




Input. A set of men M, and a set of women W.



Input. A set of men M, and a set of women W.
Every agent has a set of acceptable partners.



Input. A set of men M, and a set of women W.
Every agent has a set of acceptable partners.
The acceptable partners are ranked.
Bijective function pm : W’ → {1,…,|W’|}.
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Input.
- Complete/incomplete lists.



Input.
- Complete/incomplete lists.
- Ties allowed/forbidden.

Surjective function pm : W’ → {1,…,t}, t ≤|W’|.

1

1

2

3

33



Matching. A set of pairwise-disjoint pairs, each 
consisting of a man and a woman that find each 
other acceptable.



Blocking pair. A pair (m,w) blocks a matching if
m and w prefer being matched to each other to
their current ``status’’.
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Blocking pair. A pair (m,w) blocks a matching if
m and w prefer being matched to each other to
their current ``status’’.
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Stable matching. A matching that has no
blocking pair.



Stable Marriage problem. Find a stable
matching.



Stable Marriage problem. Find a stable
matching.

Nobel Prize in Economics, 2012. Awarded to
Shapley and Roth ``for the theory of
stable allocations and the practice of
market design.’’



Applications.
- Matching hospitals to residents.
- Matching students to colleges.
- Matching kidney patients to donors.
- Matching users to servers in a distributed

Internet service.



Books.
- Gusfield and Irving, The stable marriage

problem–structure and algorithms, 1989.
- Knuth, Stable marriage and its relation to

other combinatorial problems, 1997.
- Manlove, Algorithmics of matching under

preferences, 2012.

Surveys. Iwama and Miyazaki, 2008; Gupta,
Roy, Saurabh and Zehavi, 2017.



Primal graph. A bipartite graph with bipartition
(M,W), where m and w are adjacent iff they find
each other acceptable.
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Proposition. A stable matching can be found in
time O(n2). [Gale and Shapley, 1962]

→ A stable matching always exists.
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Proposition. A stable matching can be found in
time O(n2). [Gale and Shapley, 1962]

→ A stable matching always exists.

There can be an exponential number of stable
matchings. 1
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Proposition. A stable matching can be found in
time O(n2). [Gale and Shapley, 1962]

→ A stable matching always exists.

There can be an exponential number of stable
matchings. [Gusfield and Irving, 1989]

Proposition. All stable matchings match the
same set of agents. [Gale and Sotomayor, 1985]



A ``spectrum’’ of stable matchings, where the two
extremes are the man-optimal stable matching
and the woman-optimal stable matching.

man-optimal woman-optimal



A ``spectrum’’ of stable matchings, where the two
extremes are the man-optimal stable matching
and the woman-optimal stable matching.

Man-optimal stable matching 𝝁M. For every stable
matching 𝜇 and man m, either m is unmatched by

both 𝜇M and 𝜇, or pm(𝜇M(m)) ≤ pm(𝜇(m)).



A ``spectrum’’ of stable matchings, where the two
extremes are the man-optimal stable matching
and the woman-optimal stable matching.

Man-optimal stable matching 𝝁M. For every stable
matching 𝜇 and man m, either m is unmatched by

both 𝜇M and 𝜇, or pm(𝜇M(m)) ≤ pm(𝜇(m)).

→ Unique.



A ``spectrum’’ of stable matchings, where the two
extremes are the man-optimal stable matching
and the woman-optimal stable matching.

Man-optimal stable matching 𝝁M. For every stable
matching 𝜇 and man m, either m is unmatched by

both 𝜇M and 𝜇, or pm(𝜇M(m)) ≤ pm(𝜇(m)).

Proposition. 𝜇M and 𝜇W exist, and can be found in
time O(n2). [Gale and Shapley, 1962]



Rotation. A 𝜇-rotation is an ordered sequence ρ =
((m0,w0),(m1,w1),…,(mr-1,wr-1)) such that for all i,

• (mi,wi) ∈ 𝜇, and
• w(i+1)mod r is the woman succeeding wi in mi’s

preference list who prefers being matched to
mi to her current status.

mi: wi w(i+1)mod r…… …
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Rotation. A 𝜇-rotation is an ordered sequence ρ =
((m0,w0),(m1,w1),…,(mr-1,wr-1)) such that for all i,

• (mi,wi) ∈ 𝜇, and
• w(i+1)mod r is the woman succeeding wi in mi’s

preference list who prefers being matched to
mi to her current status.

ρ is a rotation if it is a 𝜇-rotation for some 𝜇.

