
Randomized Parameterized Algorithms 
(and de-randomizations) 



Color Coding 

Design randomized algorithm first, then try to  
de-randomize it. 



k-Path 

Input: G, k 

Question: Is there a path on k vertices in G? 

Parameter: k 

Will give an algorithm for k-path  
with running time (2e)k+o(k)nO(1)

. 



Randomized Algorithm 

Consider a random function f : V(G)  {1...k} 

For a set S on k vertices, what is the probability that all vertices 
get a different color? 
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Randomized Algorithm 

Repeat ek⋅t times: 

 Pick random f : V(G)  {1...k} 

 Look for a colorful k-path. 

If the algorithm finds a k-path, then G definitely has one. 

If there is a k-path, the algorithm will find it with probability at least 

1 − 1 − 1
𝑒𝑘 
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Finding a Colorful k-Path 

«Exercise» Give a kO(k) time algorithm to determine 
whether a k-colored graph has a colorful k-path. 



Finding a Colorful k-Path 

Dynamic programming on the colors used by partial 
solutions. 

T[S,v] =  
true If exists path on |S| vertices ending in v, 

using all colors from S. 

false otherwise 

subset of {1...k} 

vertex 



Dynamic Programming 

T[S,v] =   T[S\f v , u]
u∈N(v)

 

For each neighbor u of v 

Is there a path ending in u 
that uses all colors in S, except 

v’s color? 

2kn table entries O(n) time to fill each entry. 

Total time: 2kn2 



Randomized Algorithm 

Repeat ek⋅100 times: 

 Pick random f : V(G)  {1...k} 

 Look for a colorful k-path. 

If the algorithm finds a k-path, then G definitely has one. 

If there is a k-path, the algorithm will find it with probability  
at least 1 − 1 𝑒100  

Takes 2kn2 
time 

Total time: O((2e)kn2). 



De-randomization 

How can we make the algorithm deterministic? 

 

Let F = f1...ft be a family of functions with  
fi: V(G)  {1...k}. 
 

F is a k-universal hash family F if for every set  
S ⊆ V(G) of size k, there is an fi ∈ F such that fi makes S colorful. 



Deterministic Algorithm 

Construct a k-universal hash family F. 

For each f ∈ F: 

 Look for a colorful k-path. 

If the algorithm finds a k-path, then G definitely has one. 

If there is a k-path, the algorithm will find it. 

Takes 2kn2 
time 

Total time: O(t + |F|⋅2kn2). 

Takes t 
time 



Constructing Hash Functions 

[NSS’95] Can construct a k-perfect hash family F of size 
ek+o(k)log n in time ek+o(k)n log n. 

 

k-Path in time (2e)k+o(k)nO(1)≤ 5.44knO(1)  



Random Separation: Set Splitting 

Input: Family S1...Sm of sets over a universe U = 
 v1...vn, integer k. 

Question: Is there a coloring c : U  {0,1} such that 
 at least k sets contain an element colored 0  and 
 an element colored 1? 

Parameter: k 

Will give a 2knO(1) time randomized, and a  
4knO(1) time deterministic algorithm. 



Randomized Algorithm 

Pick a random coloring c : V(G)  {1,2}. 

If c splits at least k sets, return c. 

If the algorithm returns a coloring, then it is correct. 

Claim:  If there is a coloring ψ that splits at least k sets,  
 then a random coloring will split at least k sets  
 with probability at least 1

2𝑘  

The 2knO(1) time randomized algorithm  
follows directly from the claim.  



Proof of claim 

Suppose ψ splits the sets S1...Sk. 

 

Make a bipartite graph G=(A ∪ B, E) as follows: 
• A is a minimal hitting set for S1...Sk colored 0 

• B is a minimal hitting set for S1...Sk colored 1 

 

For i from 1 to k 

 Add one edge between a vertex in Si ∩ A and a vertex in Si ∩ B. 



Set Splitting Graph 

A B 



Proof of claim, continued. 

If c properly colors G then all sets S1...Sk are split. 

G has ≤ k edges and at most ≤ 2k vertices 

G has k+x vertices  G has ≥ x components 

Probability that c properly colors G is at least: 

2x

2k+x
 = 
1

2k
 

Number of proper colorings 

Number of colorings 



Set Splitting Randomized Algorithm 

Repeat 100 ⋅ 2k times: 

 Pick a random coloring c : V(G)  {1...k}. 

 If c splits at least k sets, return c. 

If the algorithm returns a coloring, then it is correct. 

If there is a coloring that splits k sets, the algorithm will 
find one with probability 1-1/2100

. 

Running time: O(2knm) 



Universal Coloring Family 

Let F = {c1...ct} be a family of colorings V(G)  {0,1}  

F is a k-universal coloring family if for every set S on at most k  
vertices and every way of coloring S there is some ci ∈ F which  
colors S exactly like that. 



Set Splitting Algorithm 

Construct 2k-universal coloring family F 

For each c ∈ F: 

 If c splits at least k sets, return c. 

If the algorithm returns a coloring, then it is correct. 

If there is a coloring that splits k sets, the algorithm will 
find one, since the graph G has ≤ 2k vertices.  

Running time: O(t + |F|nm) 

Takes t 
time 



Construction 
of Universal Coloring Families 

[NSS’95] Can construct a k-universal coloring family F of 
size 2k+o(k)log n in time 2k+o(k)n log n. 

 

Set Splitting in time 4k+o(k)nO(1). 

