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Motivation

Take the Hamiltonian Cycle problem.

Algorithms:

Brute-force O(n!).
O?(2n) Held-Karp dynamic programming.
Currently fastest: O(1.657n) [Björklund, 2010].

Lower bounds:

No poly-time algorithm under P 6= NP.
How much can you improve the constant 1.657?
Can you do significantly better, e.g. 2O(n/ log n) or 2O(

√
n)?

Assumption P 6= NP seems too weak to answer these questions.

Parameterized complexity:

FPT: O?(2O(
√
k)), O?(2O(k)), O?(kO(k2)), O?(22O(k)

), ...

XP: nO(log k), nO(
√
k), nO(k), n2O(k)

, ...

Assumption FPT 6= W[1] seems too weak to separate these.
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3SAT: complexity status

3SAT: given formula ϕ in 3CNF with n variables and m clauses,
decide whether ϕ is satisfiable.

3CNF: ϕ is a conjunction of clauses, where each clause is a
disjunction of at most 3 literals — variables or their negations.

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

Trivial: O?(2n)

Smarter:

Take any clause not satisfied so far, and branch on the evaluations of
the variables: there are at most 7 options for a 3-clause.
Hence the running time is O?(7n/3) = O(1.913n).

Currently fastest: O(1.308n) [PPSZ]

For every q you can do (2− εq)n for qSAT, but limq→∞ εq = 0.
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Intuitive statements

Questions:

Can you do significantly better, that is, obtain running time 2o(n)?
If you do not have a bound on the clause length, can you do
anything smarter than brute-force?

ETH and SETH, first attempt

ETH: 3SAT cannot be solved in time 2o(n).
SETH: CNF-SAT cannot be solved in time O(αn) for any α < 2.
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Actual statements

δq = inf{c : There is an O(2cn) algorithm for qSAT}

Exponential Time Hypothesis, ETH

δ3 > 0.

There is a c > 0 such that 3SAT cannot be solved in O(2cn) time.

Strong Exponential Time Hypothesis, SETH

lim
q→∞

δq = 1.

These statements are stronger than our first attempts.

Often the weaker statements suffice, but the above are more robust.

Note: Usually we allow two-sided error algorithms in the definition.
SETH ⇒ ETH (nontrivial)
Formulated by Impagliazzo, Paturi, and Zane in 2001.
Nowadays, standard assumptions for fine-grained complexity theory.
ETH is widely believed, SETH is disputed.
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Reductions

We would like to transfer lower bounds via reductions.

A reduction 3SAT→ L and a too fast algorithm for L would give a
too fast algorithm for 3SAT.

Vertex Cover

I: graph G and k ∈ N
Q: Is there a set X ⊆ V (G ) with |X | 6 k such that every edge of G

has at least one endpoint in X?
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Vertex Cover reduction

Let us inspect the standard reduction from 3SAT to Vertex Cover.

¬x1 x1 ¬x2 x2 ¬x3 x3 ¬x4 x4
variables

clauses

Variable gadgets  Edges Clause gadgets  Triangles

x1

¬x2

x3

ϕ is satisfiable iff the created graph has a vertex cover of size n + 2m.
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Vertex Cover reduction, analysis

If N = 2n + 3m is the number of vertices of the output graph, then
N = O(n + m) = O(n3).

Hence an 2o(N1/3) algorithm for VC would give an 2o(n) algorithm
for 3-SAT, contradicting ETH.

Gap: between upper bound 2O(N) and 2o(N1/3).

If we started with an instance of 3-SAT that was sparse, that is,
m = O(n), then a 2o(N) lower bound would follow.
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Sparsification Lemma

Sparsification Lemma informally

For every constant q, there is a subexponential-time algorithm which
reduces the number of clauses of a qCNF formula to O(n).

Sparsification Lemma [IPZ, 2001]

For any q ≥ 3 and ε > 0, there is a constant C = C (q, ε) such that any
qCNF formula ϕ can be expressed as ϕ =

∨t
i=1 ψi , where t ≤ 2εn and

each ψi is a qCNF formula with the same set of variables and at most
C · n clauses. Such disjunction can be computed in time O?(2εn).

