SETH 2/28

Take the HAMILTONIAN CYCLE problem.
Algorithms:

o Brute-force O(n!).
o 0*(2") Held-Karp dynamic programming.
o Currently fastest: O(1.657") [Bjorklund, 2010].

o Lower bounds:
o No poly-time algorithm under P £ NP.
e How much can you improve the constant 1.6577
o Can you do significantly better, e.g. 29("/ 18" o 20(V1)7

Assumption P £ NP seems too weak to answer these questions.

(]

Parameterized complexity:

o FPT: 0*(2°0V0) 0% (290 0* kO, 0* (227", .
o XP: nOlogk) LO(K) Ok n2©<k>

Michat Pilipczuk ETH&SETH 2/28

Take the HAMILTONIAN CYCLE problem.
Algorithms:

o Brute-force O(n!).
o 0*(2") Held-Karp dynamic programming.
o Currently fastest: O(1.657") [Bjorklund, 2010].

o Lower bounds:

o No poly-time algorithm under P £ NP.
e How much can you improve the constant 1.6577
o Can you do significantly better, e.g. 2°("/1087) op 2017

Assumption P £ NP seems too weak to answer these questions.

(]

Parameterized complexity:

o FPT: 0*(2°0V0) 0% (290 0*(kOK), 0* (227", ..
o XP: nOlogk) Ok Ok n2©<k>

Assumption FPT # W[1] seems too weak to separate these.

Michat Pilipczuk ETH&SETH 2/28

3SAT: complexity status

@ 3SAT: given formula ¢ in 3CNF with n variables and m clauses,
decide whether ¢ is satisfiable.

Michat Pilipczuk ETH&SETH 3/28

3SAT: complexity status

@ 3SAT: given formula ¢ in 3CNF with n variables and m clauses,
decide whether ¢ is satisfiable.

e 3CNF: ¢ is a conjunction of clauses, where each clause is a
disjunction of at most 3 literals — variables or their negations.

(Xl V x2 V —|X3) A (—‘Xz Vv X3) A\ (—|X1 V x2 V X3)

Michat Pilipczuk ETH&SETH 3/28

3SAT: complexity status

@ 3SAT: given formula ¢ in 3CNF with n variables and m clauses,
decide whether ¢ is satisfiable.

e 3CNF: ¢ is a conjunction of clauses, where each clause is a
disjunction of at most 3 literals — variables or their negations.

(X1 V x2 V —|X3) A (—‘Xz Vv X3) A\ (—|X1 V x2 V X3)

e Trivial: O*(2")

Michat Pilipczuk ETH&SETH 3/28

3SAT: complexity status

@ 3SAT: given formula ¢ in 3CNF with n variables and m clauses,
decide whether ¢ is satisfiable.

e 3CNF: ¢ is a conjunction of clauses, where each clause is a
disjunction of at most 3 literals — variables or their negations.

(X1 V x2 V —|X3) A (—‘Xz Vv X3) A\ (—|X1 V x2 V X3)

e Trivial: O*(2")
e Smarter:

Michat Pilipczuk ETH&SETH 3/28

3SAT: complexity status

@ 3SAT: given formula ¢ in 3CNF with n variables and m clauses,
decide whether ¢ is satisfiable.

e 3CNF: ¢ is a conjunction of clauses, where each clause is a
disjunction of at most 3 literals — variables or their negations.

(X1 V x2 V —|X3) A (—‘Xz Vv X3) A\ (—|X1 V x2 V X3)

e Trivial: O*(2")
e Smarter:

o Take any clause not satisfied so far, and branch on the evaluations of
the variables: there are at most 7 options for a 3-clause.

Michat Pilipczuk ETH&SETH 3/28

3SAT: complexity status

@ 3SAT: given formula ¢ in 3CNF with n variables and m clauses,
decide whether ¢ is satisfiable.

e 3CNF: ¢ is a conjunction of clauses, where each clause is a
disjunction of at most 3 literals — variables or their negations.

(X1 V x2 V —|X3) A (—‘Xz Vv X3) A\ (—|X1 V x2 V X3)

e Trivial: O*(2")
e Smarter:

o Take any clause not satisfied so far, and branch on the evaluations of
the variables: there are at most 7 options for a 3-clause.
o Hence the running time is O*(7"/3) = 0(1.913").

Michat Pilipczuk ETH&SETH 3/28

3SAT: complexity status

3SAT: given formula ¢ in 3CNF with n variables and m clauses,
decide whether ¢ is satisfiable.

e 3CNF: ¢ is a conjunction of clauses, where each clause is a
disjunction of at most 3 literals — variables or their negations.

(X1 V x2 V —|X3) A (—‘Xz Vv X3) A\ (—|X1 V x2 V X3)

e Trivial: O*(2")
e Smarter:
o Take any clause not satisfied so far, and branch on the evaluations of
the variables: there are at most 7 options for a 3-clause.
o Hence the running time is O*(7"/3) = ©(1.913").
o Currently fastest: 0(1.308") [PPSZ]

Michat Pilipczuk ETH&SETH 3/28

3SAT: complexity status

3SAT: given formula ¢ in 3CNF with n variables and m clauses,
decide whether ¢ is satisfiable.

e 3CNF: ¢ is a conjunction of clauses, where each clause is a
disjunction of at most 3 literals — variables or their negations.

(X1 V x2 V —|X3) A (—‘Xz Vv X3) A\ (—|X1 V x2 V X3)

Trivial: O*(2")
Smarter:

o Take any clause not satisfied so far, and branch on the evaluations of
the variables: there are at most 7 options for a 3-clause.
o Hence the running time is O*(7"/3) = ©(1.913").

Currently fastest: 0(1.308") [PPSZ]
For every g you can do (2 — g4)" for gSAT, but limg_, g4 = 0.

Michat Pilipczuk ETH&SETH 3/28

Intuitive statements

@ Questions:

Michat Pilipczuk ETH&SETH 4/28

Intuitive statements

@ Questions:
o Can you do significantly better, that is, obtain running time 2°("?

Michat Pilipczuk ETH&SETH 4/28

Intuitive statements

@ Questions:

o Can you do significantly better, that is, obtain running time 2°("?
o If you do not have a bound on the clause length, can you do
anything smarter than brute-force?

Michat Pilipczuk ETH&SETH 4/28

Intuitive statements

@ Questions:
o Can you do significantly better, that is, obtain running time 2°("?
o If you do not have a bound on the clause length, can you do
anything smarter than brute-force?

ETH and SETH, first attempt

ETH: 3SAT cannot be solved in time 2°(").
SETH: CNF-SAT cannot be solved in time O(a") for any a < 2.

Michat Pilipczuk ETH&SETH 4/28

Actual statements

dq = inf{c : There is an O(2") algorithm for gSAT}

Exponential Time Hypothesis, ETH
63 > 0.
There is a ¢ > 0 such that 3SAT cannot be solved in O(2°") time.

Strong Exponential Time Hypothesis, SETH

lim 6, = 1.

g—00

Michat Pilipczuk ETH&SETH 5/28

Actual statements

dq = inf{c : There is an O(2") algorithm for gSAT}

Exponential Time Hypothesis, ETH
63 > 0.
There is a ¢ > 0 such that 3SAT cannot be solved in O(2°") time.

Strong Exponential Time Hypothesis, SETH

lim 6, = 1.

g—00

@ These statements are stronger than our first attempts.

Michat Pilipczuk ETH&SETH 5/28

Actual statements

dq = inf{c : There is an O(2") algorithm for gSAT}

Exponential Time Hypothesis, ETH
63 > 0.
There is a ¢ > 0 such that 3SAT cannot be solved in O(2°") time.

Strong Exponential Time Hypothesis, SETH

lim 6, = 1.

g—00

@ These statements are stronger than our first attempts.
o Often the weaker statements suffice, but the above are more robust.

Michat Pilipczuk ETH&SETH 5/28

Actual statements

dq = inf{c : There is an O(2") algorithm for gSAT}

Exponential Time Hypothesis, ETH
63 > 0.
There is a ¢ > 0 such that 3SAT cannot be solved in O(2°") time.

Strong Exponential Time Hypothesis, SETH

lim 6, = 1.

g—00

@ These statements are stronger than our first attempts.
o Often the weaker statements suffice, but the above are more robust.

@ Note: Usually we allow two-sided error algorithms in the definition.

Michat Pilipczuk ETH&SETH 5/28

Actual statements

dq = inf{c : There is an O(2") algorithm for gSAT}

Exponential Time Hypothesis, ETH
63 > 0.
There is a ¢ > 0 such that 3SAT cannot be solved in O(2°") time.

Strong Exponential Time Hypothesis, SETH

lim 6, = 1.

g—00

@ These statements are stronger than our first attempts.
o Often the weaker statements suffice, but the above are more robust.

@ Note: Usually we allow two-sided error algorithms in the definition.
e SETH = ETH (nontrivial)

Michat Pilipczuk ETH&SETH 5/28

Actual statements

dq = inf{c : There is an O(2") algorithm for gSAT}

Exponential Time Hypothesis, ETH
63 > 0.
There is a ¢ > 0 such that 3SAT cannot be solved in O(2°") time.

Strong Exponential Time Hypothesis, SETH

lim 6, = 1.

g—00

These statements are stronger than our first attempts.

o Often the weaker statements suffice, but the above are more robust.
Note: Usually we allow two-sided error algorithms in the definition.
SETH = ETH (nontrivial)

@ Formulated by Impagliazzo, Paturi, and Zane in 2001.

