Randomized Parameterized Algorithms
(and de-randomizations)
Design randomized algorithm first, then try to de-randomize it.
k-Path

Input: G, k

Question: Is there a path on k vertices in G?

Parameter: k

Will give an algorithm for k-path with running time $(2e)^{k+o(k)}n^{O(1)}$.
Randomized Algorithm

Consider a random function $f : V(G) \rightarrow \{1...k\}$

For a set S on k vertices, what is the probability that all vertices get a different color?

\[
\frac{k!}{k^k} \geq \frac{1}{e^k}
\]

- Good colorings of S.
- Possible colorings of S.
- Stirling approximation
Randomized Algorithm

Repeat $e^k \cdot t$ times:

1. Pick random $f : V(G) \rightarrow \{1\ldots k\}$
2. Look for a colorful k-path.

If the algorithm finds a k-path, then G definitely has one.

If there is a k-path, the algorithm will find it with probability at least

$$1 - \left(1 - \frac{1}{e^k}\right)^{e^k \cdot t} \geq 1 - \frac{1}{e^t}$$

For $x \geq 2$:

$$\frac{1}{4} \leq (1 - \frac{1}{x})^x \leq \frac{1}{e}$$
Finding a Colorful k-Path

«Exercise» Give a $k^{O(k)}$ time algorithm to determine whether a k-colored graph has a colorful k-path.
Finding a **Colorful k-Path**

Dynamic programming on the **colors** used by partial solutions.

$$T[S,v] = \begin{cases}
 \text{true} & \text{If exists path on } |S| \text{ vertices ending in } v, \\
 \text{false} & \text{using all colors from } S.
\end{cases}$$

subset of \{1\ldots k\}
Dynamic Programming

\[T[S, v] = \bigvee_{u \in N(v)} T[S \setminus f(v), u] \]

For each neighbor \(u \) of \(v \)

Is there a path ending in \(u \) that uses all colors in \(S \), except \(v \)'s color?

\(2^k n \) table entries

\(O(n) \) time to fill each entry.

Total time: \(2^k n^2 \)
Randomized Algorithm

Repeat \(e^k \cdot 100 \) times:

- Pick random \(f : V(G) \rightarrow \{1...k\} \)
- Look for a colorful \(k \)-path.

If the algorithm finds a \(k \)-path, then \(G \) definitely has one.

If there is a \(k \)-path, the algorithm will find it with probability at least \(1 - \frac{1}{e^{100}} \)

Total time: \(O((2e)^k n^2) \).
De-randomization

How can we make the algorithm deterministic?

Let $F = f_1 \ldots f_t$ be a family of functions with $f_i : V(G) \rightarrow \{1 \ldots k\}$.

F is a k-universal hash family F if for every set $S \subseteq V(G)$ of size k, there is an $f_i \in F$ such that f_i makes S colorful.
Deterministic Algorithm

Construct a k-universal hash family F. For each $f \in F$:

Look for a colorful k-path.

If the algorithm finds a k-path, then G definitely has one.

If there is a k-path, the algorithm will find it.

Total time: $O(t + |F| \cdot 2^{kn^2})$.

Takes t time

Takes 2^{kn^2} time
Constructing Hash Functions

\[\text{NSS’95} \] Can construct a k-perfect hash family F of size $e^{k+o(k)} \log n$ in time $e^{k+o(k)} n \log n$.

k-Path in time $(2e)^{k+o(k)} n^{O(1)} \leq 5.44^k n^{O(1)}$
Random Separation: Set Splitting

Input: Family $S_1...S_m$ of sets over a universe $U = v_1...v_n$, integer k.

Question: Is there a coloring $c : U \rightarrow \{0,1\}$ such that at least k sets contain an element colored 0 and an element colored 1?

Parameter: k

Will give a $2^{kn^{O(1)}}$ time randomized, and a $4^{kn^{O(1)}}$ time deterministic algorithm.
Randomized Algorithm

Pick a random coloring \(c : V(G) \rightarrow \{1,2\} \).
If \(c \) splits at least \(k \) sets, return \(c \).

