Backdoors for SAT and CSP

Robert Ganian
PCSS 2017 • September 3, 2017

죠! ac ${ }^{1} \mathrm{ll}^{2}$

Overview

- This talk is about:
- The Boolean Satisfiability Problem (SAT)
- The Constraint Satisfaction Problem (CSP)
- Fixed-parameter tractability
- This talk is not about:
- Parameterizing by solution size
- Kernelization
- Model counting

SAT

- Input: a CNF formula F, for instance:

$$
(x \vee y) \wedge(\neg x \vee z \vee y) \wedge(\neg y \vee \neg z)
$$

- Terminology:
- variables ($3-x, y, z$)
- clauses $(3-(x \vee y),(\neg x \vee z \vee y),(\neg y \vee \neg z))$
- literals ($7-x, y, \neg x \ldots)$
- Question: Is F satisfiable?
- Can you assign variables to 0/1 so that each clause is satisfied?

SAT

- Input: a CNF formula F, for instance:

$$
(x \vee y) \wedge(\neg x \vee z \vee y) \wedge(\neg y \vee \neg z)
$$

- Terminology:
- variables ($3-x, y, z$)
- clauses $(3-(x \vee y),(\neg x \vee z \vee y),(\neg y \vee \neg z))$
- literals ($7-x, y, \neg x$)
- Question: Is F satisfiable?
- Can you assign variables to 0/1 so that each clause is satisfied?
- Example: $x, y=1, z=0$

SAT

- Input: a CNF formula F, for instance:

$$
(1 \vee 1) \wedge(0 \vee 0 \vee 1) \wedge(0 \vee 1)
$$

- Terminology:
- variables $(3-x, y, z)$
- clauses $(3-(x \vee y),(\neg x \vee z \vee y),(\neg y \vee \neg z))$
- literals ($7-x, y, \neg x$)
- Question: Is F satisfiable?
- Can you assign variables to 0/1 so that each clause is satisfied?
- Example: $x, y=1, z=0$

SAT

- Many applications
- One of the best known NP-complete problems
- Dedicated annual conference (SAT)
- Also includes a SAT competition

Solving SAT - Treewidth

- Several graph representations of CNF formulas exist
- Representations capture variable-clause interactions
- SAT is FPT when parameterized by the treewidth of these graph representations
- Standard dynamic programming

Graph Representations for SAT

- Example: $\mathrm{C}_{1}=(u \vee \neg v \vee y), \mathrm{C}_{2}=(\neg u \vee z \vee \neg y)$,

$$
\mathrm{C}_{3}=(v \vee \neg w), \mathrm{C}_{4}=(w \vee \neg x), \mathrm{C}_{5}=(x \vee y \vee \neg z)
$$

- Classical representations:

Primal graph

Dual graph

Incidence graph

- Are there others?

Graph Representations for SAT

- Example: $\mathrm{C}_{1}=(u \vee \neg v \vee y), \mathrm{C}_{2}=(\neg u \vee z \vee \neg y)$,

$$
\mathrm{C}_{3}=(v \vee \neg w), \mathrm{C}_{4}=(w \vee \neg x), \mathrm{C}_{5}=(x \vee y \vee \neg z)
$$

- Classical representations:

Primal graph

Dual graph

Incidence graph

- New representation:
- Ganian, Szeider 2017

Edge no contradicting literals

Consensus graph

Solving SAT - Treewidth

SAT is FPT parameterized by the treewidth of the primal/dual/incidence/consensus graph.

- Single-exponential runtime
- Better to use incidence graph rather than primal or dual
- Can have much lower treewidth, opposite doesn't hold
- Good dynamic programming exercise
- Consensus graph case is a bit more complicated

Solving SAT without Treewidth

- Tractable classes for SAT were studied for decades
- Some are older than treewidth
- General idea: impose syntactic restrictions on clauses
- Incomparable to the restrictions on variable-clause interactions imposed by treewidth
- Here, we focus on the two most prominent polynomial-time tractable classes for SAT:
- Horn
- 2CNF (Krom)

Horn formulas

- Each clause contains at most 1 positive literal
- Example: $\mathrm{C}_{1}=(\neg z \vee \neg y), \mathrm{C}_{2}=(u \vee \neg v \vee \neg y)$,
$\mathrm{C}_{3}=(\neg u \vee z \vee \neg y), \mathrm{C}_{4}=(b), \mathrm{C}_{5}=(v \vee \neg b)$,
- Solving:

1. Unit propagation

- Unit clauses force a certain assignment \longrightarrow apply it

Horn formulas

- Each clause contains at most 1 positive literal
- Example: $\mathrm{C}_{1}=(\neg z \vee \neg y), \mathrm{C}_{2}=(u \vee \neg v \vee \neg y)$,
$\mathrm{C}_{3}=(\neg u \vee z \vee \neg y), \mathrm{C}_{4}=(1), \mathrm{C}_{5}=(v \vee \neg 1)$,
- Solving:

1. Unit propagation

- Unit clauses force a certain assignment \longrightarrow apply it

Horn formulas

- Each clause contains at most 1 positive literal
- Example: $\mathrm{C}_{1}=(\neg z \vee \neg y), \mathrm{C}_{2}=(u \vee \neg v \vee \neg y)$,
$\mathrm{C}_{3}=(\neg u \vee z \vee \neg y), \mathrm{C}_{4}=(1), \mathrm{C}_{5}=(v)$,
- Solving:

1. Unit propagation

- Unit clauses force a certain assignment \longrightarrow apply it

Horn formulas

- Each clause contains at most 1 positive literal
- Example: $\mathrm{C}_{1}=(\neg z \vee \neg y), \mathrm{C}_{2}=(u \vee \neg 1 \vee \neg y)$,
$\mathrm{C}_{3}=(\neg u \vee z \vee \neg y), \mathrm{C}_{4}=(1), \mathrm{C}_{5}=(1)$,
- Solving:

1. Unit propagation

- Unit clauses force a certain assignment \longrightarrow apply it

Horn formulas

- Each clause contains at most 1 positive literal
- Example: $\mathrm{C}_{1}=(\neg z \vee \neg y), \mathrm{C}_{2}=(u \vee \neg y)$,
$\mathrm{C}_{3}=(\neg u \vee z \vee \neg y), \mathrm{C}_{4}=(1), \mathrm{C}_{5}=(1)$,
- Solving:

1. Unit propagation

- Unit clauses force a certain assignment \longrightarrow apply it

Horn formulas

- Each clause contains at most 1 positive literal
- Example: $\mathrm{C}_{1}=(\neg z \vee \neg y), \mathrm{C}_{2}=(u \vee \neg y)$,
$\mathrm{C}_{3}=(\neg u \vee z \vee \neg y), \mathrm{C}_{4}=(1), \mathrm{C}_{5}=(1)$,
- Solving:

1. Unit propagation

- Unit clauses force a certain assignment \longrightarrow apply it
- Afterwards, no unit clauses are left

2. Assign all remaining variables to 0

Horn formulas

- Each clause contains at most 1 positive literal
- Example: $\mathrm{C}_{1}=(\neg 0 \vee \neg 0), \mathrm{C}_{2}=(0 \vee \neg 0)$,
$\mathrm{C}_{3}=(\neg 0 \vee 0 \vee \neg 0), \mathrm{C}_{4}=(1), \mathrm{C}_{5}=(1)$,
- Solving:

1. Unit propagation

- Unit clauses force a certain assignment \longrightarrow apply it
- Afterwards, no unit clauses are left

2. Assign all remaining variables to 0

2CNF formulas

- Each clause contains at most 2 literals
- Example: $(\neg z \vee x) \wedge(y \vee a) \wedge(\neg z \vee \neg y) \wedge$ $(z \vee y) \wedge(y \vee \neg a) \wedge(\neg z \vee \neg x)$
- For solving, we'll need the implication graph
- 2 vertices per variable (positive / negative)
- Edges represent implications arising from clauses

Implication Graph

$$
\begin{gathered}
(\neg z \vee x) \wedge(y \vee a) \wedge(\neg z \vee \neg y) \wedge(z \vee y) \\
\wedge(y \vee \neg a) \wedge(\neg z \vee \neg x)
\end{gathered}
$$

Implication Graph

$$
\begin{gathered}
(\neg z \vee x) \wedge(y \vee a) \wedge(\neg z \vee \neg y) \wedge(z \vee y) \\
\wedge(y \vee \neg a) \wedge(\neg z \vee \neg x)
\end{gathered}
$$