Michat Pilipczuk ETH&SETH 5/28

Actual statements

dq = inf{c : There is an O(2") algorithm for gSAT}

Exponential Time Hypothesis, ETH

63 > 0.
There is a ¢ > 0 such that 3SAT cannot be solved in O(2°") time.

Strong Exponential Time Hypothesis, SETH

lim 6, = 1.

g—00

These statements are stronger than our first attempts.

o Often the weaker statements suffice, but the above are more robust.
Note: Usually we allow two-sided error algorithms in the definition.
SETH = ETH (nontrivial)

Formulated by Impagliazzo, Paturi, and Zane in 2001.
Nowadays, standard assumptions for fine-grained complexity theory.

Michat Pilipczuk ETH&SETH 5/28

Actual statements

dq = inf{c : There is an O(2") algorithm for gSAT}

Exponential Time Hypothesis, ETH
63 > 0.
There is a ¢ > 0 such that 3SAT cannot be solved in O(2°") time.

Strong Exponential Time Hypothesis, SETH

lim 6, = 1.

g—00

These statements are stronger than our first attempts.

o Often the weaker statements suffice, but the above are more robust.
Note: Usually we allow two-sided error algorithms in the definition.
SETH = ETH (nontrivial)

Formulated by Impagliazzo, Paturi, and Zane in 2001.
Nowadays, standard assumptions for fine-grained complexity theory.
@ ETH is widely believed, SETH is disputed.

Michat Pilipczuk ETH&SETH 5/28

@ We would like to transfer lower bounds via reductions.

Michat Pilipczuk ETH&SETH 6/28

@ We would like to transfer lower bounds via reductions.

@ A reduction 3SAT— L and a too fast algorithm for L would give a
too fast algorithm for 3SAT.

Michat Pilipczuk ETH&SETH 6/28

@ We would like to transfer lower bounds via reductions.

@ A reduction 3SAT— L and a too fast algorithm for L would give a
too fast algorithm for 3SAT.

I: graph G and k € N
Q: Is there a set X C V/(G) with |X| < k such that every edge of G
has at least one endpoint in X?

Michat Pilipczuk ETH&SETH 6/28

VERTEX COVER reduction

Let us inspect the standard reduction from 3SAT to VERTEX COVER. J

v v v L . v

o—e *—e o—e o—e i
—xq 1 % X x5 X3 x4 X variables

Variable gadgets ~~ Edges Clause gadgets ~~ Triangles

Michat Pilipczuk ETH&SETH 7/28

VERTEX COVER reduction

Let us inspect the standard reduction from 3SAT to VERTEX COVER. J

VOOV O Y VY e

o—e *—e o—e o—e i
—xq 1 % X x5 X3 x4 X variables

Variable gadgets ~~ Edges Clause gadgets ~~ Triangles

Michat Pilipczuk ETH&SETH 7/28

VERTEX COVER reduction

Let us inspect the standard reduction from 3SAT to VERTEX COVER. J

VOV O Y VYV dus

—|X2
— o—e i
—xq 1 % X x5 X3 x4 X variables
Variable gadgets ~~ Edges Clause gadgets ~~ Triangles

Michat Pilipczuk ETH&SETH 7/28

VERTEX COVER reduction

Let us inspect the standard reduction from 3SAT to VERTEX COVER. J

VOV O Y VYV dus

—|X2
— o—e i
—xq 1 % X x5 X3 x4 X variables
Variable gadgets ~~ Edges Clause gadgets ~~ Triangles

 is satisfiable iff the created graph has a vertex cover of size n+2m.

Michat Pilipczuk ETH&SETH 7/28

VERTEX COVER reduction, analysis

o If N =2n+ 3m is the number of vertices of the output graph, then
N = O(n+ m) = 0(n).

Michat Pilipczuk ETH&SETH 8/28

VERTEX COVER reduction, analysis

o If N =2n+ 3m is the number of vertices of the output graph, then
N = O(n+ m) = 0(n).

o Hence an 2°(N"/) algorithm for VC would give an 2°(") algorithm
for 3-SAT, contradicting ETH.

Michat Pilipczuk ETH&SETH 8/28

VERTEX COVER reduction, analysis

o If N =2n+ 3m is the number of vertices of the output graph, then
N = O(n+ m) = 0(n).

o Hence an 20(N""?) algorithm for VC would give an 2°(") algorithm
for 3-SAT, contradicting ETH.
N1/3)

e Gap: between upper bound 29(N) and 2°(.

Michat Pilipczuk ETH&SETH 8/28

VERTEX COVER reduction, analysis

o If N =2n+ 3m is the number of vertices of the output graph, then
N = O(n+ m) = 0(n).

o Hence an 20(N""?) algorithm for VC would give an 2°(") algorithm
for 3-SAT, contradicting ETH.
o Gap: between upper bound 2°(V) and 20(N*/?).

o If we started with an instance of 3-SAT that was sparse, that is,
m = O(n), then a 2°(N) lower bound would follow.

Michat Pilipczuk ETH&SETH 8/28

Sparsification Lemma

Sparsification Lemma informally

For every constant g, there is a subexponential-time algorithm which
reduces the number of clauses of a gCNF formula to O(n).

Michat Pilipczuk ETH&SETH 9/28

Sparsification Lemma

Sparsification Lemma informally

For every constant g, there is a subexponential-time algorithm which
reduces the number of clauses of a gCNF formula to O(n).

Sparsification Lemma [IPZ, 2001]

For any g > 3 and € > 0, there is a constant C = C(g,) such that any
gCNF formula ¢ can be expressed as ¢ = \/:?b:1 i, where t < 2°" and
each v); is a gCNF formula with the same set of variables and at most
C - n clauses. Such disjunction can be computed in time O*(2°").

Michat Pilipczuk ETH&SETH 9/28

Sparsification Lemma

Sparsification Lemma [IPZ, 2001]

For any g > 3 and € > 0, there is a constant C = C(g,) such that any
gCNF formula ¢ can be expressed as ¢ = \/f:1 i, where t < 2°" and
each ; is a gCNF formula with the same set of variables and at most
C - n clauses. Such disjunction can be computed in time O*(2°").

- . ~ ~
———— ”‘ : ~~\ ..~.
& k ¥ A Y
Yi,n, C-n
25”

Michat Pilipczuk ETH&SETH 9/28

Sparsification Lemma: corollary

Unless ETH fails, there is a constant ¢ > 0, such that no algorithm solves
3SAT in time O*(2¢(n+m)),

Michat Pilipczuk ETH&SETH 10/28

Sparsification Lemma: corollary

Unless ETH fails, there is a constant ¢ > 0, such that no algorithm solves
3SAT in time O*(2¢(n+m)),

Proof by contradiction:

@ Suppose that for every ¢ > 0 there is an algorithm A, solving 3SAT
in time O*(2¢(n+m)),

Michat Pilipczuk ETH&SETH 10/28

Sparsification Lemma: corollary

Unless ETH fails, there is a constant ¢ > 0, such that no algorithm solves
3SAT in time O*(2¢(n+m)),

Proof by contradiction:
@ Suppose that for every ¢ > 0 there is an algorithm A, solving 3SAT
in time O*(2¢(n+m)),
o Consider any d > 0. We want to solve 3SAT in time O*(29").

Michat Pilipczuk ETH&SETH 10/28

Sparsification Lemma: corollary

Unless ETH fails, there is a constant ¢ > 0, such that no algorithm solves
3SAT in time O*(2¢(n+m)),

Proof by contradiction:
@ Suppose that for every ¢ > 0 there is an algorithm A, solving 3SAT
in time O*(2¢(n+m)),
o Consider any d > 0. We want to solve 3SAT in time O*(29").
@ Use Sparsification Lemma for ¢ = d/2. Denote C = C(3,¢).

Michat Pilipczuk ETH&SETH 10/28

Sparsification Lemma: corollary

Unless ETH fails, there is a constant ¢ > 0, such that no algorithm solves
3SAT in time O*(2¢(n+m)),

Proof by contradiction:
@ Suppose that for every ¢ > 0 there is an algorithm A, solving 3SAT
in time O*(2¢(n+m)),
o Consider any d > 0. We want to solve 3SAT in time O*(29").
@ Use Sparsification Lemma for ¢ = d/2. Denote C = C(3,¢).
@ Solve each 1; by A/, where ¢’ = ﬁ.

Michat Pilipczuk ETH&SETH 10/28

Sparsification Lemma: corollary

Unless ETH fails, there is a constant ¢ > 0, such that no algorithm solves
3SAT in time O*(2¢(n+m)),

Proof by contradiction:
@ Suppose that for every ¢ > 0 there is an algorithm A, solving 3SAT
in time O*(2¢(n+m)),
Consider any d > 0. We want to solve 3SAT in time O*(29").
Use Sparsification Lemma for ¢ = d/2. Denote C = C(3,¢).
Solve each 1; by A/, where ¢’ = ﬁ.

The total running time is

O*(2°") + 0*(2°" - 27 (CHIny — o (9dm).

Michat Pilipczuk ETH&SETH 10/28

Sparsification Lemma: corollary

Unless ETH fails, there is a constant ¢ > 0, such that no algorithm solves
3SAT in time O*(2¢(n+m)),

Proof by contradiction:
@ Suppose that for every ¢ > 0 there is an algorithm A, solving 3SAT
in time O*(2¢(n+m)),
Consider any d > 0. We want to solve 3SAT in time O*(29").
Use Sparsification Lemma for ¢ = d/2. Denote C = C(3,¢).
Solve each 1; by A/, where ¢’ = ﬁ.

The total running time is

O*(2°") + 0* (25" - 27 (CHIny — o (9dm).