The set of all rotations is denote by R.
It is known that |R| ≤ n2.



Rotation elimination. Consider a 𝜇-rotation ρ =
((m0,w0),(m1,w1),…,(mr-1,wr-1)).
The elimination of is the operation that modifies 𝜇
by matching each mi with w(i+1)mod r rather than wi.
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Rotation elimination. Consider a 𝜇-rotation ρ =
((m0,w0),(m1,w1),…,(mr-1,wr-1)).
The elimination of is the operation that modifies 𝜇
by matching each mi with w(i+1)mod r rather than wi.

Rotation elimination results in a stable matching.
[Irving and Leather, 1986]



Proposition. Let 𝜇 be a stable matching. There is a

unique subset of R, denoted by R(𝜇), such that

starting from 𝜇M, there is an order in which the

rotations in R(𝜇) can be eliminated to obtain 𝜇.
[Irving and Leather, 1986]



Rotation poset. ∏=(R,≺), where ≺ is a partial

order on R such that ρ ≺ ρ’ iff for every stable
matching μ, if ρ’ is in R(𝜇), then ρ is also in R(𝜇).



• Elimination compatible with ≺.
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• Elimination compatible with ≺.
• Closed set R’. If ρ∈R’, then ρ’∈R’ for all ρ’ ≺ ρ.

Rotation poset. ∏=(R,≺), where ≺ is a partial

order on R such that ρ ≺ ρ’ iff for every stable
matching μ, if ρ’ is in R(𝜇), then ρ is also in R(𝜇).



Proposition. Let R’ be a closed set. Starting with
μM, eliminating the rotations in R’ in any ≺-
compatible order is valid—at each step, where

the current stable matching is μ, the rotation we

eliminate next is a μ-rotation.



Proposition. Let R’ be a closed set. Starting with
μM, eliminating the rotations in R’ in any ≺-
compatible order is valid—at each step, where

the current stable matching is μ, the rotation we

eliminate next is a μ-rotation.
Moreover, all ≺-compatible orders in which one
eliminates the rotations in R’ result in the same
stable matching. [Irving and Leather, 1986]



Rotation digraph. A compact representation of ∏.
The rotation digraph is the DAG of minimum size
whose transitive closure is isomorphic to ∏.



Rotation digraph. A compact representation of ∏.
The rotation digraph is the DAG of minimum size
whose transitive closure is isomorphic to ∏.

∏

(partial)



Rotation digraph. A compact representation of ∏.
The rotation digraph is the DAG of minimum size
whose transitive closure is isomorphic to ∏.

Proposition. The rotation digraph can be
computed in time O(n2). [Irving, Leather and
Gusfield, 1987]
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Recall. man-optimal woman-optimal

Three satisfaction optimization approaches.
• Globally desirable.
• Fair towards both sides.
• Desirable by both sides.



Recall. man-optimal woman-optimal

Three satisfaction optimization approaches.
• Globally desirable.
• Fair towards both sides.
• Desirable by both sides.

No ties.



Egalitarian stable matching. Minimize

e μ = ෍

(𝑚,𝑤)∈μ

(𝑝𝑚 𝑤 + 𝑝𝑤(𝑚)) .



Egalitarian stable matching. Minimize

e μ = ෍

(𝑚,𝑤)∈μ

(𝑝𝑚 𝑤 + 𝑝𝑤(𝑚)) .

Comment. In the presence of ties, can use either
the definition above or one where each
unmatched agent a contributes |domain(pa)|+1
to the sum.



Proposition. Egalitarian Stable Marriage is
solvable in polynomial time. [Irving, Leather and
Gusfield, 1987]



Proposition. Egalitarian Stable Marriage is
solvable in polynomial time. [Irving, Leather and
Gusfield, 1987]

In the presence of ties (NP-hard):

Proposition. Egalitarian Stable Marriage is FPT
parameterized by ``total length of ties’’. [Marx
and Schlotter, 2010]



Sex-equality measure.
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Sex-equality measure.

𝛿 μ = ෍

(𝑚,𝑤)∈μ

𝑝𝑚 𝑤 − ෍

(𝑚,𝑤)∈μ

𝑝𝑤(𝑚) .

Sex-Equal Stable Marriage. Find a stable
matching that attains D=minμ|𝛿 μ |.

Proposition. Sex-Equal Stable Marriage is NP-
hard. [Kato, 1993]



Propositions. [Gupta, Saurabh and Zehavi, 2017]
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tw, the treewidth of the primal graph.
Moreover, unless ETH fails, it cannot be solved
in time f(tw)no(tw).
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2twnO(1), where tw is the treewidth of the
rotation digraph.