ϕ, n, m

. . .. . . . . . . . .ψi , n,C · n

2εn
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Sparsification Lemma: corollary

Theorem

Unless ETH fails, there is a constant c > 0, such that no algorithm solves
3SAT in time O?(2c(n+m)).

Proof by contradiction:

Suppose that for every c > 0 there is an algorithm Ac solving 3SAT
in time O?(2c(n+m)).

Consider any d > 0. We want to solve 3SAT in time O?(2dn).

Use Sparsification Lemma for ε = d/2. Denote C = C (3, ε).

Solve each ψi by Ac′ , where c ′ = d
2(C+1) .

The total running time is

O?(2εn) +O?(2εn · 2
d

2(C+1) ·(C+1)n) = O?(2dn).

Corollary

Under ETH, there is no 2o(n+m)-time algorithm for 3SAT, so also no
2o(N+M)-time algorithm for Vertex Cover.
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Transfer of hardness

Hardness under ETH via reductions

Suppose there is a reduction from 3SAT to a problem L that produces
an instance of size N 6 f (n + m).

Then we can exclude an algorithm for L with running time 2o(f−1(N)).

The following problems admit linear reductions from 3SAT:

Feedback Vertex Set,
Dominating Set,
3-Coloring,
Hamiltonian Cycle, ...

Let’s see tight bounds for another form of running time.
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Planar problems

Consider Planar Vertex Cover.

NP-hardness: Take an instance of general VC, and embed it in the
plane replacing every crossing with:
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PlVC: analysis

Reduction takes an instance of VC with n vertices and m edges, and
outputs an instance with N = O((n + m)2) vertices.

Hence, an 2o(
√
N)-time algorithm for PlVC would give an

2o(n+m)-time algorithm for VC, contradicting ETH.

PlVC actually has an algorithm working in time 2O(
√
N):

Treewidth DP + planar graph on N vertices has treewidth O(
√

N).

The
√
N term in the exponent is not a coincidence!
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ETH implies FPT 6= W[1]

Consider the Clique problem:

Given graph G and k ∈ N, is there a clique on k vertices in G .
Trivial: O?(nk).
Fastest known: O?(nωk/3) = O?(n0.791k) [Nešeťril, Poljak]
Under FPT 6= W[1], no algorithm with running time f (k) · nO(1).

We now prove the following:

ETH hardness of Clique [Chen, Huang, Kanj, Xia]

Unless ETH fails, Clique cannot be solved in time f (k) · no(k) for any
computable function f .

Corollary: ETH ⇒ FPT 6= W[1]

We start from an instance of 3-Coloring, for which we already
have a 2o(n) lower bound.
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ETH hardness for Clique

n/k

k

Partition vertices into k groups with n/k vertices each.Create one vertex per each consistent coloring of each group.Connect two colorings if they are consistent.Inconsistent pairs of colorings remain nonadjacent.

k

≤ 3n/k

A 3-coloring on the left corresponds to a k-clique on the right.

Left graph admits 3-coloring iff right graph contains k-clique.
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Hardness for Clique

ETH hardness of Clique

Unless ETH fails, Clique cannot be solved in time f (k) · no(k) for any
computable function f .

Proof continued:

The output graph has a k-clique iff the input graph is 3-colorable.

We have introduced N 6 k · 3n/k vertices.

Let’s try k = log n, suppose Clique can be solved in time 2k ·No(k).

2k · No(k) = n · (log n)o(log n) · 3n·o(log n)/ log n = 2o(n).

Similarly k = log log n implies no 22k · No(k) time algorithm.

To exclude all computable f (k), one needs roughly k = f −1(n)
(technical difficulties omitted).

Intuition: We embed the 3n solution space of 3-Coloring into the
Nk solution space of Clique.
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Corollaries

By reductions from Clique, one can prove lower bounds on the
running times of XP algorithms.

Parameter blow-up: parameter k in a Clique instance is
transformed into parameter k ′ 6 g(k) for the output instance.