Under ETH, there is no 2°("+m)_time algorithm for 3SAT, so also no
20(N+M)_time algorithm for VERTEX COVER.

Michat Pilipczuk ETH&SETH 10/28

Transfer of hardness

Hardness under ETH via reductions
Suppose there is a reduction from 3SAT to a problem L that produces
an instance of size N < f(n+ m).

Then we can exclude an algorithm for L with running time 20(F (W)

Michat Pilipczuk ETH&SETH 11/28

Transfer of hardness

Hardness under ETH via reductions

Suppose there is a reduction from 3SAT to a problem L that produces
an instance of size N < f(n+ m).

Then we can exclude an algorithm for L with running time 20(F (W)

@ The following problems admit linear reductions from 3SAT:
o FEEDBACK VERTEX SET,
o DOMINATING SET,
o 3-COLORING,
o HAMILTONIAN CYCLE, ...

Michat Pilipczuk ETH&SETH 11/28

Transfer of hardness

Hardness under ETH via reductions

Suppose there is a reduction from 3SAT to a problem L that produces
an instance of size N < f(n+ m).

Then we can exclude an algorithm for L with running time 20(F (W)

@ The following problems admit linear reductions from 3SAT:

o FEEDBACK VERTEX SET,
o DOMINATING SET,

o 3-COLORING,

o HAMILTONIAN CYCLE, ...

@ Let's see tight bounds for another form of running time.

Michat Pilipczuk ETH&SETH 11/28

Planar problems

@ Consider PLANAR VERTEX COVER.

Michat Pilipczuk ETH&SETH 12/28

Planar problems

@ Consider PLANAR VERTEX COVER.

@ NP-hardness: Take an instance of general VC, and embed it in the
plane replacing every crossing with:

Michat Pilipczuk ETH&SETH 12/28

Planar problems

@ Consider PLANAR VERTEX COVER.

@ NP-hardness: Take an instance of general VC, and embed it in the
plane replacing every crossing with:

Vi

V2

/

Va

Fig. 11. Crossover H for Theorem 2.7.

Michat Pilipczuk ETH&SETH

Vi

PLVC: analysis

@ Reduction takes an instance of VC with n vertices and m edges, and
outputs an instance with N = O((n + m)?) vertices.

Michat Pilipczuk ETH&SETH 13/28

PLVC: analysis

@ Reduction takes an instance of VC with n vertices and m edges, and
outputs an instance with N = O((n + m)?) vertices.

e Hence, an 2°0VN)_time algorithm for PLVC would give an
2°(n+m)_time algorithm for VC, contradicting ETH.

Michat Pilipczuk ETH&SETH 13/28

PLVC: analysis

@ Reduction takes an instance of VC with n vertices and m edges, and
outputs an instance with N = O((n + m)?) vertices.

e Hence, an 2°0VN)_time algorithm for PLVC would give an
2°(n+m)_time algorithm for VC, contradicting ETH.

e PLVC actually has an algorithm working in time 20(VN).

Michat Pilipczuk ETH&SETH 13/28

PLVC: analysis

@ Reduction takes an instance of VC with n vertices and m edges, and
outputs an instance with N = O((n + m)?) vertices.

e Hence, an 2°0VN)_time algorithm for PLVC would give an
2°(n+m)_time algorithm for VC, contradicting ETH.

e PLVC actually has an algorithm working in time 20(VN).
o Treewidth DP + planar graph on N vertices has treewidth O(v/N).

Michat Pilipczuk ETH&SETH 13/28

PLVC: analysis

@ Reduction takes an instance of VC with n vertices and m edges, and
outputs an instance with N = O((n + m)?) vertices.

e Hence, an 2°0VN)_time algorithm for PLVC would give an
2°(n+m)_time algorithm for VC, contradicting ETH.

e PLVC actually has an algorithm working in time 20(VN).
o Treewidth DP + planar graph on N vertices has treewidth O(+v/N).

@ The v N term in the exponent is not a coincidence!

Michat Pilipczuk ETH&SETH 13/28

ETH implies FPT # W[1]

o Consider the CLIQUE problem:

Michat Pilipczuk ETH&SETH 14/28

ETH implies FPT # W[1]

o Consider the CLIQUE problem:
o Given graph G and k € N, is there a clique on k vertices in G.

Michat Pilipczuk ETH&SETH 14/28

ETH implies FPT # W[1]

o Consider the CLIQUE problem:

o Given graph G and k € N, is there a clique on k vertices in G.
o Trivial: O*(n).

Michat Pilipczuk ETH&SETH 14/28

ETH implies FPT # W[1]

o Consider the CLIQUE problem:

o Given graph G and k € N, is there a clique on k vertices in G.
o Trivial: O*(n).
o Fastest known: O*(n“*/3) = O*(n®7°'¥) [Neet¥il, Poljak]

Michat Pilipczuk ETH&SETH 14/28

ETH implies FPT # W[1]

o Consider the CLIQUE problem:

Given graph G and k € N, is there a clique on k vertices in G.
Trivial: O*(n%).

Fastest known: O*(n“*/3) = O*(n®7°*) [Neet¥il, Poljak]
Under FPT # W[1], no algorithm with running time f(k) - n®®,

Michat Pilipczuk ETH&SETH 14/28

ETH implies FPT # W[1]

o Consider the CLIQUE problem:

Given graph G and k € N, is there a clique on k vertices in G.
Trivial: O*(n%).

Fastest known: O*(n“*/3) = O*(n®7°*) [Neet¥il, Poljak]
Under FPT # W[1], no algorithm with running time f(k) - n®®,

@ We now prove the following:

Michat Pilipczuk ETH&SETH 14/28

ETH implies FPT # W[1]

o Consider the CLIQUE problem:

Given graph G and k € N, is there a clique on k vertices in G.
Trivial: O*(n%).

Fastest known: O*(n“*/3) = O*(n®7°*) [Neet¥il, Poljak]
Under FPT # W[1], no algorithm with running time f(k) - n®®,

@ We now prove the following:

ETH hard ness Of C’LIQ‘UE [Chen, Huang, Kanj, Xia]

Unless ETH fails, CLIQUE cannot be solved in time f(k) - n°) for any
computable function f.

Michat Pilipczuk ETH&SETH 14/28

ETH implies FPT # W[1]

o Consider the CLIQUE problem:

Given graph G and k € N, is there a clique on k vertices in G.
Trivial: O*(n%).

Fastest known: O*(n“*/3) = O*(n®7°*) [Neet¥il, Poljak]
Under FPT # W[1], no algorithm with running time f(k) - n®®,

@ We now prove the following:

ETH hard ness Of C’LIQ‘UE [Chen, Huang, Kanj, Xia]

Unless ETH fails, CLIQUE cannot be solved in time f(k) - n°) for any
computable function f.

e Corollary: ETH = FPT # W[1]

Michat Pilipczuk ETH&SETH 14/28

ETH implies FPT # W[1]

o Consider the CLIQUE problem:

Given graph G and k € N, is there a clique on k vertices in G.
Trivial: O*(n%).

Fastest known: O*(n“*/3) = O*(n®7°*) [Neet¥il, Poljak]
Under FPT # W[1], no algorithm with running time f(k) - n®®,

@ We now prove the following:

ETH hard ness Of C’LIQ‘UE [Chen, Huang, Kanj, Xia]

Unless ETH fails, CLIQUE cannot be solved in time f(k) - n°) for any
computable function f.

e Corollary: ETH = FPT # W[1]

@ We start from an instance of 3-COLORING, for which we already
have a 2°(" |ower bound.

Michat Pilipczuk ETH&SETH 14/28

ETH hardness for CLIQUE

Michat Pilipczuk ETH&SETH

ETH hardness for CLIQUE

n/k

Partition vertices into k groups with n/k vertices each.

Michat Pilipczuk ETH&SETH 15/28

ETH hardness for CLIQUE

n/k SN

Michat Pilipczuk ETH&SETH 15/28

ETH hardness for CLIQUE

S3n/k
n/k -——-3

x-
==

Create one vertex per each consistent coloring of each group.

Michat Pilipczuk ETH&SETH 15/28

ETH hardness for CLIQUE

S3n/k
n/k -——-3

x-
==

Create one vertex per each consistent coloring of each group.

Michat Pilipczuk ETH&SETH 15/28

ETH hardness for CLIQUE

< 3n/k
n/k AN

x-
==

Create one vertex per each consistent coloring of each group.

Michat Pilipczuk ETH&SETH 15/28

ETH hardness for CLIQUE

S3n/k
n/k -——-3

x-
==

Create one vertex per each consistent coloring of each group.

Michat Pilipczuk ETH&SETH 15/28

ETH hardness for CLIQUE

< 3n/k
n/k AN

x-
==

Create one vertex per each consistent coloring of each group.

Michat Pilipczuk ETH&SETH 15/28

ETH hardness for CLIQUE

< 3n/k
n/k AN

x-
==

Connect two colorings if they are consistent.

Michat Pilipczuk ETH&SETH 15/28

ETH hardness for CLIQUE

< 3n/k
n/k AN

x-
==

Connect two colorings if they are consistent.

Michat Pilipczuk ETH&SETH 15/28

ETH hardness for CLIQUE

< 3n/k
n/k

x-
==

Connect two colorings if they are consistent.

Michat Pilipczuk ETH&SETH 15/28

ETH hardness for CLIQUE

< 3n/k
n/k AN

x-
==

Inconsistent pairs of colorings remain nonadjacent.