Implication Graph

$$
\begin{gathered}
(\neg z \vee x) \wedge(y \vee a) \wedge(\neg z \vee \neg y) \wedge(z \vee y) \\
\wedge(y \vee \neg a) \wedge(\neg z \vee \neg x)
\end{gathered}
$$

Implication Graph

$$
\begin{gathered}
(\neg z \vee x) \wedge(y \vee a) \wedge(\neg z \vee \neg y) \wedge(z \vee y) \\
\wedge(y \vee \neg a) \wedge(\neg z \vee \neg x)
\end{gathered}
$$

Implication Graph

$$
\begin{gathered}
(\neg z \vee x) \wedge(y \vee a) \wedge(\neg z \vee \neg y) \wedge(z \vee y) \\
\wedge(y \vee \neg a) \wedge(\neg z \vee \neg x)
\end{gathered}
$$

Solving 2CNF Formulas

- Example: $(\neg z \vee x) \wedge(y \vee a) \wedge(\neg Z \vee \neg y) \wedge$ $(z \vee y) \wedge(y \vee \neg a) \wedge(\neg z \vee \neg x)$
- Algorithm:

1. Construct implication graph

Solving 2CNF Formulas

- Example: $(\neg z \vee x) \wedge(y \vee a) \wedge(\neg Z \vee \neg y) \wedge$ $(z \vee y) \wedge(y \vee \neg a) \wedge(\neg z \vee \neg x)$
- Algorithm:

1. Construct implication graph
2. Find strongly connected components (SCCs)

Solving 2CNF Formulas

- Example: $(\neg z \vee x) \wedge(y \vee a) \wedge(\neg z \vee \neg y) \wedge$ $(z \vee y) \wedge(y \vee \neg a) \wedge(\neg z \vee \neg x)$
- Algorithm:

1. Construct implication graph
2. Find strongly connected components (SCCs)

- If any SCC contains both literals for a variable, reject

Solving 2CNF Formulas

- Example: $(\neg z \vee x) \wedge(y \vee a) \wedge(\neg z \vee \neg y) \wedge$ $(z \vee y) \wedge(y \vee \neg a) \wedge(\neg z \vee \neg x)$
- Algorithm:

1. Construct implication graph
2. Find strongly connected components (SCCs)

- If any SCC contains both literals for a variable, reject

3. Start assigning literals to 1 from SCCs which are sinks

Solving 2CNF Formulas

- Example: $(1 \vee x) \wedge(1 \vee a) \wedge(1 \vee 0) \wedge(0 \vee 1) \wedge$ $(1 \vee \neg a) \wedge(1 \vee \neg x)$
- Algorithm:

1. Construct implication graph
2. Find strongly connected components (SCCs)

- If any SCC contains both literals for a variable, reject

3. Start assigning literals to 1 from SCCs which are sinks

- Continue until all clauses satisfied

Recap

SAT is polynomial-time tractable on 2CNF and Horn formulas.

- Result not covered by treewidth
- Can easily construct an incidence graph that is a grid
- More general polynomial-time tractable classes exist
- q-Horn, Renamable Horn, Hidden Extended Horn...
- But what does this have to do with PC and backdoors?
- Backdoors allow us to measure distance to triviality
- Triviality here means one of our tractable classes for SAT

Backdoor Motivation

- Consider the following formula F :

$$
\begin{aligned}
& (\neg z \vee x \vee y) \wedge(x \vee \neg a) \wedge(\neg z \vee \neg x \vee \neg y) \\
\wedge & (z \vee y \vee a) \wedge(\neg y \vee \neg a \vee x) \wedge(a \vee \neg x \vee y)
\end{aligned}
$$

- Claim: F is almost a 2CNF formula
- Just need to branch on assigning a single variable (y)
$-\mathrm{y} \rightarrow 0$:
$(\neg z \vee x) \wedge(x \vee \neg a) \wedge(1) \wedge(z \vee a) \wedge(1) \wedge(a \vee \neg x)$
$-\mathrm{y} \rightarrow 1$:
$(1) \wedge(x \vee \neg a) \wedge(\neg z \vee \neg x) \wedge(1) \wedge(\neg a \vee x) \wedge(1)$

Strong Backdoors

- A set \mathbf{X} of variables is a strong backdoor to a tractable class \mathbf{C} if each assignment of \mathbf{X} results in a formula in C
- Parameter: size of a smallest strong backdoor to C
- General approach for fixed-parameter SAT solving:

1. Find a size-k strong backdoor to a selected tractable class C (or identify that it doesn't exist)
2. Use the strong backdoor to solve the instance

- $\mathrm{Q}:$ Why strong?

