Randomized Parameterized Algorithms

(and de-randomizations)

Color Coding

Design randomized algorithm first, then try to de-randomize it.

k-Path

Input: G, k
Question: Is there a path on kertices in G ?
Parameter: k

Will give an algorithm for k-path with running time $(2 e)^{k+o(k)} n^{0(1)}$.

Randomized Algorithm

Consider a random function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1 . . \mathrm{k}\}$

For a set S on k vertices, what is the probability that all vertices
get a different color?

Randomized Algorithm

Repeat $\mathrm{e}^{\mathrm{k} \cdot \mathrm{t} \text { times: }}$
Pick random $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1 \ldots \mathrm{l}\}$ Look for a colorful k-path.

For $x \geq 2$:

$$
\frac{1}{4} \leq(1-1 / x)^{x} \leq \frac{1}{e}
$$

If the algorithm finds a k-path, then G definitely has one.
If there is a k-path, the algorithm will find it with probability at least

$$
1-\left(1-1 / e^{k}\right)^{e^{k} \cdot t} \geq 1-1 / e^{t}
$$

Finding a Colorful k-Path

«Exercise» Give a ${ }^{0}{ }^{(k)}$ time algorithm to determine whether a k-colored graph has a colorful k-path.

Finding a Colorful k-Path

Dynamic programming on the colors used by partial solutions.

Dynamic Programming

$$
T[S, v]=\bigvee_{u \in N(v)} T[S \backslash f(v), u]
$$

For each neighbor u of v
$2^{k} n$ table entries

Is there a path ending in u that uses all colors in S, except v's color?
$\mathrm{O}(\mathrm{n})$ time to fill each entry.

Total time: $2^{k} n^{2}$

Randomized Algorithm

Repeat $\mathrm{e}^{\mathrm{k}} \cdot 100$ times:
Pick random $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1 \ldots \mathrm{l}$ \} Look for a colorful k-path. $\longleftarrow \quad \begin{gathered}\text { Takes 2k} n^{2} \\ \text { time }\end{gathered}$

If the algorithm finds a k-path, then G definitely has one.
If there is a k-path, the algorithm will find it with probability at least $1-1 / e^{100}$

Total time: $\mathrm{O}\left((2 e)^{\mathrm{k}} \mathrm{n}^{2}\right)$.

De-randomization

How can we make the algorithm deterministic?

Let $F=f_{1} \ldots f_{t}$ be a family of functions with $\mathrm{f}_{\mathrm{i}}: \mathrm{V}(\mathrm{G}) \rightarrow\{1 \ldots \mathrm{k}\}$.
F is a k-universal hash family F if for every set $S \subseteq V(G)$ of size k, there is an $f_{i} \in F$ such that f_{i} makes S colorful.

Deterministic Algorithm

Construct a k-universal hash family F .
For each $f \in F$:
Look for a colorful k-path. time

If the algorithm finds a k-path, then G definitely has one.
If there is a k-path, the algorithm will find it.

$$
\text { Total time: } \mathrm{O}\left(\mathrm{t}+|\mathrm{F}| \cdot 2^{\mathrm{k}} \mathrm{n}^{2}\right) .
$$

Constructing Hash Functions

[NSS'95] Can construct a k-perfect hash family F of size $e^{k+0(k)} \log n$ in time $e^{k+o(k)} n \log n$.
k-Path in time $(2 e)^{k+o(k)} n^{0(1)} \leq 5.44^{\mathrm{k}} n^{0(1)}$

Random Separation: Set Splitting

Input: Family $\mathrm{S}_{1} \ldots \mathrm{~S}_{\mathrm{m}}$ of sets over a universe $\mathrm{U}=$ $v_{1} \ldots v_{n}$, integer k.
Question: Is there a coloring c : $U \rightarrow\{0,1\}$ such that at least k sets contain an element colored 0 and an element colored 1?

Parameter: k

Will give a $2^{\mathrm{k}} \mathrm{n}^{\mathrm{O}(1)}$ time randomized, and a $4^{\mathrm{K}} \mathrm{n}^{\mathrm{O}(1)}$ time deterministic algorithm.

Randomized Algorithm

Pick a random coloring $\mathrm{c}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2\}$.
If c splits at least k sets, return c .

If the algorithm returns a coloring, then it is correct.

Claim: If there is a coloring ψ that splits at least k sets, then a random coloring will split at least k sets with probability at least $1 / 2^{k}$

The $2^{k} n^{\circ(1)}$ time randomized algorithm
follows directly from the claim.