Michat Pilipczuk ETH&SETH 15/28

ETH hardness for CLIQUE

°
°)
° °)
° ° °
e o oo °
e o o o e | <3k
n/k -y @ 5 o o o
o o o o o
e o o o o
e o o o o
e o o o o
k k

Inconsistent pairs of colorings remain nonadjacent.

Michat Pilipczuk ETH&SETH 15/28

ETH hardness for CLIQUE

< 3n/k
n/k RN

x-
==

A 3-coloring on the left corresponds to a k-clique on the right.

Left graph admits 3-coloring iff right graph contains k-clique.

Michat Pilipczuk ETH&SETH 15/28

Hardness for CLIQUE

ETH hardness of CLIQUE

Unless ETH fails, CLIQUE cannot be solved in time f(k) - n°) for any
computable function f.

Proof continued:
@ The output graph has a k-clique iff the input graph is 3-colorable.

Michat Pilipczuk ETH&SETH 16/28

Hardness for CLIQUE

ETH hardness of CLIQUE

Unless ETH fails, CLIQUE cannot be solved in time f(k) - n°) for any
computable function f.

Proof continued:
@ The output graph has a k-clique iff the input graph is 3-colorable.
@ We have introduced N < k - 3"/ vertices.

Michat Pilipczuk ETH&SETH 16/28

Hardness for CLIQUE

ETH hardness of CLIQUE

Unless ETH fails, CLIQUE cannot be solved in time f(k) - n°) for any
computable function f.

Proof continued:
@ The output graph has a k-clique iff the input graph is 3-colorable.
@ We have introduced N < k - 3"/ vertices.

o Let's try k = log n, suppose CLIQUE can be solved in time 2k . No(¥).

Michat Pilipczuk ETH&SETH 16/28

Hardness for CLIQUE

ETH hardness of CLIQUE

Unless ETH fails, CLIQUE cannot be solved in time f(k) - n°) for any
computable function f.

Proof continued:
@ The output graph has a k-clique iff the input graph is 3-colorable.
@ We have introduced N < k - 3"/ vertices.

o Let's try k = log n, suppose CLIQUE can be solved in time 2k . No(K).
e 2k. No(k) —n. (lOg n)o(log n) . 3n-o(|og n)/logn _ 2o(n)_

Michat Pilipczuk ETH&SETH 16/28

Hardness for CLIQUE

ETH hardness of CLIQUE

Unless ETH fails, CLIQUE cannot be solved in time f(k) - n°) for any
computable function f.

Proof continued:
@ The output graph has a k-clique iff the input graph is 3-colorable.
We have introduced N < k - 3"k vertices.

Let's try k = log n, suppose CLIQUE can be solved in time 2% . No(k),
ok . No(k) —n. (lOg n)o(log n) . 3n-o(|og n)/logn _ 2o(n)_

e 6 o

Similarly k = loglog n implies no 22 . No(K) time algorithm.

Michat Pilipczuk ETH&SETH 16/28

Hardness for CLIQUE

ETH hardness of CLIQUE

Unless ETH fails, CLIQUE cannot be solved in time f(k) - n°) for any
computable function f.

Proof continued:
@ The output graph has a k-clique iff the input graph is 3-colorable.
We have introduced N < k - 3"k vertices.

Let's try k = log n, suppose CLIQUE can be solved in time 2% . No(k),
ok . No(k) —n. (lOg n)o(log n) . 3n-o(|og n)/logn _ 2o(n)_

e 6 o

@ Similarly k = loglog n implies no 22 . No(K) time algorithm.
@ To exclude all computable f(k), one needs roughly k = f~*(n)
(technical difficulties omitted).

Michat Pilipczuk ETH&SETH 16/28

Hardness for CLIQUE

ETH hardness of CLIQUE

Unless ETH fails, CLIQUE cannot be solved in time f(k) - n°) for any
computable function f.

Proof continued:
@ The output graph has a k-clique iff the input graph is 3-colorable.
We have introduced N < k - 3"k vertices.

Let's try k = log n, suppose CLIQUE can be solved in time 2% . No(k),
ok . No(k) —n. (lOg n)o(log n) . 3n-o(|og n)/logn _ 2o(n)_

e 6 o

@ Similarly k = loglog n implies no 22 . No(K) time algorithm.

o To exclude all computable f(k), one needs roughly k = f~*(n)
(technical difficulties omitted).

@ Intuition: We embed the 3" solution space of 3-COLORING into the
N¥ solution space of CLIQUE.

Michat Pilipczuk ETH&SETH 16/28

Corollaries

@ By reductions from CLIQUE, one can prove lower bounds on the
running times of XP algorithms.

Michat Pilipczuk ETH&SETH 17/28

Corollaries

@ By reductions from CLIQUE, one can prove lower bounds on the
running times of XP algorithms.

e Parameter blow-up: parameter k in a CLIQUE instance is
transformed into parameter k' < g(k) for the output instance.

Michat Pilipczuk ETH&SETH 17/28

Corollaries

@ By reductions from CLIQUE, one can prove lower bounds on the
running times of XP algorithms.

o Parameter blow-up: parameter k in a CLIQUE instance is
transformed into parameter k' < g(k) for the output instance.

o Linear blow-up ~ f(k’)- n°*") lower bound

Michat Pilipczuk ETH&SETH 17/28

Corollaries

@ By reductions from CLIQUE, one can prove lower bounds on the
running times of XP algorithms.
o Parameter blow-up: parameter k in a CLIQUE instance is
transformed into parameter k' < g(k) for the output instance.
o Linear blow-up ~ f(k')- n°*") lower bound
o Quadratic blow-up ~ f(k')- n°V¥) Jower bound

Michat Pilipczuk ETH&SETH 17/28

Corollaries

@ By reductions from CLIQUE, one can prove lower bounds on the
running times of XP algorithms.
o Parameter blow-up: parameter k in a CLIQUE instance is
transformed into parameter k' < g(k) for the output instance.
o Linear blow-up ~ f(k')- n°*") lower bound
o Quadratic blow-up ~ f(k)- n°V¥) Jower bound

PLANAR SCATTERED SET

I: An edge-weighted planar graph G, d € R", k € N
Q: Are there are k vertices pairwise at distance > d from each other?

Michat Pilipczuk ETH&SETH 17/28

Corollaries

@ By reductions from CLIQUE, one can prove lower bounds on the
running times of XP algorithms.
o Parameter blow-up: parameter k in a CLIQUE instance is
transformed into parameter k' < g(k) for the output instance.
o Linear blow-up ~ f(k')- n°*") lower bound
o Quadratic blow-up ~ f(k)- n°V¥) Jower bound

PLANAR SCATTERED SET

I: An edge-weighted planar graph G, d € R", k € N
Q: Are there are k vertices pairwise at distance > d from each other?

@ There is an algorithm with running time nOWk),

Michat Pilipczuk ETH&SETH 17/28

Corollaries

@ By reductions from CLIQUE, one can prove lower bounds on the
running times of XP algorithms.
o Parameter blow-up: parameter k in a CLIQUE instance is
transformed into parameter k' < g(k) for the output instance.
o Linear blow-up ~ f(k')- n°*") lower bound
o Quadratic blow-up ~ f(k)- n°V¥) Jower bound

PLANAR SCATTERED SET

I: An edge-weighted planar graph G, d € R", k € N
Q: Are there are k vertices pairwise at distance > d from each other?

@ There is an algorithm with running time nOWk),

e Under ETH, there is no algorithm with running time £(k) - n°(V&).

Michat Pilipczuk ETH&SETH 17/28

Corollaries

@ By reductions from CLIQUE, one can prove lower bounds on the
running times of XP algorithms.
o Parameter blow-up: parameter k in a CLIQUE instance is
transformed into parameter k' < g(k) for the output instance.
o Linear blow-up ~ f(k')- n°*") lower bound
o Quadratic blow-up ~ f(k)- n°V¥) Jower bound

PLANAR SCATTERED SET

I: An edge-weighted planar graph G, d € R", k € N
Q: Are there are k vertices pairwise at distance > d from each other?

@ There is an algorithm with running time nOWk),

o Under ETH, there is no algorithm with running time £(k) - n°(Vk).
o The reduction transforms an instance of CLIQUE with parameter k
into an instance of PLANAR SCATTERED SET with parameter O(k?).

Michat Pilipczuk ETH&SETH 17/28

ETH and parameterized complexity

o Goal: Tight asymptotic bounds on f(k) in the f(k) - n®®) running
times for FPT problems.

Michat Pilipczuk ETH&SETH 18/28

ETH and parameterized complexity

o Goal: Tight asymptotic bounds on f(k) in the f(k) - n®®) running
times for FPT problems.

o 0*(2°) algorithm for VC would be also a 2°") algorithm. 4

Michat Pilipczuk ETH&SETH 18/28

ETH and parameterized complexity

o Goal: Tight asymptotic bounds on f(k) in the f(k) - n®®) running
times for FPT problems.

o O*(2°) algorithm for VC would be also a 2°(" algonthm 4
o O0*(2°V9) algorithm for PLVC would be also a 2°V algorithm. #

Michat Pilipczuk ETH&SETH 18/28

ETH and parameterized complexity

o Goal: Tight asymptotic bounds on f(k) in the f(k) - n®®) running
times for FPT problems.
o O*(2°) algorithm for VC would be also a 2°(" algonthm 4
o O0*(2°V9) algorithm for PLVC would be also a 2°V algorithm. #

o These are tight, as there are ©O*(2¥) and O*(2°!)) time
algorithms, respectively.