Weak Backdoors

- A set \mathbf{X} of variables is a weak backdoor to a tractable class \mathbf{C} if there exists an assignment of \mathbf{X} which results in a satisfiable formula in \mathbf{C}

Can be arbitrarily smaller than a strong backdoor

- Example: backdoors to 2CNF, many large clauses that can all be satisfied by setting a single variable to 0
Doesn't exist for NO-instances

Detection usually W[2]-hard

In this talk we focus mostly on strong backdoors

Using Strong Backdoors

SAT can be solved in time $\boldsymbol{O}^{*}\left(2^{k}\right)$ if a strong backdoor of size k to a tractable class C is provided on the input

- Simple branching over at most 2^{k} many assignments

Main difficulty: finding a strong backdoor to \mathbf{C}

- Algorithms and techniques depend on \mathbf{C}
- XP algorithm is trivial (assuming \mathbf{C} is polynomial-time recognizable)

Backdoor Detection

- For Horn and 2CNF, we show equivalence to the simpler notion of variable deletion

X is a strong backdoor for Horn/2CNF iff deleting all occurrences of X results in a Horn/2CNF formula.

- Sometimes called a deletion backdoor
- For many classes, these are larger than strong backdoors

Example: $(\neg z \vee x \vee y) \wedge(x \vee \neg a) \wedge(\neg z \vee \neg x \vee \neg y)$

$$
\wedge(z \vee y \vee a) \wedge(\neg y \vee \neg a \vee x) \wedge(a \vee \neg x \vee y)
$$

Backdoor Detection

- For Horn and 2CNF, we show equivalence to the simpler notion of variable deletion

X is a strong backdoor for Horn/2CNF iff deleting all occurrences of X results in a Horn/2CNF formula.

- Sometimes called a deletion backdoor
- For many classes, these are larger than strong backdoors

Example: $(\neg z \vee x \vee y) \wedge(x \vee \neg a) \wedge(\neg z \vee \neg x \vee \neg y)$

$$
\wedge(z \vee y \vee a) \wedge(\neg y \vee \neg a \vee x) \wedge(a \vee \neg x \vee y)
$$

- Let's try deleting x

Backdoor Detection

- For Horn and 2CNF, we show equivalence to the simpler notion of variable deletion

X is a strong backdoor for Horn/2CNF iff deleting all occurrences of X results in a Horn/2CNF formula.

- Sometimes called a deletion backdoor
- For many classes, these are larger than strong backdoors

Example: $(\neg z \vee y) \wedge(x \vee \neg a) \wedge(\neg z \vee \neg x \vee \neg y)$

$$
\wedge(z \vee y \vee a) \wedge(\neg y \vee \neg a \vee x) \wedge(a \vee \neg x \vee y)
$$

- Let's try deleting x

Backdoor Detection

- For Horn and 2CNF, we show equivalence to the simpler notion of variable deletion

X is a strong backdoor for Horn/2CNF iff deleting all occurrences of X results in a Horn/2CNF formula.

- Sometimes called a deletion backdoor
- For many classes, these are larger than strong backdoors

Example: $(\neg z \vee y) \wedge(\neg a) \wedge(\neg z \vee \neg x \vee \neg y)$

$$
\wedge(z \vee y \vee a) \wedge(\neg y \vee \neg a \vee x) \wedge(a \vee \neg x \vee y)
$$

- Let's try deleting x

Backdoor Detection

- For Horn and 2CNF, we show equivalence to the simpler notion of variable deletion

X is a strong backdoor for Horn/2CNF iff deleting all occurrences of X results in a Horn/2CNF formula.

- Sometimes called a deletion backdoor
- For many classes, these are larger than strong backdoors

Example: $(\neg z \vee y) \wedge(\neg a) \wedge(\neg z \vee \neg y)$

$$
\wedge(z \vee y \vee a) \wedge(\neg y \vee \neg a \vee x) \wedge(a \vee \neg x \vee y)
$$

- Let's try deleting x

Backdoor Detection

- For Horn and 2CNF, we show equivalence to the simpler notion of variable deletion

X is a strong backdoor for Horn/2CNF iff deleting all occurrences of X results in a Horn/2CNF formula.