If the algorithm returns a coloring, then it is correct.

Claim: If there is a coloring \(\psi \) that splits at least \(k \) sets, then a random coloring will split at least \(k \) sets with probability at least \(\frac{1}{2^k} \).

The \(2^k n^{O(1)} \) time randomized algorithm follows directly from the claim.
Proof of claim

Suppose ψ splits the sets $S_1...S_k$.

Make a bipartite graph $G=(A \cup B, E)$ as follows:

- A is a minimal hitting set for $S_1...S_k$ colored 0
- B is a minimal hitting set for $S_1...S_k$ colored 1

For i from 1 to k

Add one edge between a vertex in $S_i \cap A$ and a vertex in $S_i \cap B$.
Set Splitting Graph
Proof of claim, continued.

If \(c \) properly colors \(G \) then all sets \(S_1 \ldots S_k \) are split.

\(G \) has \(\leq k \) edges and at most \(\leq 2k \) vertices

\(G \) has \(k+x \) vertices \(\Rightarrow \) \(G \) has \(\geq x \) components

Probability that \(c \) properly colors \(G \) is at least:

\[
\frac{2^x}{2^{k+x}} = \frac{1}{2^k}
\]
Set Splitting Randomized Algorithm

Repeat $100 \cdot 2^k$ times:

1. Pick a random coloring $c : V(G) \rightarrow \{1...k\}$.
2. If c splits at least k sets, return c.

Running time: $O(2^k nm)$

If the algorithm returns a coloring, then it is correct.

If there is a coloring that splits k sets, the algorithm will find one with probability $1 - 1/2^{100}$.
Let $F = \{c_1 \ldots c_t\}$ be a family of colorings $V(G) \to \{0,1\}$.

F is a k-universal coloring family if for every set S on at most k vertices and every way of coloring S there is some $c_i \in F$ which colors S exactly like that.
Set Splitting Algorithm

Construct $2k$-universal coloring family F

For each $c \in F$:

If c splits at least k sets, return c.

If the algorithm returns a coloring, then it is correct.

If there is a coloring that splits k sets, the algorithm will find one, since the graph G has $\leq 2k$ vertices.

Running time: $O(t + |F|nm)$
Construction of Universal Coloring Families

[NSW’95] Can construct a k-universal coloring family F of size $2^{k+o(k)\log n}$ in time $2^{k+o(k)n\log n}$.

(We need a $2k$-universal coloring family)

Set Splitting in time $4^{k+o(k)n^{O(1)}}$.
Induced Subgraph Isomorphism

Input: Graphs G and H, G has maximum degree Δ, $|V(H)| = k$

Question: Does G contain H as an induced subgraph?

Parameters: $\Delta + |V(H)|$

Encodes the k-Clique problem

(so FPT just by k is unlikely)

Naive algorithm: $n^{O(k)}$

$|V(G)|$

Will see a $\Delta^{O(k)}$ time algorithm
Random Separation

Will assume H is connected

Color vertices of G red with probability p, blue with probability $1-p$

Delete all blue vertices

Determine whether any (red) connected component is equal to H using Graph Isomorphism in time $2^{\text{polylog}(k)}$
Success Probability

If G does not contain H then algorithm always says no

If G contains H then:

- All the vertices of H are colored red with probability p^k
- All the neighbors of H (in G) are colored blue
 with probability at least $(1 - p)^{\Delta k}$

Success probability: $p^k(1 - p)^{\Delta k} = \frac{1}{\Delta^k} (1 - \frac{1}{\Delta})^{\Delta k} \geq \frac{1}{(4\Delta)^k}$

Set $p = 1/\Delta$
Running time

Each run of the algorithm takes $2^{o(k)}$ time.

Repeat $(4\Delta)^k$ times for constant success probability.

Total runtime: $(4\Delta)^{k+o(k)}$
Derandomization

Universal Coloring Families \rightarrow deterministic algorithm for **Induced Subgraph Isomorphism** with running time $2^{O(\Delta k)}$.

This can be improved to $\Delta^{O(k)}$.
Other variants

Simple extension 1: Algorithm for the case where H is not necessarily connected with essentially the same running time.