2. Unless SETH fails, Sex-Equal Stable Marriage

cannot be solved in time (2-e)twnO(1).



Proposition. Sex-Equal Stable Marriage is

solvable in time (2an+2b)twnO(1) for a=(5- 24)(t-
2+e) and b=(t-1)/2e, where t is the maximum
length of a list.
[McDermid and Irving, 2014]
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Balance measure. 𝑏𝑎𝑙 μ =

max{ ෍

𝑚,𝑤 ∈μ

𝑝𝑚 𝑤 , ෍

(𝑚,𝑤)∈μ

𝑝𝑤(𝑚)} .

Balanced Stable Marriage. Find a stable
matching that attains Bal=minμ𝑏𝑎𝑙 μ .

Proposition. Balanced Stable Marriage is NP-
hard. [Feder, 1990]



Construction of a family of instances where no
stable matching is both sex-equal and balanced.
[Manlove, 2013]



Propositions. [Gupta, Saurabh and Zehavi, 2017]
1. Balanced Stable Marriage is W[1]-hard w.r.t

tw, the treewidth of the primal graph.
Moreover, unless ETH fails, it cannot be solved
in time f(tw)no(tw).

2. Balanced Stable Marriage can be solved in
time nO(tw).



Propositions. [Gupta, Saurabh and Zehavi, 2017]
1. Balanced Stable Marriage is solvable in time

2twnO(1), where tw is the treewidth of the
rotation digraph.

2. Unless SETH fails, Balanced Stable Marriage

cannot be solved in time (2-e)twnO(1).



𝑂𝑀 = σ(𝑚,𝑤)∈μM
𝑝𝑚 𝑤 ; 𝑂𝑊 = σ(𝑚,𝑤)∈μW

𝑝𝑤 𝑚 .

Parameters.
• t1 = k – min{OM,OW}.
• t2 = k – max{OM,OW}.



Propositions. [Gupta, Roy, Saurabh and Zehavi, 2017]

1. Balanced Stable Marriage admits a kernel with
at most 3t1 men, 3t1 women, and such that
each agent has at most 2t1+1 acceptable
partners.

2. Balanced Stable Marriage is solvable in time
8𝑡1nO(1).

3. Balanced Stable Marriage is W[1]-hard w.r.t. t2.





SMTI. Stable Marriage with Ties and Incomplete

lists.

max-SMTI. Find a stable matching of max size.
min-SMTI. Find a stable matching of min size.



SMTI. Stable Marriage with Ties and Incomplete

lists.

max-SMTI. Find a stable matching of max size.
min-SMTI. Find a stable matching of min size.

Proposition. max-SMTI and min-SMTI are NP-
hard. [Irving, Iwama, Manlove, Miyazaki and
Moitra, 2002]



Propositions. [Marx and Schlotter, 2010]
1. max-SMTI is FPT w.r.t. total length of ties.
2. max-SMTI is W[1]-hard w.r.t. number of ties.

In addition, they studied strict and permissive local
search versions of max-SMTI.



Propositions. [Gupta, Saurabh and Zehavi, 2017]
1. max-SMTI and min-SMTI are W[1]-hard w.r.t

tw, the treewidth of the primal graph.
Moreover, unless ETH fails, they cannot be
solved in time f(tw)no(tw).

2. max-SMTI and min-SMTI can be solved in
time nO(tw).



Proposition. max-SMTI and min-SMTI admit a
kernel of size O(k2), where k is solution size.
[Adil, Gupta, Roy, Saurabh and Zehavi, 2017]



Proposition. max-SMTI and min-SMTI admit a
kernel of size O(k2), where k is solution size.
[Adil, Gupta, Roy, Saurabh and Zehavi, 2017]

Proposition. max-SMTI is FPT parameterized by
number of ``agent types’’.
[Meeks and Rastegari, 2017]





Stable Marriage with Covering Constraints (SMC).
Given an instance of Stable Marriage with subsets
M* ⊆ M and W* ⊆ W, find a matching with
minimum number of blocking pairs where M*UW*
are matched.



Mnich and Schlotter, 2017. Parameters:
• b – # blocking pairs.
• |M*|, |W*|.
• DM (DW) – max length of lists of men (women).



Mnich and Schlotter, 2017. Parameters:
• b – # blocking pairs.
• |M*|, |W*|.
• DM (DW) – max length of lists of men (women).