(We need a 2k-universal coloring family) 



Induced Subgraph Isomorphism 

Input: Graphs G and H, G has maximum degree Δ, |V(H)| = k 

Question: Does G contain H as an induced subgraph? 

Parameters: Δ + |V(H)| 

Naive algorithm: nO(k) 

|V(G)| 

Encodes the k-Clique problem 
(so FPT just by k is unlikely) 

Will see a ΔO(k)
 time algorithm 



Random Separation 

Will assume H is connected 
Color vertices of G red with probability p,  

blue with probability 1-p  

Delete all blue vertices  

Determine whether any (red) connected component  
is equal to H using 

Graph Isomorphism in time 2polylog(k) 



Success Probability 

If G does not contain H then algorithm always says no 

If G contains H then: 

All the vertices of H are colored red with probability pk 

All the neighbors of H (in G) are colored blue  

with probability at least (1 − p)Δk 

Success probability:   𝑝𝑘(1 − p)Δk = 
1

Δk
(1 −

1

Δ
)Δk    ≥

1

(4Δ)k
 

Set p = 1/Δ 



Running time 

Each run of the algorithm takes 2o(k) time. 

 

Repeat (4Δ)k times for constant success probability. 

 

Total runtime: (4Δ)k+o(k) 



Derandomization 

Universal Coloring Families  deterministic algorithm for Induced 
Subgraph Isomorphism with running time  2O(Δk). 

 

This can be improved to  ΔO(k). 



Other variants 

Simple extension 1: Algorithm for the case where H is not necessarily 
connected with essentially the same running time. 

 

Simple extension 2: Algorithm for Subgraph Isomorphism problem (not 
induced) with similar ish running time. 



Feedback Vertex Set 

 

Feedback Vertex Set (FVS) 

IN: G, k 

Q: Is there a set S of ≤ k vertices such that G\S is a forest? 



FVS reduction rules 

 

R1: Delete vertices of degee ≤ 1 

 

R2: Replace degree 2 vertices by edges (keep multiedges) 

 



⍺-cover Lemma 

A set S ⊆ V(G) is an ⍺-cover if  
 

 

 

Lemma: If R1 and R2 do not apply, then every feedback vertex set S of 
G is a ¼-cover. 

Σv∈Sd(v) ≥ ⍺ ∙ Σv∈V(G)d(v) (= ⍺ ∙ 2m) 
 



⍺-cover Lemma 

Lemma:  If  S is a feedback vertex set of G and R1 and R2 do not apply 
      outside S, then S of G is a ¼-cover. 

 

Proof: Σv∈Sd(v) 
Σv∈V(G)d(v) S -2 

-2 

+2 

If R1 and R2 do not apply then every feedback vertex is a ¼-cover. 
 



Algorithm for FVS 

while G is not empty 

 Apply R1 and R2 on G exhaustively 

 Select a vertex v with prob = d(v) / 2m.  

 S := S ∪ {v}  

 G := G\v 

 If |S| > k output NO 

output S 
Succeeds with probability ¼  



Feedback Vertex Set 

Runs in O(k(n+m)) time, succeeds with 
1

4𝑘
 probability. 

 

So O(4kk(n+m)) time for constant success probability. 

 

Expected output solution size is ≤ 4OPT, this is a 4-approximation! 



Feedback Vertex Set below 2n 

Feedback Vertex Set (FVS) 

IN: G, k 

Q: Is there a set S of ≤ k vertices such that G\S is a forest? 

Saw a 4knO(1) time algorithm 
Can we beat 2n? 

Branching is tricky 

Next: O((2- 
1

4
)n) = O(1.75n) time using 4knO(1) as black box  



Feedback Vertex Set algorithm 

Given n, k, pick integer t ≤ k. 

 
Pick a set S of size t uniformly at random, put S in solution. 

Try to extend S to a feedback vertex set of size ≤ k 

(By deleting S and decreasing parameter by t) 

(By running 4knO(1)  time algorithm on (G-S, k-t)) 



Analysis 

Success probability: 

𝑘
𝑡
𝑛
𝑡

 

Running time: 4k-tnO(1) 

Running time for  
constant success probability: 

𝑛
𝑡
𝑘
𝑡

4𝑘−𝑡 

Number of subsets of solution of size t  

Number of subsets of size t  

Given n and k pick t so that  
running time is minimized: 

min
𝑡≤𝑘

𝑛
𝑡
𝑘
𝑡

4𝑘−𝑡 

Given n, consider the worst k: 

max
𝑘≤𝑛
min
𝑡≤𝑘

𝑛
𝑡
𝑘
𝑡

4𝑘−𝑡 



Analysis, cont’d 

For all c > 1, max
𝑘≤𝑛
min
𝑡≤𝑘

𝑛
𝑡
𝑘
𝑡

𝑐𝑘−𝑡 ≤ 𝑂((2 −
1

𝑐
)𝑛) Lemma:  

Corollary: Feedback Vertex Set in 𝑂((2 −
1

4
)𝑛) = O(1.75n) time. 



Generalizing 

Nothing in the algorithm / analysis was specific to FVS! 

 

Look for a set of size k in a universe of size n. 

 

If we can extend a set of size t to a solution of size k in time ck-tnO(1) then 

 

We can find a solution in time O((2 −
1

c
)n) 

 

Can be fully derandomized. 



Techiques 

Color Coding 

Random Separation 

Chromatic Coding 

Picking Random Solution Vertices  

Mod 2 Counting + Isolation 



Thank 
you! 