Linear blow-up  f (k ′) · no(k′) lower bound

Quadratic blow-up  f (k ′) · no(
√
k′) lower bound

Planar Scattered Set

I: An edge-weighted planar graph G , d ∈ R+, k ∈ N
Q: Are there are k vertices pairwise at distance > d from each other?

There is an algorithm with running time nO(
√
k).

Under ETH, there is no algorithm with running time f (k) · no(
√
k).

The reduction transforms an instance of Clique with parameter k
into an instance of Planar Scattered Set with parameter O(k2).
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ETH and parameterized complexity

Goal: Tight asymptotic bounds on f (k) in the f (k) · nO(1) running
times for FPT problems.

O?(2o(k)) algorithm for VC would be also a 2o(N) algorithm. E
O?(2o(

√
k)) algorithm for PlVC would be also a 2o(

√
N) algorithm. E

These are tight, as there are O?(2k) and O?(2O(
√
k)) time

algorithms, respectively.

Note: For the reduction from 3SAT to, say, VC, it would be
sufficient to have the parameter bounded linearly in n + m, while
the output instance size may be polynomial.

If N = (n + m)O(1) and k = O(n + m), then 2o(k) · NO(1) = 2o(n+m).

Lower bounds for parameterized problems under ETH

Suppose L admits a polynomial-time reduction from 3SAT with output
parameter k 6 f (n + m).

Then L does not admit an O?(2o(f−1(k))) time algorithm unless ETH fails.
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ETH and parameterized complexity

For many parameterized problems the situation is simple:

An algorithm with running time O?(2O(k)) exists.
The existence of a subexponential parameterized algorithm, with
running time O?(2o(k)), can be excluded under ETH using known
NP-hardness reductions.
For planar problems, runtime O?(2O(

√
k)) is often tight under ETH.

Tight bounds for more exotic running times, e.g. O?(22o(k)

) lower
bound for Edge Clique Cover.

Let’s examine slightly super-exponential FPT algorithms.

Slightly super-exponential = O?(2O(k log k)) = O?(kO(k))

Appears naturally:

(a) Iterate through k! possibilities.
(b) A branching procedure branches O(k) times, each time choosing one

of poly(k) options.
(c) A treewidth DP has partitions of the bag as the states.

We focus on (b), since this is the most typical behavior in
parameterized algorithms.
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k × k-Clique

k × k-Clique

I: A graph H on vertex set {1, . . . , k} × {1, . . . , k}
Q: Is there a k-clique in H that contains exactly one

vertex from each row?
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Lower bound for k × k-Clique

Note: the input to the problem is of size O(k4).

Trivial O?(kk) algorithm: verify all the choices.

Intuition: extracts the idea of having k independent 1-in-k choices,
similarly as for Clique.

Hardness for k × k-Clique

There is a reduction from 3-Coloring to k × k-Clique that for an
input instance with n vertices, outputs an instance with parameter
k = O(n/ log n).

Proof sketch: Apply the reduction for Clique for k = n/ log n.

Corollary

Unless ETH fails, there is no algorithm for k × k-Clique with running
time O?(2o(k log k)).
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Tight bounds for slightly super-exponential time

Further reductions give more tightness results for slightly
super-exponential time.

Closest String

I: Strings x1, x2, . . . , xn ∈ ΣL, d ∈ N
Q: Is there y ∈ ΣL that is at Hamming distance 6 d for each xi?

Algorithms with running time O?(dO(d)) and O?(|Σ|O(d)).

Lower bounds excluding running time O?(2o(d log d)) or
O?(2o(d log |Σ|)) under ETH.

Further: treewidth dynamic programming, e.g. Cycle Packing:

Pack the maximum number of vertex-disjoint cycles in a graph.
O?(2O(t log t))-time algorithm by remembering a matching.
Running time O?(2o(t log t)) would contradict ETH.
Note: For Hamiltonian Path you can get running time O?(4t).
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Strong ETH

Recall: SETH ⇔ if O(2δqn) is optimum for qSAT, then δq → 0.

ETH  Asymptotics of the exponent

SETH  Exact value of the coefficient in the exponent

Reductions for ETH hardness:
we care only about the asymptotics of the parameter blow-up.