- Sometimes called a deletion backdoor
- For many classes, these are larger than strong backdoors

Example: $(\neg z \vee y) \wedge(\neg a) \wedge(\neg z \vee \neg y)$

$$
\wedge(z \vee y \vee a) \wedge(\neg y \vee \neg a) \wedge(a \vee \neg x \vee y)
$$

- Let's try deleting x

Backdoor Detection

- For Horn and 2CNF, we show equivalence to the simpler notion of variable deletion

X is a strong backdoor for Horn/2CNF iff deleting all occurrences of X results in a Horn/2CNF formula.

- Sometimes called a deletion backdoor
- For many classes, these are larger than strong backdoors

Example: $(\neg z \vee y) \wedge(\neg a) \wedge(\neg z \vee \neg y)$

$$
\wedge(z \vee y \vee a) \wedge(\neg y \vee \neg a) \wedge(a \vee y)
$$

- Let's try deleting x

Deletion $=$ Strong Backdoors

X is a strong backdoor for Horn/2CNF iff deleting all occurrences of X results in a Horn/2CNF formula.

- \mathbf{X} is strong: For each clause d, there is an assignment to X which doesn't satisfy d, hence d-X must be Horn/2CNF
- \mathbf{X} is a deletion set: For each clause d, we know that $d-\mathbf{X}$ is Horn/2CNF. Each assignment to \mathbf{X} will either delete d or result in d - \mathbf{X} for this clause.

Backdoor Detection: Horn

- We reduce the deletion problem to Vertex Cover Example: $(\neg z \vee x \vee y) \wedge(x \vee \neg a) \wedge(\neg z \vee \neg x \vee \neg y)$

$$
\wedge(z \vee y \vee a) \wedge(\neg y \vee \neg a \vee x) \wedge(a \vee \neg x \vee y)
$$

- Construct a graph G as follows:
- Variables are vertices...
(2)
(×) (ㄴ)
(a)

Backdoor Detection: Horn

- We reduce the deletion problem to Vertex Cover Example: $(\neg z \vee x \vee y) \wedge(x \vee \neg a) \wedge(\neg z \vee \neg x \vee \neg y)$

$$
\wedge(z \vee y \vee a) \wedge(\neg y \vee \neg a \vee x) \wedge(a \vee \neg x \vee y)
$$

- Construct a graph G as follows:
- Variables are vertices...
- Add edge if both variables occur positively in some clause

Vertex cover in G

Deletion backdoor to Horn

Backdoor Detection: 2CNF

- We reduce the deletion problem to 3-Hitting Set
- Note: could also use bounded search trees

Example: $(\neg a \vee e \vee c) \wedge(d \vee e) \wedge(\neg b \vee \neg c \vee \neg d)$

$$
\wedge(d \vee c \vee \neg a \vee b) \wedge(b \vee \neg e \vee a)
$$

- Construct a 3-Hitting Set instance \mathbf{H} as follows:
- Ground set is the set of variables
- Target sets are all triples which occur together in a clause
- For our example: \{ace\}, \{abc\}, \{abd\}, \{acd\}, \{bcd\}, \{abe\}

Hitting Set
Deletion backdoor to Horn

Strong Backdoors: Summary

SAT can be solved in time $\mathbf{O}^{*}\left(2^{\mathrm{k}}\right)$ parameterized by the size of a strong backdoor to Horn.

- Runtime: $\mathrm{O}^{*}\left(1.3^{k}\right)$ for finding and then $\mathrm{O}^{*}\left(2^{k}\right)$ for using
- Uses Vertex Cover algorithm of Chen, Kanj and Xia [2010]

SAT can be solved in time $0^{*}\left(2.27^{\mathrm{k}}\right)$ parameterized by the size of a strong backdoor to 2CNF.

