
Randomized Parameterized Algorithms
(and de-randomizations)

Color Coding

Design randomized algorithm first, then try to
de-randomize it.

k-Path

Input: G, k

Question: Is there a path on k vertices in G?

Parameter: k

Will give an algorithm for k-path
with running time (2e)k+o(k)nO(1)

.

Randomized Algorithm

Consider a random function f : V(G)  {1...k}

For a set S on k vertices, what is the probability that all vertices
get a different color?

k!

kk

Possible
colorings

of S.

Good
colorings

of S.

≥ 1
𝑒𝑘

Stirling
approximation

Randomized Algorithm

Repeat ek⋅t times:

 Pick random f : V(G)  {1...k}

 Look for a colorful k-path.

If the algorithm finds a k-path, then G definitely has one.

If there is a k-path, the algorithm will find it with probability at least

1 − 1 − 1
𝑒𝑘
𝑒𝑘⋅𝑡
≥ 1 − 1 𝑒𝑡

For x ≥ 2:

1

4
≤ 1 − 1 𝑥

𝑥
≤
1

𝑒

Finding a Colorful k-Path

«Exercise» Give a kO(k) time algorithm to determine
whether a k-colored graph has a colorful k-path.

Finding a Colorful k-Path

Dynamic programming on the colors used by partial
solutions.

T[S,v] =
true If exists path on |S| vertices ending in v,

using all colors from S.

false otherwise

subset of {1...k}

vertex

Dynamic Programming

T[S,v] = T[S\f v , u]
u∈N(v)

For each neighbor u of v

Is there a path ending in u
that uses all colors in S, except

v’s color?

2kn table entries O(n) time to fill each entry.

Total time: 2kn2

Randomized Algorithm

Repeat ek⋅100 times:

 Pick random f : V(G)  {1...k}

 Look for a colorful k-path.

If the algorithm finds a k-path, then G definitely has one.

If there is a k-path, the algorithm will find it with probability
at least 1 − 1 𝑒100

Takes 2kn2
time

Total time: O((2e)kn2).

De-randomization

How can we make the algorithm deterministic?

Let F = f1...ft be a family of functions with
fi: V(G)  {1...k}.

F is a k-universal hash family F if for every set
S ⊆ V(G) of size k, there is an fi ∈ F such that fi makes S colorful.

Deterministic Algorithm

Construct a k-universal hash family F.

For each f ∈ F:

 Look for a colorful k-path.

If the algorithm finds a k-path, then G definitely has one.

If there is a k-path, the algorithm will find it.

Takes 2kn2
time

Total time: O(t + |F|⋅2kn2).

Takes t
time

Constructing Hash Functions

[NSS’95] Can construct a k-perfect hash family F of size
ek+o(k)log n in time ek+o(k)n log n.

k-Path in time (2e)k+o(k)nO(1)≤ 5.44knO(1)

Random Separation: Set Splitting

Input: Family S1...Sm of sets over a universe U =
 v1...vn, integer k.

Question: Is there a coloring c : U  {0,1} such that
 at least k sets contain an element colored 0 and
 an element colored 1?

Parameter: k

Will give a 2knO(1) time randomized, and a
4knO(1) time deterministic algorithm.

Randomized Algorithm

Pick a random coloring c : V(G)  {1,2}.

If c splits at least k sets, return c.

If the algorithm returns a coloring, then it is correct.

Claim: If there is a coloring ψ that splits at least k sets,
 then a random coloring will split at least k sets
 with probability at least 1

2𝑘

The 2knO(1) time randomized algorithm
follows directly from the claim.

Proof of claim

Suppose ψ splits the sets S1...Sk.

Make a bipartite graph G=(A ∪ B, E) as follows:
• A is a minimal hitting set for S1...Sk colored 0

• B is a minimal hitting set for S1...Sk colored 1

For i from 1 to k

 Add one edge between a vertex in Si ∩ A and a vertex in Si ∩ B.

Set Splitting Graph

A B

Proof of claim, continued.

If c properly colors G then all sets S1...Sk are split.

G has ≤ k edges and at most ≤ 2k vertices

G has k+x vertices  G has ≥ x components

Probability that c properly colors G is at least:

2x

2k+x
 =
1

2k

Number of proper colorings

Number of colorings

Set Splitting Randomized Algorithm

Repeat 100 ⋅ 2k times:

 Pick a random coloring c : V(G)  {1...k}.

 If c splits at least k sets, return c.

If the algorithm returns a coloring, then it is correct.

If there is a coloring that splits k sets, the algorithm will
find one with probability 1-1/2100

.

Running time: O(2knm)

Universal Coloring Family

Let F = {c1...ct} be a family of colorings V(G)  {0,1}

F is a k-universal coloring family if for every set S on at most k
vertices and every way of coloring S there is some ci ∈ F which
colors S exactly like that.

Set Splitting Algorithm

Construct 2k-universal coloring family F

For each c ∈ F:

 If c splits at least k sets, return c.

If the algorithm returns a coloring, then it is correct.

If there is a coloring that splits k sets, the algorithm will
find one, since the graph G has ≤ 2k vertices.

Running time: O(t + |F|nm)

Takes t
time

Construction
of Universal Coloring Families

[NSS’95] Can construct a k-universal coloring family F of
size 2k+o(k)log n in time 2k+o(k)n log n.