Michat Pilipczuk ETH&SETH 18/28

ETH and parameterized complexity

o Goal: Tight asymptotic bounds on f(k) in the f(k) - n®®) running

times for FPT problems.
o O*(2°) algorithm for VC would be also a 2°(" algonthm 4
o O0*(2°V9) algorithm for PLVC would be also a 2°V algorithm. #
o These are tight, as there are O*(2¥) and (9*(20)) time
algorithms, respectively.

@ Note: For the reduction from 3SAT to, say, VC, it would be
sufficient to have the parameter bounded linearly in n+ m, while
the output instance size may be polynomial.

Michat Pilipczuk ETH&SETH 18/28

ETH and parameterized complexity

o Goal: Tight asymptotic bounds on f(k) in the f(k) - n®®) running
times for FPT problems.
o O*(2°) algorithm for VC would be also a 2°(" algonthm 4
o O0*(2°V9) algorithm for PLVC would be also a 2°V algorithm. #
o These are tight, as there are O*(2¥) and (9*(20)) time
algorithms, respectively.

@ Note: For the reduction from 3SAT to, say, VC, it would be
sufficient to have the parameter bounded linearly in n+ m, while
the output instance size may be polynomial.

o If N=(n+m)°®Y and k = O(n+ m), then 2°0) . NOW) = polntm),

Michat Pilipczuk ETH&SETH 18/28

ETH and parameterized complexity

o Goal: Tight asymptotic bounds on f(k) in the f(k) - n®®) running
times for FPT problems.
o O*(2°) algorithm for VC would be also a 2°(" algonthm 4
o O0*(2°V9) algorithm for PLVC would be also a 2°V algorithm. #
o These are tight, as there are O*(2¥) and (9*(20)) time
algorithms, respectively.

@ Note: For the reduction from 3SAT to, say, VC, it would be
sufficient to have the parameter bounded linearly in n+ m, while
the output instance size may be polynomial.

o If N=(n+m)°®Y and k = O(n+ m), then 2°0) . NOW) = polntm)

Lower bounds for parameterized problems under ETH

Suppose L admits a polynomial-time reduction from 3SAT with output
parameter k < f(n+ m).

Then L does not admit an ©*(2°(F"'(K)) time algorithm unless ETH fails.

Michat Pilipczuk ETH&SETH 18/28

ETH and parameterized complexity

@ For many parameterized problems the situation is simple:

Michat Pilipczuk ETH&SETH 19/28

ETH and parameterized complexity

@ For many parameterized problems the situation is simple:
e An algorithm with running time O*(2°®) exists.

Michat Pilipczuk ETH&SETH 19/28

ETH and parameterized complexity

@ For many parameterized problems the situation is simple:
o An algorithm with running time O*(2°%)) exists.
o The existence of a subexponential parameterized algorithm, with

running time ©*(2°)), can be excluded under ETH using known
NP-hardness reductions.

Michat Pilipczuk ETH&SETH 19/28

ETH and parameterized complexity

@ For many parameterized problems the situation is simple:
o An algorithm with running time O*(2°%)) exists.
o The existence of a subexponential parameterized algorithm, with

running time ©*(2°), can be excluded under ETH using known
NP-hardness reductions.

e For planar problems, runtime O*(2O(‘/E)) is often tight under ETH.

Michat Pilipczuk ETH&SETH 19/28

ETH and parameterized complexity

@ For many parameterized problems the situation is simple:
o An algorithm with running time O*(2°%)) exists.
o The existence of a subexponential parameterized algorithm, with

running time ©*(2°), can be excluded under ETH using known
NP-hardness reductions.

o For planar problems, runtime (’)*(20(‘/;)) is often tight under ETH.

o Tight bounds for more exotic running times, e.g. O*(ZTM) lower
bound for EDGE CLIQUE COVER.

Michat Pilipczuk ETH&SETH 19/28

ETH and parameterized complexity

@ For many parameterized problems the situation is simple:
o An algorithm with running time O*(2°%)) exists.
o The existence of a subexponential parameterized algorithm, with

running time ©*(2°), can be excluded under ETH using known
NP-hardness reductions.

o For planar problems, runtime (’)*(20(‘/;)) is often tight under ETH.

o Tight bounds for more exotic running times, e.g. (9*(22°(k)) lower
bound for EDGE CLIQUE COVER.

@ Let's examine slightly super-exponential FPT algorithms.

Slightly super-exponential = O*(20kek)) — O (KO0

Michat Pilipczuk ETH&SETH 19/28

ETH and parameterized complexity

@ For many parameterized problems the situation is simple:
o An algorithm with running time O*(2°%)) exists.
o The existence of a subexponential parameterized algorithm, with

running time ©*(2°), can be excluded under ETH using known
NP-hardness reductions.

o For planar problems, runtime (’)*(20(‘/;)) is often tight under ETH.

o Tight bounds for more exotic running times, e.g. (9*(22°(k)) lower
bound for EDGE CLIQUE COVER.

@ Let's examine slightly super-exponential FPT algorithms.
Slightly super-exponential = O*(20klek)) — O (O

@ Appears naturally:

Michat Pilipczuk ETH&SETH 19/28

ETH and parameterized complexity

@ For many parameterized problems the situation is simple:
o An algorithm with running time O*(2°%)) exists.
o The existence of a subexponential parameterized algorithm, with

running time ©*(2°), can be excluded under ETH using known
NP-hardness reductions.

o For planar problems, runtime (’)*(20(‘/;)) is often tight under ETH.

o Tight bounds for more exotic running times, e.g. (9*(22°(k)) lower
bound for EDGE CLIQUE COVER.

@ Let's examine slightly super-exponential FPT algorithms.
Slightly super-exponential = O*(20klek)) — O (O

@ Appears naturally:
(a) Iterate through k! possibilities.

Michat Pilipczuk ETH&SETH 19/28

ETH and parameterized complexity

@ For many parameterized problems the situation is simple:
o An algorithm with running time O*(2°%)) exists.
o The existence of a subexponential parameterized algorithm, with

running time ©*(2°), can be excluded under ETH using known
NP-hardness reductions.

o For planar problems, runtime (’)*(20(‘/;)) is often tight under ETH.

o Tight bounds for more exotic running times, e.g. (9*(22°(k)) lower
bound for EDGE CLIQUE COVER.

@ Let's examine slightly super-exponential FPT algorithms.
Slightly super-exponential = O*(20klek)) — O (O

@ Appears naturally:
(a) lterate through k! possibilities.

(b) A branching procedure branches O(k) times, each time choosing one
of poly(k) options.

Michat Pilipczuk ETH&SETH 19/28

ETH and parameterized complexity

@ For many parameterized problems the situation is simple:
o An algorithm with running time O*(2°%)) exists.
o The existence of a subexponential parameterized algorithm, with

running time ©*(2°), can be excluded under ETH using known
NP-hardness reductions.

o For planar problems, runtime (’)*(20(‘/;)) is often tight under ETH.

o Tight bounds for more exotic running times, e.g. (9*(22°(k)) lower
bound for EDGE CLIQUE COVER.

@ Let's examine slightly super-exponential FPT algorithms.
Slightly super-exponential = O*(20klek)) — O (O

@ Appears naturally:
(a) lterate through k! possibilities.

(b) A branching procedure branches O(k) times, each time choosing one
of poly(k) options.
(c) A treewidth DP has partitions of the bag as the states.

Michat Pilipczuk ETH&SETH 19/28

ETH and parameterized complexity

@ For many parameterized problems the situation is simple:

o An algorithm with running time O*(2°%)) exists.

o The existence of a subexponential parameterized algorithm, with
running time ©*(2°), can be excluded under ETH using known
NP-hardness reductions.

o For planar problems, runtime (’)*(20(‘/;)) is often tight under ETH.

o Tight bounds for more exotic running times, e.g. (9*(22°(k)) lower
bound for EDGE CLIQUE COVER.
@ Let's examine slightly super-exponential FPT algorithms.

Slightly super-exponential = O*(20klek)) — O (O

@ Appears naturally:
(a) lterate through k! possibilities.
(b) A branching procedure branches O(k) times, each time choosing one
of poly(k) options.
(c) A treewidth DP has partitions of the bag as the states.
@ We focus on (b), since this is the most typical behavior in
parameterized algorithms.

Michat Pilipczuk ETH&SETH 19/28

k x k-CLIQUE

k x k-CLIQUE

I: A graph H on vertex set {1,...,k} x {1,..., k}
Q: s there a k-clique in H that contains exactly one
vertex from each row?

Michat Pilipczuk ETH&SETH 20/28

k x k-CLIQUE

k x k-CLIQUE

I: A graph H on vertex set {1,...,k} x {1,..., k}
Q: s there a k-clique in H that contains exactly one
vertex from each row?

Michat Pilipczuk ETH&SETH 20/28

k x k-CLIQUE

k x k-CLIQUE

I: A graph H on vertex set {1,...,k} x {1,..., k}
Q: s there a k-clique in H that contains exactly one
vertex from each row?

Michat Pilipczuk ETH&SETH 20/28

Lower bound for k x k-CLIQUE

e Note: the input to the problem is of size O(k*).

Michat Pilipczuk ETH&SETH 21/28

Lower bound for k x k-CLIQUE

o Note: the input to the problem is of size O(k*).
e Trivial O*(k*) algorithm: verify all the choices.

Michat Pilipczuk ETH&SETH 21/28

Lower bound for k x k-CLIQUE

o Note: the input to the problem is of size O(k*).

o Trivial O*(k*) algorithm: verify all the choices.

@ Intuition: extracts the idea of having k independent 1-in-k choices,
similarly as for CLIQUE.