- Runtime: $\mathrm{O}^{*}\left(2.27^{\mathrm{k}}\right)$ for finding and then $\mathrm{O}^{*}\left(2^{\mathrm{k}}\right)$ for using
- Uses 3-Hitting Set algorithm of Niedermeier, Rossmanith [2003]

Intermezzo: Weak BD Detection

- Why is weak backdoor detection harder?
- Recall:

A set \mathbf{X} of variables is a weak backdoor to a tractable class \mathbf{C} if there exists an assignment of \mathbf{X} which results in a satisfiable formula in \mathbf{C}

Intermezzo: Weak BD Detection

- Why is weak backdoor detection harder?
- Intuition: weak backdoors can "kill" large obstructions with a single variable

- Can't reliably find small obstructions to branch on
- Example: Weak BD detection to Horn is W[2]-hard
- Proof: Reduction from Hitting Set

The Reduction

- Starting point: Hitting Set instance S, parameter \mathbf{k}

$\mathrm{k}=2$
- Elements -> main variables
- For each set (R,S,T), we create $k+1$ clauses such that:
- they are not Horn
- they can be satisfied by any element (variable) in the set
- they contain auxiliary variables which shouldn't be in a BD

The Reduction

- Starting point: Hitting Set instance S, parameter \mathbf{k}

$\mathrm{k}=2$
- Clauses:

$$
\begin{aligned}
& \left(r_{1} \vee a \vee b \vee c\right) \wedge\left(r_{2} \vee a \vee b \vee c\right) \wedge\left(r_{3} \vee a \vee b \vee c\right) \\
& \wedge\left(s_{1} \vee b \vee d \vee e\right) \wedge\left(s_{2} \vee b \vee d \vee e\right) \wedge\left(s_{3} \vee b \vee d \vee e\right) \\
& \wedge\left(t_{1} \vee c \vee e \vee f\right) \wedge\left(t_{2} \vee c \vee e \vee f\right) \wedge\left(t_{3} \vee c \vee e \vee f\right)
\end{aligned}
$$

- Taking any variables other than a, b, c, d, e, f is suboptimal

The Reduction

- Starting point: Hitting Set instance S, parameter \mathbf{k}

Consider a
 $\mathbf{k}=2 \quad$ Hitting Set

solution

- Clauses:

$$
\begin{aligned}
& \left(r_{1} \vee a \vee b \vee c\right) \wedge\left(r_{2} \vee a \vee b \vee c\right) \wedge\left(r_{3} \vee a \vee b \vee c\right) \\
& \wedge\left(s_{1} \vee b \vee d \vee e\right) \wedge\left(s_{2} \vee b \vee d \vee e\right) \wedge\left(s_{3} \vee b \vee d \vee e\right) \\
& \wedge\left(t_{1} \vee c \vee e \vee f\right) \wedge\left(t_{2} \vee c \vee e \vee f\right) \wedge\left(t_{3} \vee c \vee e \vee f\right)
\end{aligned}
$$

The Reduction

- Starting point: Hitting Set instance S, parameter \mathbf{k}

Consider a
 $\mathbf{k}=\mathbf{2} \quad$ Hitting Set

solution

- Clauses:

$$
\begin{aligned}
& \left(r_{1} \vee a \vee b \vee c\right) \wedge\left(r_{2} \vee a \vee b \vee c\right) \wedge\left(r_{3} \vee a \vee b \vee c\right) \\
& \wedge\left(s_{1} \vee b \vee d \vee e\right) \wedge\left(s_{2} \vee b \vee d \vee e\right) \wedge\left(s_{3} \vee b \vee d \vee e\right) \\
& \wedge\left(t_{1} \vee c \vee e \vee f\right) \wedge\left(t_{2} \vee c \vee e \vee f\right) \wedge\left(t_{3} \vee c \vee e \vee f\right)
\end{aligned}
$$

The Reduction

- Starting point: Hitting Set instance S, parameter \mathbf{k}

Consider a
 $\mathbf{k}=2 \quad$ Hitting Set

solution

- Clauses:
$\left(r_{1} \vee a \vee b \vee 1\right) \wedge\left(r_{2} \vee a \vee b \vee 1\right) \wedge\left(r_{3} \vee a \vee b \vee 1\right)$
$\wedge\left(s_{1} \vee b \vee 1 \vee e\right) \wedge\left(s_{2} \vee b \vee 1 \vee e\right) \wedge\left(s_{3} \vee b \vee 1 \vee e\right)$
$\wedge\left(t_{1} \vee 1 \vee e \vee f\right) \wedge\left(t_{2} \vee 1 \vee e \vee f\right) \wedge\left(t_{3} \vee 1 \vee e \vee f\right)$
- We obtain a weak backdoor of size at most \mathbf{k}

