Randomized Parameterized Algorithms
(and de-randomizations)




Color Coding

Design randomized algorithm first, then try to
de-randomize it.



k-Path

Input: G, k
Question: Is there a path on k vertices in G?
Parameter: k

Will give an algorithm for k-path
with running time (2e)**no1)



Randomized Algorithm
Consider a random function f : V(G) =2 {1...k}

For a set S on k vertices, what is the probability that all vertices
get a different co or?

Good

colorings

of S. \k'
— <1

KK =/ gk

Possible /
colorings Stirling

of S. approximation



Randomized Algorithm

Repeat ekt times:
Pick random f: V(G) = {1...k}
Look for a colorful k-path.

If the algorithm finds a k-path, then G definitely has one.

If there is a k-path, the algorithm will find it with probability at least

ek.t
1— (1— 1/ek) >1 -1/,



Finding a Co orful k-Path

«Exercise» Give a k°k time algorithm to determine
whether a k-colored graph has a colorful k-path.



Finding a Co orful k-Path

Dynamic programming on the colors used by partial

solutions.
vertex
1 true [fexistspathon [S]| vertices endinginy,
using all colors from S.
T[S,v] =
4 false otherwise

subset of {1...k}



Dynamic Programming

Tisvl= \/ TIS\EW),ul

ueN((v
( ) Is there a path ending in u
that uses all colors in S, except

For each neighbor u of v Vv’s color?

2kn table entries O(n) time to fill each entry.

Total time: 2n?2



Randomized Algorithm

Repeat eX-100 times:
Pick random f: V(G) = {1...k}
Look for a colorful k-path.

Takes 2kn?2
time

If the algorithm finds a k-path, then G definitely has one.

If there is a k-path, the algorithm will find it with probability
atleast 1 — 1/ 100

Total time: O((2e)*n?).



De-randomization

How can we make the algorithm deterministic?

Let F = f,...f, be a family of functions with
f: V(G) =2 {1...k}.

Fis a k-universal hash family F if for every set
S € V(G) of size k, there is an f. € F such that f, makes S colorful.



Deterministic Algorithm

Construct a k-universal hash family F.
For each f € F:
Look for a colorful k-path.

If the algorithm finds a k-path, then G definitely has one.

If there is a k-path, the algorithm will find it.

Total time: O(t + | F|-2kn?).

Takes t
time

Takes 2kn?2
time



Constructing Hash Functions

[NSS’95] Can construct a k-perfect hash family F of size
ek*olkllog n in time ektokin log n.

k-Path in time (2e)kokin01)< 5 44kn0(1)



Random Separation: Set Splitting

Input: Family S,...S_ of sets over a universe U =
v,...v,, integer k.

Question: Is there a coloring c : U = {0,1} such that
at least k sets contain an element colored 0 and
an element colored 17

Parameter: k

Will give a 2kn°) time randomized, and a
4knO1) time deterministic algorithm.



Randomized Algorithm

Pick a random coloring c : V(G) = {1,2}.
If c splits at least k sets, return c.

If the algorithm returns a coloring, then it is correct.

Claim: If there is a coloring U that splits at least k sets,
then a random coloring will split at least k sets
with probability at least '/,

The 2kn%1) time randomized algorithm
follows directly from the claim.



Proof of claim

Suppose P splits the sets S,...S,.

Make a bipartite graph G=(A U B, E) as follows:

* Ais a minimal hitting set for S,...S, colored O
* B is a minimal hitting set for S,...S, colored 1

For i from 1 to k
Add one edge between a vertexin S, N A and a vertexin S, N B.



Set Splitting Graph




Proof of claim, continued.

If c properly colors G then all sets S,...S, are split.

G has < k edges and at most < 2k vertices

G has k+x vertices =2 G has = x components

Probability that c properly colors G is at least:

Number of proper colorings ZX 1

2k+X - Zk

Number of colorings



Set Splitting Randomized Algorithm

Repeat 100 - 2* times:
Pick a random coloring c : V(G) =2 {1...k}.
If c splits at least k sets, return c.

Running time: O(2*nm)

If the algorithm returns a coloring, then it is correct.

If there is a coloring that splits k sets, the algorithm will
find one with probability 1-1/21%°



Universal Coloring Family

Let F = {c,...c,} be a family of colorings V(G) = {0,1}

F is a k-universal coloring family if for every set S on at most k
vertices and every way of coloring S there is some c. € F which
colors S exactly like that.