Set Splitting in time 4k+o(k)nO(1).

(We need a 2k-universal coloring family)

Induced Subgraph Isomorphism

Input: Graphs G and H, G has maximum degree Δ, |V(H)| = k

Question: Does G contain H as an induced subgraph?

Parameters: Δ + |V(H)|

Naive algorithm: nO(k)

|V(G)|

Encodes the k-Clique problem
(so FPT just by k is unlikely)

Will see a ΔO(k)
 time algorithm

Random Separation

Will assume H is connected
Color vertices of G red with probability p,

blue with probability 1-p

Delete all blue vertices

Determine whether any (red) connected component
is equal to H using

Graph Isomorphism in time 2polylog(k)

Success Probability

If G does not contain H then algorithm always says no

If G contains H then:

All the vertices of H are colored red with probability pk

All the neighbors of H (in G) are colored blue

with probability at least (1 − p)Δk

Success probability: 𝑝𝑘(1 − p)Δk =
1

Δk
(1 −

1

Δ
)Δk ≥

1

(4Δ)k

Set p = 1/Δ

Running time

Each run of the algorithm takes 2o(k) time.

Repeat (4Δ)k times for constant success probability.

Total runtime: (4Δ)k+o(k)

Derandomization

Universal Coloring Families  deterministic algorithm for Induced
Subgraph Isomorphism with running time 2O(Δk).

This can be improved to ΔO(k).

Other variants

Simple extension 1: Algorithm for the case where H is not necessarily
connected with essentially the same running time.

Simple extension 2: Algorithm for Subgraph Isomorphism problem (not
induced) with similar ish running time.

Feedback Vertex Set

Feedback Vertex Set (FVS)

IN: G, k

Q: Is there a set S of ≤ k vertices such that G\S is a forest?

FVS reduction rules

R1: Delete vertices of degee ≤ 1

R2: Replace degree 2 vertices by edges (keep multiedges)

⍺-cover Lemma

A set S ⊆ V(G) is an ⍺-cover if

Lemma: If R1 and R2 do not apply, then every feedback vertex set S of
G is a ¼-cover.

Σv∈Sd(v) ≥ ⍺ ∙ Σv∈V(G)d(v) (= ⍺ ∙ 2m)

⍺-cover Lemma

Lemma: If S is a feedback vertex set of G and R1 and R2 do not apply
 outside S, then S of G is a ¼-cover.

Proof: Σv∈Sd(v)
Σv∈V(G)d(v) S -2

-2

+2

If R1 and R2 do not apply then every feedback vertex is a ¼-cover.

Algorithm for FVS

while G is not empty

 Apply R1 and R2 on G exhaustively

 Select a vertex v with prob = d(v) / 2m.

 S := S ∪ {v}

 G := G\v

 If |S| > k output NO

output S
Succeeds with probability ¼

Feedback Vertex Set

Runs in O(k(n+m)) time, succeeds with
1

4𝑘
 probability.

So O(4kk(n+m)) time for constant success probability.

Expected output solution size is ≤ 4OPT, this is a 4-approximation!

Feedback Vertex Set below 2n

Feedback Vertex Set (FVS)

IN: G, k

Q: Is there a set S of ≤ k vertices such that G\S is a forest?

Saw a 4knO(1) time algorithm
Can we beat 2n?

Branching is tricky

Next: O((2-
1

4
)n) = O(1.75n) time using 4knO(1) as black box

Feedback Vertex Set algorithm

Given n, k, pick integer t ≤ k.

Pick a set S of size t uniformly at random, put S in solution.

Try to extend S to a feedback vertex set of size ≤ k

(By deleting S and decreasing parameter by t)

(By running 4knO(1) time algorithm on (G-S, k-t))

Analysis

Success probability:

𝑘
𝑡
𝑛
𝑡

Running time: 4k-tnO(1)

Running time for
constant success probability:

𝑛
𝑡
𝑘
𝑡

4𝑘−𝑡

Number of subsets of solution of size t

Number of subsets of size t

Given n and k pick t so that
running time is minimized:

min
𝑡≤𝑘

𝑛
𝑡
𝑘
𝑡

4𝑘−𝑡

Given n, consider the worst k:

max
𝑘≤𝑛
min
𝑡≤𝑘

𝑛
𝑡
𝑘
𝑡

4𝑘−𝑡

Analysis, cont’d

For all c > 1, max
𝑘≤𝑛
min
𝑡≤𝑘

𝑛
𝑡
𝑘
𝑡

𝑐𝑘−𝑡 ≤ 𝑂((2 −
1

𝑐
)𝑛) Lemma:

Corollary: Feedback Vertex Set in 𝑂((2 −
1

4
)𝑛) = O(1.75n) time.

Generalizing

Nothing in the algorithm / analysis was specific to FVS!

Look for a set of size k in a universe of size n.

If we can extend a set of size t to a solution of size k in time ck-tnO(1) then

We can find a solution in time O((2 −
1

c
)n)

Can be fully derandomized.

Techiques

Color Coding

Random Separation

Chromatic Coding

Picking Random Solution Vertices

Mod 2 Counting + Isolation

Thank
you!