Proof of claim

Suppose ψ splits the sets $\mathrm{S}_{1} \ldots \mathrm{~S}_{\mathrm{k}}$.

Make a bipartite graph $G=(A \cup B, E)$ as follows:

- A is a minimal hitting set for $S_{1} \ldots S_{k}$ colored 0
- B is a minimal hitting set for $S_{1} \ldots S_{k}$ colored 1

For i from 1 to k
Add one edge between a vertex in $S_{i} \cap A$ and a vertex in $S_{i} \cap B$.

Set Splitting Graph

Proof of claim, continued.

If c properly colors G then all sets $\mathrm{S}_{1} \ldots \mathrm{~S}_{\mathrm{k}}$ are split.
G has $\leq \mathrm{k}$ edges and at most $\leq 2 \mathrm{k}$ vertices
G has $\mathrm{k}+\mathrm{x}$ vertices $\rightarrow \mathrm{G}$ has $\geq \mathrm{x}$ components
Probability that c properly colors G is at least:

Number of proper colorings $\longrightarrow \frac{2^{\mathrm{X}}}{2^{\mathrm{k}+\mathrm{X}}}=\frac{1}{2^{\mathrm{k}}}$

Set Splitting Randomized Algorithm

Repeat $100 \cdot 2^{k}$ times:
Pick a random coloring $\mathrm{c}: \mathrm{V}(\mathrm{G}) \rightarrow\{1 \ldots . . \mathrm{k}\}$. If c splits at least k sets, return c .

Running time: $\mathrm{O}\left(2^{\mathrm{k}} \mathrm{nm}\right)$
If the algorithm returns a coloring, then it is correct.
If there is a coloring that splits k sets, the algorithm will find one with probability $1-1 / 2^{100}$.

Universal Coloring Family

$$
\text { Let } F=\left\{c_{1} \ldots c_{t}\right\} \text { be a family of colorings } V(G) \rightarrow\{0,1\}
$$

F is a k-universal coloring family if for every set S on at most k vertices and every way of coloring S there is some $c_{i} \in F$ which colors S exactly like that.

Set Splitting Algorithm

Construct 2k-universal coloring family F \qquad Takes t time

For each $c \in F$:

If c splits at least k sets, return c .

If the algorithm returns a coloring, then it is correct.
If there is a coloring that splits k sets, the algorithm will find one, since the graph G has $\leq 2 k$ vertices.

Running time: $\mathrm{O}(\mathrm{t}+|\mathrm{F}| \mathrm{nm})$

Construction

of Universal Coloring Families
[NSS'95] Can construct a k-universal coloring family F of size $2^{k+o(k)} \log n$ in time $2^{k+o(k)} n \log n$.
(We need a $2 k$-universal coloring family)
Set Splitting in time $4^{k+0(k)} n^{0(1)}$.

Induced Subgraph Isomorphism

Input: Graphs G and H, G has maximum degree $\Delta,|V(H)|=k$
Question: Does G contain H as an induced subgraph?
Parameters: $\Delta+|\mathrm{V}(\mathrm{H})|$

Encodes the k-Clique problem
(so FPT just by k is unlikely)

Naive algorithm: $\mathrm{n}^{0(\mathrm{k})}$
|V(G)|

Will see a $\Delta^{\mathrm{O}(\mathrm{k})}$ time algorithm

Random Separation

Will assume H is connected
Color vertices of G red with probability p, blue with probability 1-p

Delete all blue vertices

Determine whether any (red) connected component
is equal to H using
Graph Isomorphism in time $2^{\text {polylog(k) }}$

Success Probability

If G does not contain H then algorithm always says no

If G contains H then:
All the vertices of H are colored red with probability p^{k}
All the neighbors of H (in G) are colored blue with probability at least $(1-p)^{\Delta k}$

Success probability: $p^{k}(1-p)^{\Delta \mathrm{k}}=\frac{1}{\Delta^{\mathrm{k}}}\left(1-\frac{1}{\Delta}\right)^{\Delta \mathrm{k}} \quad \geq \frac{1}{(4 \Delta)^{\mathrm{k}}}$

$$
\text { Set } p=1 / \Delta
$$

Running time

Each run of the algorithm takes $2^{0(k)}$ time.

Repeat (4 4$)^{\mathrm{k}}$ times for constant success probability.

Total runtime: $(4 \Delta)^{\mathrm{k}+\mathrm{o}(\mathrm{k})}$

Derandomization

Universal Coloring Families \rightarrow deterministic algorithm for Induced Subgraph Isomorphism with running time $2^{\mathrm{O}(\Delta \mathrm{k})}$.