Set Splitting Algorithm

Construct 2k-universal coloring family F Takes t
time

For each c € F:
If c splits at least k sets, return c.

If the algorithm returns a coloring, then it is correct.

If there is a coloring that splits k sets, the algorithm will
find one, since the graph G has < 2k vertices.

Running time: O(t + |F|nm)



Construction

of Universal Coloring Families

[NSS’95] Can construct a k-universal coloring family F of
size 2k°og n in time 2k*kin |og n.

(We need a 2k-universal coloring family)

Set Splitting in time 4k+okin0(1),



Induced Subgraph Isomorphism

Input: Graphs G and H, G has maximum degree A, |V(H)| =k
Question: Does G contain H as an induced subgraph?
Parameters: A + |V(H)|

: Naive algorithm: n°K)
Encodes the k-Cligue problem

(so FPT just by k is unlikely)

[V(G)|

Will see a A°K time algorithm



Random Separation

Will assume H is connected . _ .
Color vertices of G red with probability p,

blue with probability 1-p

Delete all blue vertices

Determine whether any (red) connected component
is equal to H using
Graph Isomorphism in time 2rolviog(k)



Success Probability

If G does not contain H then algorithm always says no

If G contains H then:

All the vertices of H are colored red with probability p*

All the neighbors of H (in G) are colored blue
with probability at least (1 — p)2¥



Running time

Each run of the algorithm takes 2°) time.

Repeat (4A)k times for constant success probability.

Total runtime: (4A)%+o®)



Derandomization

Universal Coloring Families = deterministic algorithm for Induced
Subgraph Isomorphism with running time 294K,

This can be improved to A9,



Other variants

Simple extension 1: Algorithm for the case where H is not necessarily
connected with essentially the same running time.

Simple extension 2: Algorithm for Subgraph Isomorphism problem (not
induced) with similar ish running time.



Feedback Vertex Set

Feedback Vertex Set (FVS)
IN: G, k
Q: Is there a set S of < k vertices such that G\S is a forest?



FVS reduction rules

R1: Delete vertices of degee <1

R2: Replace degree 2 vertices by edges (keep multiedges)



o-cover Lemma

A set S € V(G) is an a-cover if

szSd(V) o szV(G d(V)

Lemma: If R1 and R2 do not apply, then every feedback vertex set S of
G Is a /a-cover.



o-cover Lemma

Lemma: If R1and R2 do not apply then every feedback vertex is a %-cover.

Proof:

2,esd(v) -2
ZVeV(G)d(v) +2




Algorithm for FVS

while G is not empty
Apply R1 and R2 on G exhaustively
Select a vertex v with prob = d(v) / 2m.
S:=SU{v}
G :=G\v
If |S| >k output NO
output S

Succeeds with probability 7



Feedback Vertex Set

Runs in O(k(n+m)) time, succeeds with 41,( probability.

So O(4*k(n+m)) time for constant success probability.

Expected output solution size is < 40PT, this is a 4-approximation!



Feedback Vertex Set below 2"

Feedback Vertex Set (FVS)
IN: G, k
Q: Is there a set S of < k vertices such that G\S is a forest?

Saw a 4n°1) time algorithm

Can we beat 2"?

Branching is tricky

Next: O((2- i)n) = 0(1.75") time using 4kn°) as black box



Feedback Vertex Set algorithm

Given n, k, pick integer t < k.

Pick a set S of size t uniformly at random, put S in solution.
(By deleting S and decreasing parameter by t)

Try to extend S to a feedback vertex set of size < k
(By running 4¢n°1) time algorithm on (G-S, k-t))



Analysis

/ Number of subsets of solution of size t
k

(t) Number of subsets of size t
Success probability: ﬁ /
t

Running time: 4<tn0(1)
Running time for @

k-t
constant success probability: (’;) *

Given n, consider the worst k:

Given n and k pick t so that n
running time is minimized: max min t 4_k—t
k<n t<k (?)

n
min(—t)4k‘t

t<k (?)



Analysis, cont’d

Lemma: For all ¢ > 1, max min (k) =t < 0((2 ——)")
ksn t<k (§ )

Corollary: Feedback Vertex Setin 0((2 — %)") = 0(1.75") time.



Generalizing
Nothing in the algorithm / analysis was specific to FVS!
Look for a set of size k in a universe of size n.

If we can extend a set of size t to a solution of size k in time ckth®®) then
. S 1
We can find a solution in time O((2 — E)n)

Can be fully derandomized.



Random Separation

Techiques

Picking Random Solution Vertices
Color Coding