Michat Pilipczuk ETH&SETH

Lower bound for k x k-CLIQUE

o Note: the input to the problem is of size O(k*).
o Trivial O*(k*) algorithm: verify all the choices.

@ Intuition: extracts the idea of having k independent 1-in-k choices,
similarly as for CLIQUE.

Hardness for k x k-CLIQUE

There is a reduction from 3-COLORING to k X k-CLIQUE that for an
input instance with n vertices, outputs an instance with parameter

k = O(n/ log n).

Michat Pilipczuk ETH&SETH 21/28

Lower bound for k x k-CLIQUE

o Note: the input to the problem is of size O(k*).
o Trivial O*(k*) algorithm: verify all the choices.

@ Intuition: extracts the idea of having k independent 1-in-k choices,
similarly as for CLIQUE.

Hardness for k x k-CLIQUE

There is a reduction from 3-COLORING to k X k-CLIQUE that for an
input instance with n vertices, outputs an instance with parameter

k = O(n/ log n).

Michat Pilipczuk ETH&SETH 21/28

Lower bound for k x k-CLIQUE

o Note: the input to the problem is of size O(k*).
o Trivial O*(k*) algorithm: verify all the choices.

@ Intuition: extracts the idea of having k independent 1-in-k choices,
similarly as for CLIQUE.

Hardness for k x k-CLIQUE

There is a reduction from 3-COLORING to k X k-CLIQUE that for an
input instance with n vertices, outputs an instance with parameter

k = O(n/ log n).

o Proof sketch: Apply the reduction for CLIQUE for k = n/ log n.

Michat Pilipczuk ETH&SETH 21/28

Lower bound for k x k-CLIQUE

o Note: the input to the problem is of size O(k*).
o Trivial O*(k*) algorithm: verify all the choices.

@ Intuition: extracts the idea of having k independent 1-in-k choices,
similarly as for CLIQUE.

Hardness for k x k-CLIQUE

There is a reduction from 3-COLORING to k X k-CLIQUE that for an
input instance with n vertices, outputs an instance with parameter

k = O(n/ log n).

o Proof sketch: Apply the reduction for CLIQUE for k = n/ log n.

Unless ETH fails, there is no algorithm for k x k-CLIQUE with running
time O*(20(klog),

Michat Pilipczuk ETH&SETH 21/28

Tight bounds for slightly super-exponential time

@ Further reductions give more tightness results for slightly
super-exponential time.

Michat Pilipczuk ETH&SETH

N
NS
N
@

Tight bounds for slightly super-exponential time

@ Further reductions give more tightness results for slightly
super-exponential time.

CLOSEST STRING

I Strings x1,%,...,x, € X5, d e N
Q: Isthere y € YL that is at Hamming distance < d for each x;?

Michat Pilipczuk ETH&SETH

N
NS
N
@

Tight bounds for slightly super-exponential time

@ Further reductions give more tightness results for slightly
super-exponential time.

CLOSEST STRING

I Strings x1,%,...,x, € X5, d e N
Q: Isthere y € YL that is at Hamming distance < d for each x;?

e Algorithms with running time O*(d®(9)) and O*(|x|°(9).

Michat Pilipczuk ETH&SETH

N
~
N
@

Tight bounds for slightly super-exponential time

@ Further reductions give more tightness results for slightly
super-exponential time.

CLOSEST STRING

I Strings x1,%,...,x, € X5, d e N
Q: Isthere y € YL that is at Hamming distance < d for each x;?

o Algorithms with running time O*(d®(9)) and O*(|x|°(9).

o Lower bounds excluding running time O*(2°(41o8)y or
O* (200418 X)) under ETH.

Michat Pilipczuk ETH&SETH

N
~
N
@

Tight bounds for slightly super-exponential time

@ Further reductions give more tightness results for slightly
super-exponential time.

CLOSEST STRING

I Strings x1,%,...,x, € X5, d e N
Q: Isthere y € YL that is at Hamming distance < d for each x;?

o Algorithms with running time O*(d®(9)) and O*(|x|°(9).

o Lower bounds excluding running time O*(2°(d1o8)y or
O*(2°0(d18[XD)) ynder ETH.

@ Further: treewidth dynamic programming, e.g. CYCLE PACKING:

Michat Pilipczuk ETH&SETH

N
~
N
@

Tight bounds for slightly super-exponential time

@ Further reductions give more tightness results for slightly
super-exponential time.

CLOSEST STRING

I Strings x1,%,...,x, € X5, d e N
Q: Isthere y € YL that is at Hamming distance < d for each x;?

o Algorithms with running time O*(d®(9)) and O*(|x|°(9).

o Lower bounds excluding running time O*(2°(d1o8)y or
O*(2°0(d18[XD)) ynder ETH.

@ Further: treewidth dynamic programming, e.g. CYCLE PACKING:
o Pack the maximum number of vertex-disjoint cycles in a graph.

Michat Pilipczuk ETH&SETH

N
~
N
@

Tight bounds for slightly super-exponential time

@ Further reductions give more tightness results for slightly
super-exponential time.

CLOSEST STRING

I Strings x1,%,...,x, € X5, d e N
Q: Isthere y € YL that is at Hamming distance < d for each x;?

o Algorithms with running time O*(d®(9)) and O*(|x|°(9).

o Lower bounds excluding running time O*(2°(d1o8)y or
O*(2°0(d18[XD)) ynder ETH.

@ Further: treewidth dynamic programming, e.g. CYCLE PACKING:

o Pack the maximum number of vertex-disjoint cycles in a graph.
o O*(2°9(te 1)) time algorithm by remembering a matching.

Michat Pilipczuk ETH&SETH

N
~
N
@

Tight bounds for slightly super-exponential time

@ Further reductions give more tightness results for slightly
super-exponential time.

CLOSEST STRING

I Strings x1,%,...,x, € X5, d e N
Q: Isthere y € YL that is at Hamming distance < d for each x;?

o Algorithms with running time O*(d®(9)) and O*(|x|°(9).

o Lower bounds excluding running time O*(2°(d1o8)y or
O*(2°0(d18[XD)) ynder ETH.

@ Further: treewidth dynamic programming, e.g. CYCLE PACKING:

o Pack the maximum number of vertex-disjoint cycles in a graph.
o O*(2°9(tet))_time algorithm by remembering a matching.
o Running time O*(2°(*°¢) would contradict ETH.

Michat Pilipczuk ETH&SETH

N
~
N
@

Tight bounds for slightly super-exponential time

@ Further reductions give more tightness results for slightly
super-exponential time.

CLOSEST STRING

I Strings x1,%,...,x, € X5, d e N
Q: Isthere y € YL that is at Hamming distance < d for each x;?

o Algorithms with running time O*(d®(9)) and O*(|x|°(9).

o Lower bounds excluding running time O*(2°(d1o8)y or
O*(2°0(d18[XD)) ynder ETH.

@ Further: treewidth dynamic programming, e.g. CYCLE PACKING:
Pack the maximum number of vertex-disjoint cycles in a graph.
O*(2°(t°et))_time algorithm by remembering a matching.
Running time O*(2°(*°¢) would contradict ETH.

Note: For HAMILTONIAN PATH you can get running time O*(4%).

Michat Pilipczuk ETH&SETH

N
~
N
@

Strong ETH

e Recall: SETH <« if O(2%") is optimum for gSAT, then 6, — 0.

Michat Pilipczuk ETH&SETH 23/28

Strong ETH

e Recall: SETH <« if O(2%") is optimum for gSAT, then 6, — 0.
e ETH ~» Asymptotics of the exponent

Michat Pilipczuk ETH&SETH 23/28

Strong ETH

e Recall: SETH <« if O(2%") is optimum for gSAT, then 6, — 0.
e ETH ~» Asymptotics of the exponent
@ SETH ~- Exact value of the coefficient in the exponent

Michat Pilipczuk ETH&SETH 23/28

Strong ETH

Recall: SETH < if O(2%") is optimum for gSAT, then J, — 0.
ETH ~» Asymptotics of the exponent
SETH ~» Exact value of the coefficient in the exponent

Reductions for ETH hardness:
we care only about the asymptotics of the parameter blow-up.

® 6 o o

Michat Pilipczuk ETH&SETH 23/28

Strong ETH

Recall: SETH < if O(2%") is optimum for gSAT, then J, — 0.
ETH ~» Asymptotics of the exponent
SETH ~» Exact value of the coefficient in the exponent

Reductions for ETH hardness:
we care only about the asymptotics of the parameter blow-up.

@ Reductions for SETH hardness:
we need to know precisely how the parameter is transformed.

® 6 o o

Michat Pilipczuk ETH&SETH 23/28

Strong ETH

Recall: SETH < if O(2%") is optimum for gSAT, then J, — 0.
ETH ~» Asymptotics of the exponent
SETH ~» Exact value of the coefficient in the exponent

Reductions for ETH hardness:
we care only about the asymptotics of the parameter blow-up.

@ Reductions for SETH hardness:
we need to know precisely how the parameter is transformed.

® 6 o o

@ Lower bounds under SETH are more delicate and much scarcer.

Michat Pilipczuk ETH&SETH 23/28

Strong ETH

® 6 o o

Recall: SETH < if O(2%") is optimum for gSAT, then J, — 0.
ETH ~» Asymptotics of the exponent
SETH ~» Exact value of the coefficient in the exponent

Reductions for ETH hardness:

we care only about the asymptotics of the parameter blow-up.

Reductions for SETH hardness:

we need to know precisely how the parameter is transformed.

Lower bounds under SETH are more delicate and much scarcer.
e Also, technically more challenging.

