Randomized Parameterized Algorithms (and de-randomizations)

Color Coding

Design randomized algorithm first, then try to de-randomize it.

k-Path

Input: G, k Question: Is there a path on k vertices in G? Parameter: k

Will give an algorithm for k-path with running time $(2e)^{k+o(k)}n^{O(1)}$.

Randomized Algorithm

Consider a random function $f : V(G) \rightarrow \{1...k\}$

For a set S on k vertices, what is the probability that all vertices get a different color?

Randomized Algorithm

Repeat $e^{k} \cdot t$ times: Pick random $f : V(G) \rightarrow \{1...k\}$ Look for a colorful k-path.

If the algorithm finds a k-path, then G definitely has one.

If there is a k-path, the algorithm will find it with probability at least

$$1 - \left(1 - \frac{1}{e^{k}}\right)^{e^{k} \cdot t} \ge 1 - \frac{1}{e^{t}}$$

Finding a Colorful k-Path

«Exercise» Give a $k^{O(k)}$ time algorithm to determine whether a k-colored graph has a colorful k-path.

Finding a Colorful k-Path

Dynamic programming on the colors used by partial solutions.

Dynamic Programming

$$T[S,v] = \bigvee_{u \in N(v)} T[S \setminus f(v), u]$$

For each neighbor ${\bf u}$ of ${\bf v}$

Is there a path ending in u that uses all colors in S, except v's color?

2^kn table entries

O(n) time to fill each entry.

Total time: 2^kn²

```
Randomized Algorithm
```

Repeat $e^{k} \cdot 100$ times: Pick random f : V(G) \rightarrow {1...k} Look for a colorful k-path.

Takes 2^kn²

time

If the algorithm finds a k-path, then G definitely has one.

If there is a k-path, the algorithm will find it with probability at least $1 - \frac{1}{e^{100}}$

Total time: O((2e)^kn²).

De-randomization

How can we make the algorithm deterministic?

Let $F = f_1...f_t$ be a family of functions with $f_i: V(G) \rightarrow \{1...k\}$.

F is a k-universal hash family F if for every set $S \subseteq V(G)$ of size k, there is an $f_i \in F$ such that f_i makes S colorful.

Deterministic Algorithm

If the algorithm finds a k-path, then G definitely has one.

If there is a k-path, the algorithm will find it.

Total time: $O(t + |F| \cdot 2^k n^2)$.

Constructing Hash Functions

[NSS'95] Can construct a k-perfect hash family F of size $e^{k+o(k)}\log n$ in time $e^{k+o(k)}n \log n$.

k-Path in time $(2e)^{k+o(k)}n^{O(1)} \le 5.44^{k}n^{O(1)}$

Random Separation: Set Splitting

Input: Family S₁...S_m of sets over a universe U = v₁...v_n, integer k.

Question: Is there a coloring $c : U \rightarrow \{0,1\}$ such that at least k sets contain an element colored 0 and an element colored 1?

Parameter: k

Will give a $2^{k}n^{O(1)}$ time randomized, and a $4^{k}n^{O(1)}$ time deterministic algorithm.

Randomized Algorithm

Pick a random coloring $c : V(G) \rightarrow \{1,2\}$. If c splits at least k sets, return c.

If the algorithm returns a coloring, then it is correct.

Claim: If there is a coloring ψ that splits at least k sets, then a random coloring will split at least k sets with probability at least $\frac{1}{2^k}$

> The 2^kn^{O(1)} time randomized algorithm follows directly from the claim.

Proof of claim

Suppose ψ splits the sets $S_1...S_k$.

Make a bipartite graph $G=(A \cup B, E)$ as follows:

- A is a minimal hitting set for S₁...S_k colored 0
- B is a minimal hitting set for S₁...S_k colored 1

For i from 1 to k

Add one edge between a vertex in $S_i \cap A$ and a vertex in $S_i \cap B$.

Set Splitting Graph

Proof of claim, continued.

If c properly colors G then all sets $S_1...S_k$ are split.

G has $\leq k$ edges and at most $\leq 2k$ vertices

G has k+x vertices \rightarrow G has $\geq x$ components

Probability that c properly colors G is at least:

Number of proper colorings
$$2^{X}$$

 $2^{k+x} = \frac{1}{2^{k}}$
Number of colorings

Set Splitting Randomized Algorithm

Repeat $100 \cdot 2^k$ times:

Pick a random coloring $c : V(G) \rightarrow \{1...k\}$.

If c splits at least k sets, return c.

Running time: O(2^knm)

If the algorithm returns a coloring, then it is correct.

If there is a coloring that splits k sets, the algorithm will find one with probability $1-1/2^{100}$

Universal Coloring Family

Let $F = \{c_1...c_t\}$ be a family of colorings $V(G) \rightarrow \{0,1\}$

F is a k-universal coloring family if for every set S on at most k vertices and every way of coloring S there is some $c_i \in F$ which colors S exactly like that.

Set Splitting Algorithm

Construct 2k-universal coloring family F \longrightarrow Takes t time For each c \in F: If c splits at least k sets, return c.

If the algorithm returns a coloring, then it is correct.

If there is a coloring that splits k sets, the algorithm will find one, since the graph G has $\leq 2k$ vertices.