Simple extension 2: Algorithm for Subgraph Isomorphism problem (not induced) with similar ish running time.
Feedback Vertex Set

Feedback Vertex Set (FVS)

IN: G, k

Q: Is there a set S of $\leq k$ vertices such that $G \setminus S$ is a forest?
FVS reduction rules

R1: Delete vertices of degree ≤ 1

R2: Replace degree 2 vertices by edges (keep multiedges)
\(\alpha \)-cover Lemma

A set \(S \subseteq V(G) \) is an \(\alpha \)-cover if

\[
\sum_{v \in S} d(v) \geq \alpha \cdot \sum_{v \in V(G)} d(v) \quad (= \alpha \cdot 2m)
\]

Lemma: If R1 and R2 do not apply, then every feedback vertex set \(S \) of \(G \) is a \(\frac{1}{4} \)-cover.
Lemma: If R_1 and R_2 do not apply then every feedback vertex is a $\frac{1}{4}$-cover.

Proof:

$$\frac{\sum_{v \in S} d(v) - 2}{\sum_{v \in V(G)} d(v) + 2}$$
Algorithm for FVS

while G is not empty
 Apply $R1$ and $R2$ on G exhaustively
 Select a vertex v with prob = $d(v) / 2m$.
 $S := S \cup \{v\}$
 $G := G \setminus v$
 If $|S| > k$ output NO
output S

Succeeds with probability $\frac{1}{4}$
Feedback Vertex Set

Runs in $O(k(n+m))$ time, succeeds with $\frac{1}{4^k}$ probability.

So $O(4^k k(n+m))$ time for constant success probability.

Expected output solution size is $\leq 4\text{OPT}$, this is a 4-approximation!
Feedback Vertex Set below 2^n

Feedback Vertex Set (FVS)

IN: G, k

Q: Is there a set S of $\leq k$ vertices such that $G\setminus S$ is a forest?

Saw a $4^k n^{O(1)}$ time algorithm

Can we beat 2^n?

Branching is tricky

Next: $O((2-\frac{1}{4})^n) = O(1.75^n)$ time using $4^k n^{O(1)}$ as black box
Feedback Vertex Set algorithm

Given n, k, pick integer $t \leq k$.

Pick a set S of size t uniformly at random, put S in solution.

(By deleting S and decreasing parameter by t)

Try to extend S to a feedback vertex set of size $\leq k$

(By running $4^k n^{O(1)}$ time algorithm on $(G-S, k-t)$)
Analysis

Success probability: \(\frac{\binom{k}{t}}{\binom{n}{t}} \)

Running time for constant success probability:
\[
\frac{\binom{n}{t}}{\binom{k}{t}} 4^{k-t}
\]

Given \(n \) and \(k \) pick \(t \) so that running time is minimized:
\[
\min_{t \leq k} \frac{\binom{n}{t}}{\binom{k}{t}} 4^{k-t}
\]

Running time:
\[
4^{k-t}n^{O(1)}
\]

Given \(n \), consider the worst \(k \):
\[
\max_{k \leq n} \min_{t \leq k} \frac{\binom{n}{t}}{\binom{k}{t}} 4^{k-t}
\]
Analysis, cont’d

Lemma: For all $c > 1$, \(\max_{k \leq n} \min_{t \leq k} \frac{n^k}{k^t} c^{k-t} \leq O((2 - \frac{1}{c})^n) \)

Corollary: Feedback Vertex Set in \(O((2 - \frac{1}{4})^n) = O(1.75^n) \) time.
Generalizing

Nothing in the algorithm / analysis was specific to FVS!

Look for a set of size k in a universe of size n.

If we can **extend** a set of size t to a solution of size k in time $c^{k-t}n^{O(1)}$ then

We can **find** a solution in time $O((2 - \frac{1}{c})^n)$

Can be fully derandomized.
Techniques

- Chromatic Coding
- Random Separation
- Color Coding
- Picking Random Solution Vertices
- Mod 2 Counting + Isolation
Thank you!