Reductions for SETH hardness:
we need to know precisely how the parameter is transformed.

Lower bounds under SETH are more delicate and much scarcer.

Also, technically more challenging.
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SETH and treewidth DPs

Many classic problems can be solved in time O?(c t), where c is a
constant and t is the width of a given tree decomposition.

VC and IS in O?(2t), DS and OCT in O?(3t).

Theorem

Assume that CNF-SAT cannot be solved in time O?(cn) for any c < 2.
Then for every ε > 0:

Independent Set cannot be solved in time O?((2− ε)p);

Dominating Set cannot be solved in time O?((3− ε)p);

Odd Cycle Traversal cannot be solved in time O?((3− ε)p);

where p is the width of a given path decomposition of the input graph.

Theorem [Cygan, Kratsch, Nederlof]

Hamiltonian Path can be solved in time O?((2 +
√

2)p), but an
algorithm with running time O?((2 +

√
2− ε)p) would contradict SETH.

Open: The algorithmic result does not work for treewidth.
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SETH and covering problems

Set Cover

I: Universe U, set family F ⊆ 2U , integer k
Q: Is there a subfamily G ⊆ F with |G| 6 k s.t.

⋃
G = U?

Denote n = |U| and m = |F|.
Brute-force: time O?(2m). DP on subsets: time O?(2n).

Under SETH, no O?(αm) algorithm for Set Cover for any α < 2.

Breaking 2 in the base for many covering problems is equivalent to
breaking it for Set Cover/n.

Steiner Tree, Conn Vertex Cover, Set Partitioning

No known reductions between Set Cover/n and Set Cover/m.

Set Cover Conjecture

Let λq be the infinimum of the set of constants c such that q-Set
Cover can be solved in time O?(2cn), where n is the size of the
universe. Then limq→∞ λq = 1. In particular, there is no algorithm for
the general Set Cover problem that runs in O?(αn) for any α < 2.
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Hardness in P

SETH can be also used to give lower bounds for polynomial-time
solvable problems.

Orthogonal Vectors

I: Vectors v1, . . . , vN ∈ {0, 1}d
Q: Are there i , j such that 〈vi , vj〉 = 0?

Theorem

Unless SETH fails, for every δ > 0 there is c ∈ N, such that no algorithm
for OV with dimension d = c logN can achieve running time O(N2−δ).

Note: Further hardness results obtained via reductions.

Example: Longest Common Subsequence in strongly
subquadratic time.
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Hardness for OV

Take input formula ϕ of qSAT, with n variables and m clauses.

Goal: decide satisfiability of ϕ in time O(20.99n).
By Sparsification Lemma, we may assume m 6 Cn.

Partition variables into V1 and V2, each of size n/2.

For every assignment η : V1 → {T,F}, create a vector uη ∈ {0, 1}m:

At position corresponding to clause c, put 1 iff η does not satisfy c.
Note: We create 2n/2 such vectors.

Do the same for V2, creating vectors vη for η : V2 → {T,F}.
Note: This takes time O?(2n/2).

Append 01 to vectors uη and 10 to vectors vη.

Claim: There is a pair of orthogonal vectors iff ϕ is satisfiable.

An algorithm for OV with running time O(N1.98) = O(20.99n) would
contradict SETH.

Note: dimension is m 6 Cn 6 2C logN.
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Conclusions

Using ETH we can estimate the asymptotics of the exponents.

Applies to exponential-time, FPT, XP algorithms, and many more.

SETH may give a precise bound on the base of the exponent, but is
less plausible and less applicable.

Can be also used to give tight bounds within P.

Fine-grained complexity theory: obtaining matching lower and
upper bounds on the complexity of problems of interest.

Motivation: Really tight bounds give us a better understanding of
the studied problem, or of its specific parameterization.
Stronger assumptions lead to tighter lower bounds.

Thank you for your attention!
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Motivation: Really tight bounds give us a better understanding of
the studied problem, or of its specific parameterization.

Stronger assumptions lead to tighter lower bounds.
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