Proposition. SMC is W[1]-hard w.r.t. b+|W*| even
if |M*|=0 and DM =DW =3.

Proposition. SMC is FPT w.r.t. b if DW =2. Moreover,
SMC is FPT w.r.t. |M*|+|W*| if DW=2.



Manipulation. Stable Extension of Partial Matching

(SEOPM).
In. Instance of Stable Marriage, partial matching μ.
Q. Does there exist a set of lists for women, so that
when this set is used, Gale-Shapley algorithm
returns a matching that extends μ?



Manipulation. Stable Extension of Partial Matching

(SEOPM).
In. Instance of Stable Marriage, partial matching μ.
Q. Does there exist a set of lists for women, so that
when this set is used, Gale-Shapley algorithm
returns a matching that extends μ?

Proposition. SEOPM is NP-hard. [Kobayashi and
Matsui, 2010]



Manipulation. Stable Extension of Partial Matching

(SEOPM).
In. Instance of Stable Marriage, partial matching μ.
Q. Does there exist a set of lists for women, so that
when this set is used, Gale-Shapley algorithm
returns a matching that extends μ?

Proposition. SEOPM is solvable in time 2O(n).
[Gupta and Roy, 2016]



max-Size min-BP SMI. Given an instance of Stable

Marriage, find a maximum matching with minimum
number of BPs among all maximum matchings.



max-Size min-BP SMI. Given an instance of Stable

Marriage, find a maximum matching with minimum
number of BPs among all maximum matchings.

Proposition. max-Size min-BP SMI is FPT
parameterized by number of ``agent types’’.
[Meeks and Rastegari, 2017]





Stable Roommate. Given a set of agents, each
ranking a subset of other agents, determine if there
exists a stable matching.



Stable Roommate. Given a set of agents, each
ranking a subset of other agents, determine if there
exists a stable matching.

• Without ties, polynomial time. [Irving, 1985]

• With ties, NP-hard. [Ronn, 1990]



Proposition. Egalitarian Stable Roommate with Ties

is FPT parameterized by k-n, where k is the solution
value. [Chen, Hermelin, Sorge and Yedidson, 2017]

(Unmatched agents contribute, else para-NP-hard.)



Proposition. Egalitarian Stable Roommate with Ties

is FPT parameterized by k-n, where k is the solution
value. [Chen, Hermelin, Sorge and Yedidson, 2017]

(Unmatched agents contribute, else para-NP-hard.)

Proposition. min-BP Stable Roommate is W[1]-hard
w.r.t. b, the number of blocking pairs. Moreover,
unless ETH fails, it cannot be solved in time f(b)no(b).
[Chen, Hermelin, Sorge and Yedidson, 2017]



Proposition. max-SRTI and min-SRTI admit a
kernel of size O(k2), where k is the size of a maximum
matching. [Adil, Gupta, Roy, Saurabh and Zehavi, ‘17]



Proposition. max-SRTI and min-SRTI admit a
kernel of size O(k2), where k is the size of a maximum
matching. [Adil, Gupta, Roy, Saurabh and Zehavi, ‘17]

Proposition. max-SRTI is FPT w.r.t. number of
``agent types’’. [Meeks and Rastegari, 2017]



Hospitals/Residents. A set of hospitals H, and a set
of residents R. Every agent has a ranked set of
acceptable partners. Every hospital has a lower
quota and an upper quota.

Matching. Every resident is
matched at most once, and
every hospital is matched
according to its specification.



Hospitals/Residents. A set of hospitals H, and a set
of residents R. Every agent has a ranked set of
acceptable partners. Every hospital has a lower
quota and an upper quota.

Blocking pair (h,r). h either
has free space or prefers r to
an assigned resident; r
prefers being assigned to h to
the current status.



Hospitals/Residents. A set of hospitals H, and a set
of residents R. Every agent has a ranked set of
acceptable partners. Every hospital has a lower
quota and an upper quota.

Goal. Does there exist a stable
matching?



Hospitals/Residents. A set of hospitals H, and a set
of residents R. Every agent has a ranked set of
acceptable partners. Every hospital has a lower
quota and an upper quota.

No ties: Polynomial-time.
Ties: NP-hard.



Proposition. Hospitals/Residents with Couples

without lower quotas is W[1]-hard parameterized by
the number of couples. [Marx and Schlotter, ‘11]

In addition, they studied strict and permissive local
search versions of this problem.

Proposition. max-Hospitals/Residents is FPT w.r.t.
number of ``agent types’’. [Meeks and Rastegari,
2017]
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