Michat Pilipczuk ETH&SETH 23/28

SETH and treewidth DPs

@ Many classic problems can be solved in time O*(c"), where c is a
constant and t is the width of a given tree decomposition.

Michat Pilipczuk ETH&SETH 24/28

SETH and treewidth DPs

@ Many classic problems can be solved in time O*(c!), where c is a
constant and t is the width of a given tree decomposition.

e VC and IS in O*(2"), DS and OCT in O*(3").

Michat Pilipczuk ETH&SETH 24/28

SETH and treewidth DPs

@ Many classic problems can be solved in time O*(c!), where c is a
constant and t is the width of a given tree decomposition.
e VC and IS in O*(2"), DS and OCT in O*(3").

Theorem

Assume that CNF-SAT cannot be solved in time O*(c") for any ¢ < 2.
Then for every € > 0:

e INDEPENDENT SET cannot be solved in time O*((2 — €)P);
@ DOMINATING SET cannot be solved in time O*((3 — €)P);
e ODD CYCLE TRAVERSAL cannot be solved in time O*((3 — ¢)P);

where p is the width of a given path decomposition of the input graph.

Michat Pilipczuk ETH&SETH 24/28

SETH and treewidth DPs

@ Many classic problems can be solved in time O*(c!), where c is a
constant and t is the width of a given tree decomposition.
e VC and IS in O*(2"), DS and OCT in O*(3").

Assume that CNF-SAT cannot be solved in time O*(c") for any ¢ < 2.
Then for every € > 0:

e INDEPENDENT SET cannot be solved in time O*((2 — €)P);
@ DOMINATING SET cannot be solved in time O*((3 — €)P);
e ODD CYCLE TRAVERSAL cannot be solved in time O*((3 — ¢)P);

where p is the width of a given path decomposition of the input graph.

Theorem [Cygan, Kratsch, Nederlof]

HAMILTONIAN PATH can be solved in time O*((2 + v/2)P), but an
algorithm with running time O*((2 + v/2 — €)?) would contradict SETH.

Michat Pilipczuk ETH&SETH 24/28

SETH and treewidth DPs

@ Many classic problems can be solved in time O*(c!), where c is a
constant and t is the width of a given tree decomposition.
e VC and IS in O*(2"), DS and OCT in O*(3").

Assume that CNF-SAT cannot be solved in time O*(c") for any ¢ < 2.
Then for every € > 0:

e INDEPENDENT SET cannot be solved in time O*((2 — €)P);
@ DOMINATING SET cannot be solved in time O*((3 — €)P);
e ODD CYCLE TRAVERSAL cannot be solved in time O*((3 — ¢)P);

where p is the width of a given path decomposition of the input graph.

Theorem [Cygan, Kratsch, Nederlof]

HAMILTONIAN PATH can be solved in time O*((2 + v/2)P), but an
algorithm with running time O*((2 + v/2 — €)?) would contradict SETH.

Michat Pilipczuk ETH&SETH 24/28

SETH and treewidth DPs

@ Many classic problems can be solved in time O*(c!), where c is a
constant and t is the width of a given tree decomposition.
e VC and IS in O*(2"), DS and OCT in O*(3").

Assume that CNF-SAT cannot be solved in time O*(c") for any ¢ < 2.
Then for every € > 0:

e INDEPENDENT SET cannot be solved in time O*((2 — €)P);
@ DOMINATING SET cannot be solved in time O*((3 — €)P);
e ODD CYCLE TRAVERSAL cannot be solved in time O*((3 — ¢)P);

where p is the width of a given path decomposition of the input graph.

Theorem [Cygan, Kratsch, Nederlof]

HAMILTONIAN PATH can be solved in time O*((2 + v/2)P), but an
algorithm with running time O*((2 + v/2 — €)?) would contradict SETH.

@ Open: The algorithmic result does not work for treewidth.

Michat Pilipczuk ETH&SETH 24/28

SETH and covering problems

I: Universe U, set family F C 2V, integer k
Q: Is there a subfamily G C F with |G| < ks.t. JG = U?

Michat Pilipczuk ETH&SETH 25/28

SETH and covering problems

I: Universe U, set family F C 2V, integer k
Q: Is there a subfamily G C F with |G| < ks.t. JG = U?

@ Denote n=|U| and m = | F]|.

Michat Pilipczuk ETH&SETH 25/28

SETH and covering problems

I: Universe U, set family F C 2V, integer k
Q: Is there a subfamily G C F with |G| < ks.t. JG = U?

e Denote n=|U| and m = | F]|.
e Brute-force: time O*(2™). DP on subsets: time O*(2").

Michat Pilipczuk ETH&SETH 25/28

SETH and covering problems

I: Universe U, set family F C 2V, integer k
Q: Is there a subfamily G C F with |G| < ks.t. JG = U?

e Denote n=|U| and m = | F]|.
o Brute-force: time O*(2™). DP on subsets: time O*(2").
e Under SETH, no O*(a™) algorithm for SET COVER for any o < 2.

Michat Pilipczuk ETH&SETH

SETH and covering problems

Universe U, set family F C 2Y integer k
Q: Is there a subfamily G C F with |G| < ks.t. JG = U?

Denote n = |U| and m = |F|.
Brute-force: time O*(2™). DP on subsets: time O*(2").
Under SETH, no O*(a™) algorithm for SET COVER for any a < 2.

Breaking 2 in the base for many covering problems is equivalent to
breaking it for SET COVER/n.

Michat Pilipczuk ETH&SETH 25/28

SETH and covering problems

I: Universe U, set family F C 2V, integer k
Q: Is there a subfamily G C F with |G| < ks.t. JG = U?

e Denote n=|U| and m = | F]|.
o Brute-force: time O*(2™). DP on subsets: time O*(2").
e Under SETH, no O*(a™) algorithm for SET COVER for any a < 2.

@ Breaking 2 in the base for many covering problems is equivalent to
breaking it for SET COVER/n.

e STEINER TREE, CONN VERTEX COVER, SET PARTITIONING

Michat Pilipczuk ETH&SETH 25/28

SETH and covering problems

Universe U, set family F C 2Y integer k
Q: Is there a subfamily G C F with |G| < ks.t. JG = U?

Denote n = |U| and m = |F|.
Brute-force: time O*(2™). DP on subsets: time O*(2").
Under SETH, no O*(a™) algorithm for SET COVER for any a < 2.

Breaking 2 in the base for many covering problems is equivalent to
breaking it for SET COVER/n.

o STEINER TREE, CONN VERTEX COVER, SET PARTITIONING

@ No known reductions between SET COVER/n and SET COVER/m.

Michat Pilipczuk ETH&SETH 25/28

SETH and covering problems

I: Universe U, set family F C 2V, integer k
Q: Is there a subfamily G C F with |G| < ks.t. JG = U?

Denote n = |U| and m = |F|.
Brute-force: time O*(2™). DP on subsets: time O*(2").
Under SETH, no O*(a™) algorithm for SET COVER for any a < 2.

Breaking 2 in the base for many covering problems is equivalent to
breaking it for SET COVER/n.

o STEINER TREE, CONN VERTEX COVER, SET PARTITIONING

@ No known reductions between SET COVER/n and SET COVER/m.

Set Cover Conjecture

Let \; be the infinimum of the set of constants ¢ such that g-SET
COVER can be solved in time O*(2°"), where n is the size of the
universe. Then limg_,oo Ag = 1. In particular, there is no algorithm for
the general SET COVER problem that runs in O*(a") for any o < 2.

Michat Pilipczuk ETH&SETH 2528

@ SETH can be also used to give lower bounds for polynomial-time
solvable problems.

Michat Pilipczuk ETH&SETH 26/28

@ SETH can be also used to give lower bounds for polynomial-time
solvable problems.

ORTHOGONAL VECTORS

I: Vectors vi,...,vy € {0,1}
Q: Are there i,/ such that (v;, v;) = 07?

Michat Pilipczuk ETH&SETH 26/28

@ SETH can be also used to give lower bounds for polynomial-time
solvable problems.

ORTHOGONAL VECTORS

I: Vectors vi,...,vy € {0,1}
Q: Are there i,/ such that (v;, v;) = 07?

| 5\

Theorem

Unless SETH fails, for every § > 0 there is ¢ € N, such that no algorithm
for OV with dimension d = clog N can achieve running time O(N?~%).

v

Michat Pilipczuk ETH&SETH 26/28

@ SETH can be also used to give lower bounds for polynomial-time
solvable problems.

ORTHOGONAL VECTORS

I: Vectors vi,...,vy € {0,1}
Q: Are there i,/ such that (v;, v;) = 07?

| 5\

Theorem

Unless SETH fails, for every § > 0 there is ¢ € N, such that no algorithm
for OV with dimension d = clog N can achieve running time O(N?~%).

v

@ Note: Further hardness results obtained via reductions.

Michat Pilipczuk ETH&SETH 26/28

@ SETH can be also used to give lower bounds for polynomial-time
solvable problems.

ORTHOGONAL VECTORS

I: Vectors vi,...,vy € {0,1}
Q: Are there i,/ such that (v;, v;) = 07?

i
Theorem

Unless SETH fails, for every § > 0 there is ¢ € N, such that no algorithm
for OV with dimension d = clog N can achieve running time O(N?~%).

@ Note: Further hardness results obtained via reductions.

e Example: LONGEST COMMON SUBSEQUENCE in strongly
subquadratic time.

Michat Pilipczuk ETH&SETH 26/28

Hardness for OV

@ Take input formula ¢ of gSAT, with n variables and m clauses.