This can be improved to $\Delta^{\mathrm{O}(\mathrm{k})}$.

Other variants

Simple extension 1: Algorithm for the case where H is not necessarily connected with essentially the same running time.

Simple extension 2: Algorithm for Subgraph Isomorphism problem (not induced) with similar ish running time.

Feedback Vertex Set

Feedback Vertex Set (FVS)

IN: G, k
Q : Is there a set S of $\leq \mathrm{k}$ vertices such that $\mathrm{G} \backslash \mathrm{S}$ is a forest?

FVS reduction rules

R1: Delete vertices of degee ≤ 1

R2: Replace degree 2 vertices by edges (keep multiedges)

α-cover Lemma

A set $S \subseteq V(G)$ is an α-cover if

$$
\sum_{\mathrm{v} \in \mathrm{~S}} \mathrm{~d}(\mathrm{v}) \geq \alpha \cdot \sum_{\mathrm{v} \in \mathrm{~V}(\mathrm{G})} \mathrm{d}(\mathrm{v})(=\alpha \cdot 2 \mathrm{~m})
$$

Lemma: If R1 and R2 do not apply, then every feedback vertex set S of G is a $1 / 4$-cover.

α-cover Lemma

Lemma: If R1 and R2 do not apply then every feedback vertex is a $1 / 4$-cover.

Proof:

Algorithm for FVS

while G is not empty
Apply R1 and R2 on G exhaustively
Select a vertex v with prob $=d(v) / 2 m$.
$S:=S \cup\{v\}$
G:= G\v
If $|S|>k$ output NO output S

Feedback Vertex Set

Runs in $O(k(n+m))$ time, succeeds with $\frac{1}{4^{k}}$ probability.

So $\mathrm{O}\left(4^{\mathrm{k} k}(\mathrm{n}+\mathrm{m})\right)$ time for constant success probability.

Expected output solution size is $\leq 40 P T$, this is a 4-approximation!

Feedback Vertex Set below 2^{n}

Feedback Vertex Set (FVS)

IN: G, k
Q: Is there a set S of $\leq k$ vertices such that $G \backslash S$ is a forest?

Saw a $4^{k} n^{0(1)}$ time algorithm
Can we beat 2^{n} ?
Branching is tricky

Next: $\mathrm{O}\left(\left(2-\frac{1}{4}\right)^{\mathrm{n}}\right)=\mathrm{O}\left(1.75^{\mathrm{n}}\right)$ time using $4^{\mathrm{k}} \mathrm{n}^{\mathrm{O}(1)}$ as black box

Feedback Vertex Set algorithm

Given n, k, pick integer $\mathrm{t} \leq \mathrm{k}$.

Pick a set S of size t uniformly at random, put S in solution.
(By deleting S and decreasing parameter by t)
Try to extend S to a feedback vertex set of size $\leq \mathrm{k}$
(By running $4^{k} n^{0(1)}$ time algorithm on ($\mathrm{G}-\mathrm{S}, \mathrm{k}-\mathrm{t}$))

Analysis

Success probability: $\frac{\binom{k}{t}}{\binom{n}{t}}$ Number of subsets of solution of size t
Running time: $4^{k-t} n^{0(1)}$

Running time for
 constant success probability: $\frac{\binom{n}{t}}{\binom{k}{t}} 4^{k-t}$

Given n and k pick t so that running time is minimized:

Given n , consider the worst k :

$$
\max _{k \leq n} \min _{t \leq k} \frac{\binom{n}{t}}{\binom{k}{t}} 4^{k-t}
$$

Analysis, cont'd

$$
\text { Lemma: For all } \mathrm{c}>1, \max _{k \leq n} \min _{t \leq k} \frac{\binom{n}{t}}{\binom{k}{t}} c^{k-t} \leq O\left(\left(2-\frac{1}{c}\right)^{n}\right)
$$

Corollary: Feedback Vertex Set in $O\left(\left(2-\frac{1}{4}\right)^{n}\right)=\mathbf{O}\left(1.75^{n}\right)$ time.

Generalizing

Nothing in the algorithm / analysis was specific to FVS!

Look for a set of size k in a universe of size n.

If we can extend a set of size t to a solution of size k in time $c^{k-t} n^{0(1)}$ then

We can find a solution in time $O\left(\left(2-\frac{1}{c}\right)^{n}\right)$

Can be fully derandomized.

Chromatic Coding

Random Separation

Techiques

> Picking Random Solution Vertices

Color Coding
Mod 2 Counting + Isolation

Thank you!