Running time: O(t + |F|nm)

Construction

of Universal Coloring Families

[NSS'95] Can construct a k-universal coloring family F of size $2^{k+o(k)}\log n$ in time $2^{k+o(k)}n \log n$.

(We need a 2k-universal coloring family)

Set Splitting in time 4^{k+o(k)}n^{O(1)}.

Induced Subgraph Isomorphism

Input: Graphs G and H, G has maximum degree Δ , |V(H)| = k**Question:** Does G contain H as an induced subgraph? **Parameters:** $\Delta + |V(H)|$

Encodes the k-Clique problem (so FPT just by k is unlikely) Naive algorithm: n^{O(k)}

Will see a $\Delta^{O(k)}$ time algorithm

Random Separation

Will assume H is **connected**

Color vertices of G red with probability p, blue with probability 1-p

Delete all blue vertices

Determine whether any (red) connected component is equal to H using Graph Isomorphism in time 2^{polylog(k)}

Success Probability

If G does not contain H then algorithm always says no

If G contains H then:

All the vertices of H are colored red with probability p^k

All the neighbors of H (in G) are colored blue with probability at least $(1 - p)^{\Delta k}$

Success probability: $p^k (1-p)^{\Delta k} = \frac{1}{\Delta^k} (1-\frac{1}{\Delta})^{\Delta k} \ge \frac{1}{(4\Delta)^k}$

Set $p = 1/\Delta$

Running time

Each run of the algorithm takes 2^{o(k)} time.

Repeat $(4\Delta)^k$ times for constant success probability.

Total runtime: $(4\Delta)^{k+o(k)}$

Derandomization

Universal Coloring Families \rightarrow deterministic algorithm for Induced Subgraph Isomorphism with running time $2^{O(\Delta k)}$.

This can be improved to $\Delta^{O(k)}$.

Other variants

Simple extension 1: Algorithm for the case where H is not necessarily connected with essentially the same running time.

Simple extension 2: Algorithm for Subgraph Isomorphism problem (not induced) with similar ish running time.

Feedback Vertex Set

Feedback Vertex Set (FVS)
IN: G, k
Q: Is there a set S of ≤ k vertices such that G\S is a forest?

FVS reduction rules

R1: Delete vertices of degee ≤ 1

R2: Replace degree 2 vertices by edges (keep multiedges)

α-cover Lemma

A set $S \subseteq V(G)$ is an α -cover if $\sum_{v \in S} d(v) \ge \alpha \cdot \sum_{v \in V(G)} d(v) \ (= \alpha \cdot 2m)$

Lemma: If R1 and R2 do not apply, then every feedback vertex set S of G is a ¼-cover.

α -cover Lemma

Lemma: If **R1** and **R2** do not apply then every feedback vertex is a ¼-cover.

Algorithm for FVS

while G is not empty Apply R1 and R2 on G exhaustively Select a vertex v with prob = d(v) / 2m. $S := S \cup \{v\}$ G := G\v If |S| > k output NO output S

Succeeds with probability ¹⁄₄

Feedback Vertex Set

Runs in O(k(n+m)) time, succeeds with $\frac{1}{4^k}$ probability.

So O(4^kk(n+m)) time for constant success probability.

Expected output solution size is \leq 4OPT, this is a 4-approximation!

Feedback Vertex Set below 2ⁿ

Feedback Vertex Set (FVS)

IN: G, k

Q: Is there a set **S** of \leq **k** vertices such that **G****S** is a forest?

Saw a 4^kn^{O(1)} time algorithm

Can we beat 2ⁿ?

Branching is tricky

Next: $O((2 - \frac{1}{4})^n) = O(1.75^n)$ time using $4^k n^{O(1)}$ as black box

Feedback Vertex Set algorithm

Given n, k, pick integer $t \leq k$.

Pick a set S of size t uniformly at random, put S in solution. (By deleting S and decreasing parameter by t)

Try to extend S to a feedback vertex set of size $\leq k$ (By running $4^k n^{O(1)}$ time algorithm on (G-S, k-t))

Running time for constant success probability:

$$\frac{\binom{n}{t}}{\binom{k}{t}} 4^{k-t}$$

Given n and k pick t so that running time is minimized:

$$\min_{t \le k} \frac{\binom{n}{t}}{\binom{k}{t}} 4^{k-t}$$

Running time: 4^{k-t}n^{O(1)}

Given n, consider the worst k:

$$\max_{k \le n} \min_{t \le k} \frac{\binom{n}{t}}{\binom{k}{t}} 4^{k-t}$$

Analysis, cont'd

Lemma: For all
$$c > 1$$
, $\max_{k \le n} \min_{t \le k} \frac{\binom{n}{t}}{\binom{k}{t}} c^{k-t} \le O((2-\frac{1}{c})^n)$

Corollary: Feedback Vertex Set in $O((2 - \frac{1}{4})^n) = O(1.75^n)$ time.

Generalizing

Nothing in the algorithm / analysis was specific to FVS!

Look for a set of size k in a universe of size n.

If we can extend a set of size t to a solution of size k in time c^{k-t}n^{O(1)} then

We can find a solution in time $O((2 - \frac{1}{c})^n)$

Can be fully derandomized.

Chromatic Coding

Random Separation

Techiques

Picking Random Solution Vertices

Color Coding

Mod 2 Counting + Isolation