Michat Pilipczuk ETH&SETH 27/28

Hardness for OV

@ Take input formula ¢ of gSAT, with n variables and m clauses.
o Goal: decide satisfiability of ¢ in time O(2%9").

Michat Pilipczuk ETH&SETH 27/28

Hardness for OV

@ Take input formula ¢ of gSAT, with n variables and m clauses.

o Goal: decide satisfiability of ¢ in time O(2%9").
e By Sparsification Lemma, we may assume m < Cn.

Michat Pilipczuk ETH&SETH 27/28

Hardness for OV

@ Take input formula ¢ of gSAT, with n variables and m clauses.

o Goal: decide satisfiability of ¢ in time O(2%9").
e By Sparsification Lemma, we may assume m < Cn.

e Partition variables into V4 and V5, each of size n/2.

Michat Pilipczuk ETH&SETH 27/28

Hardness for OV

@ Take input formula ¢ of gSAT, with n variables and m clauses.

o Goal: decide satisfiability of ¢ in time O(2%9").
e By Sparsification Lemma, we may assume m < Cn.

e Partition variables into V4 and V5, each of size n/2.
@ For every assignment n: V4 — {T,F}, create a vector u, € {0,1}™:

Michat Pilipczuk ETH&SETH 27/28

Hardness for OV

@ Take input formula ¢ of gSAT, with n variables and m clauses.
o Goal: decide satisfiability of ¢ in time O(2%9").
e By Sparsification Lemma, we may assume m < Cn.

e Partition variables into V4 and V5, each of size n/2.

o For every assignment n: V; — {T,F}, create a vector u, € {0,1}™:
e At position corresponding to clause ¢, put 1 iff does not satisfy c.

Michat Pilipczuk ETH&SETH 27/28

Hardness for OV

@ Take input formula ¢ of gSAT, with n variables and m clauses.
o Goal: decide satisfiability of ¢ in time O(2%9").
e By Sparsification Lemma, we may assume m < Cn.
e Partition variables into V4 and V5, each of size n/2.
o For every assignment n: V; — {T,F}, create a vector u, € {0,1}™:

e At position corresponding to clause ¢, put 1 iff does not satisfy c.
o Note: We create 2”2 such vectors.

Michat Pilipczuk ETH&SETH 27/28

Hardness for OV

Take input formula ¢ of gSAT, with n variables and m clauses.

o Goal: decide satisfiability of ¢ in time O(2%9").
e By Sparsification Lemma, we may assume m < Cn.

Partition variables into V; and V5, each of size n/2.

For every assignment n: V4 — {T,F}, create a vector u,, € {0,1}™:
e At position corresponding to clause ¢, put 1 iff does not satisfy c.
o Note: We create 22 such vectors.

Do the same for V5, creating vectors v,, for n: Vo — {T,F}.

Michat Pilipczuk ETH&SETH 27/28

Hardness for OV

Take input formula ¢ of gSAT, with n variables and m clauses.

o Goal: decide satisfiability of ¢ in time O(2%9").
e By Sparsification Lemma, we may assume m < Cn.

Partition variables into V; and V5, each of size n/2.

For every assignment n: V4 — {T,F}, create a vector u,, € {0,1}™:
e At position corresponding to clause ¢, put 1 iff does not satisfy c.
o Note: We create 22 such vectors.

Do the same for V5, creating vectors v,, for n: Vo — {T,F}.
Note: This takes time O*(2"/2).

Michat Pilipczuk ETH&SETH 27/28

Hardness for OV

Take input formula ¢ of gSAT, with n variables and m clauses.

o Goal: decide satisfiability of ¢ in time O(2%9").
e By Sparsification Lemma, we may assume m < Cn.

Partition variables into V; and V5, each of size n/2.

For every assignment n: V4 — {T,F}, create a vector u,, € {0,1}™:
e At position corresponding to clause ¢, put 1 iff does not satisfy c.
o Note: We create 22 such vectors.

Do the same for V5, creating vectors v,, for n: Vo — {T,F}.
Note: This takes time O*(2"/2).

Append 01 to vectors u,, and 10 to vectors v,,.

Michat Pilipczuk ETH&SETH 27/28

Hardness for OV

Take input formula ¢ of gSAT, with n variables and m clauses.

o Goal: decide satisfiability of ¢ in time O(2%9").
e By Sparsification Lemma, we may assume m < Cn.

Partition variables into V; and V5, each of size n/2.

For every assignment n: V4 — {T,F}, create a vector u,, € {0,1}™:
e At position corresponding to clause ¢, put 1 iff does not satisfy c.
o Note: We create 22 such vectors.

Do the same for V5, creating vectors v,, for n: Vo — {T,F}.
Note: This takes time O*(2"/2).
Append 01 to vectors u;,, and 10 to vectors v,,.

Claim: There is a pair of orthogonal vectors iff ¢ is satisfiable.

Michat Pilipczuk ETH&SETH 27/28

Hardness for OV

Take input formula ¢ of gSAT, with n variables and m clauses.

o Goal: decide satisfiability of ¢ in time O(2%9").
e By Sparsification Lemma, we may assume m < Cn.

e Partition variables into V4 and V5, each of size n/2.

o For every assignment n: V; — {T,F}, create a vector u, € {0,1}™:

e At position corresponding to clause ¢, put 1 iff does not satisfy c.
o Note: We create 22 such vectors.

Do the same for V5, creating vectors v,, for n: Vo — {T,F}.
Note: This takes time O*(2"/2).

Append 01 to vectors u;,, and 10 to vectors v,,.

Claim: There is a pair of orthogonal vectors iff ¢ is satisfiable.

An algorithm for OV with running time O(N-98) = O(2°99") would
contradict SETH.

Michat Pilipczuk ETH&SETH 27/28

Hardness for OV

Take input formula ¢ of gSAT, with n variables and m clauses.

o Goal: decide satisfiability of ¢ in time O(2%9").
e By Sparsification Lemma, we may assume m < Cn.

e Partition variables into V4 and V5, each of size n/2.

o For every assignment n: V; — {T,F}, create a vector u, € {0,1}™:

e At position corresponding to clause ¢, put 1 iff does not satisfy c.
o Note: We create 22 such vectors.

Do the same for V5, creating vectors v,, for n: Vo — {T,F}.
Note: This takes time O*(2"/2).

Append 01 to vectors u;,, and 10 to vectors v,,.

Claim: There is a pair of orthogonal vectors iff ¢ is satisfiable.

An algorithm for OV with running time O(N-98) = O(2°%9°") would
contradict SETH.

Note: dimension is m < Cn < 2C log V.

Michat Pilipczuk ETH&SETH 27/28

Conclusions

@ Using ETH we can estimate the asymptotics of the exponents.

Michat Pilipczuk ETH&SETH 28/28

Conclusions

@ Using ETH we can estimate the asymptotics of the exponents.
o Applies to exponential-time, FPT, XP algorithms, and many more.

Michat Pilipczuk ETH&SETH 28/28

Conclusions

@ Using ETH we can estimate the asymptotics of the exponents.
o Applies to exponential-time, FPT, XP algorithms, and many more.

@ SETH may give a precise bound on the base of the exponent, but is
less plausible and less applicable.

Michat Pilipczuk ETH&SETH 28/28

Conclusions

@ Using ETH we can estimate the asymptotics of the exponents.
o Applies to exponential-time, FPT, XP algorithms, and many more.

@ SETH may give a precise bound on the base of the exponent, but is
less plausible and less applicable.

o Can be also used to give tight bounds within P.

Michat Pilipczuk ETH&SETH 28/28

Conclusions

@ Using ETH we can estimate the asymptotics of the exponents.
o Applies to exponential-time, FPT, XP algorithms, and many more.

@ SETH may give a precise bound on the base of the exponent, but is
less plausible and less applicable.

o Can be also used to give tight bounds within P.

@ Fine-grained complexity theory: obtaining matching lower and
upper bounds on the complexity of problems of interest.

Michat Pilipczuk ETH&SETH 28/28

Conclusions

@ Using ETH we can estimate the asymptotics of the exponents.
o Applies to exponential-time, FPT, XP algorithms, and many more.
@ SETH may give a precise bound on the base of the exponent, but is
less plausible and less applicable.
o Can be also used to give tight bounds within P.
o Fine-grained complexity theory: obtaining matching lower and
upper bounds on the complexity of problems of interest.

o Motivation: Really tight bounds give us a better understanding of
the studied problem, or of its specific parameterization.

Michat Pilipczuk ETH&SETH 28/28

Conclusions

@ Using ETH we can estimate the asymptotics of the exponents.
o Applies to exponential-time, FPT, XP algorithms, and many more.
@ SETH may give a precise bound on the base of the exponent, but is
less plausible and less applicable.
o Can be also used to give tight bounds within P.
o Fine-grained complexity theory: obtaining matching lower and
upper bounds on the complexity of problems of interest.

o Motivation: Really tight bounds give us a better understanding of
the studied problem, or of its specific parameterization.
e Stronger assumptions lead to tighter lower bounds.

Michat Pilipczuk ETH&SETH 2828

Conclusions

Using ETH we can estimate the asymptotics of the exponents.
o Applies to exponential-time, FPT, XP algorithms, and many more.
@ SETH may give a precise bound on the base of the exponent, but is
less plausible and less applicable.
o Can be also used to give tight bounds within P.
o Fine-grained complexity theory: obtaining matching lower and
upper bounds on the complexity of problems of interest.

o Motivation: Really tight bounds give us a better understanding of
the studied problem, or of its specific parameterization.
o Stronger assumptions lead to tighter lower bounds.

Thank you for your attention!

Michat Pilipczuk ETH&SETH 2828