The Reduction

- Starting point: Hitting Set instance S, parameter \mathbf{k}

Consider a

$\mathbf{k}=2 \quad$ Weak Backdoor X of size $\leq k$

- Clauses:

$$
\begin{aligned}
& \left(r_{1} \vee a \vee b \vee c\right) \wedge\left(r_{2} \vee a \vee b \vee c\right) \wedge\left(r_{3} \vee a \vee b \vee c\right) \\
& \wedge\left(s_{1} \vee b \vee d \vee e\right) \wedge\left(s_{2} \vee b \vee d \vee e\right) \wedge\left(s_{3} \vee b \vee d \vee e\right) \\
& \wedge\left(t_{1} \vee c \vee e \vee f\right) \wedge\left(t_{2} \vee c \vee e \vee f\right) \wedge\left(t_{3} \vee c \vee e \vee f\right)
\end{aligned}
$$

The Reduction

- Starting point: Hitting Set instance S, parameter \mathbf{k}

Consider a

$\mathbf{k}=2 \quad$ Weak Backdoor X of size $\leq k$

- Clauses:

$$
\left(r_{1} \vee a \vee b \vee c\right) \wedge\left(r_{2} \vee a \vee b \vee c\right) \wedge\left(r_{3} \vee a \vee b \vee c\right)
$$

$\wedge\left(s_{1} \vee b \vee d \vee e\right) \wedge\left(s_{2} \vee b \vee d \vee e\right) \wedge\left(s_{3} \vee b \vee d \vee e\right)$
$\wedge\left(t_{1} \vee c \vee e \vee f\right) \wedge\left(t_{2} \vee c \vee e \vee f\right) \wedge\left(t_{3} \vee c \vee e \vee f\right)$

- Can assume \mathbf{X} disjoint from red variables
- \mathbf{X} must intersect each of (R,S,T)
X is a Hitting Set

Better Backdoors

- Consider the following example:

$$
\begin{aligned}
& \mathbf{F}=(\neg a \vee b \vee c) \wedge(\neg a \vee b \vee d) \wedge(\neg a \vee c \vee e) \\
& \wedge(\neg a \vee d \vee e) \wedge(a \vee \neg b \vee c \vee \neg d \vee \neg e) \\
& \wedge(a \vee b \vee \neg c \vee \neg e) \wedge(a \vee \neg b \vee \neg c \vee \neg d \vee e) \\
& \wedge(a \vee \neg b \vee \neg c \vee d)
\end{aligned}
$$

- F has no small strong backdoor to Horn or 2CNF
- But what happens if we try assigning a?

Better Backdoors

$$
a=1
$$

$$
\mathbf{F}=(b \vee c) \wedge(b \vee d) \wedge(c \vee e) \wedge(d \vee e)
$$

$$
a=0
$$

$$
\begin{aligned}
\mathrm{F}= & (\neg b \vee c \vee \neg d \vee \neg e) \wedge(b \vee \neg c \vee \neg e) \wedge \\
& (\neg b \vee \neg c \vee \neg d \vee e) \wedge(\neg b \vee \neg c \vee d)
\end{aligned}
$$

Better Backdoors

$$
\begin{aligned}
& \mathrm{a}=1 \\
& \mathrm{~F}=(b \vee c) \wedge(b \vee d) \wedge(c \vee e) \wedge(d \vee e) \\
& \mathrm{F}=(\neg b \vee c \vee \neg d \vee \neg e) \wedge(b \vee \neg c \vee \neg e) \wedge \\
& (\neg b \vee \neg c \vee \neg d \vee e) \wedge(\neg b \vee \neg c \vee d)
\end{aligned}
$$

Heterogeneous Backdoors

- A set X of variables is a heterogeneous backdoor to tractable classes $\left\{\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots\right\}$ if each assignment of \mathbf{X} results in a formula in some $\mathbf{C}_{\mathbf{i}}$
- Gaspers, Misra, Ordyniak, Szeider, Zivny (2014)
- As easy to use as standard strong backdoors
- What about detection (finding)?

Finding Heterogeneous Backdoors

- Let's set C = \{2CNF,Horn $\}$
- This means we'll be searching for a set of variables X such that each assignment to X results in a 2CNF or Horn formula
- Main idea: Find an obstruction and branch on how to fix it

Obstructions for \{2CNF,Horn\}

- Case 1: clause that is neither 2CNF nor Horn
- Example: $(z \vee y \vee a \vee \neg b)$
- Must contain at least 2 positive literals and have size at least 3
- Obstruction: an arbitrary set of 3 variables occurring in the clause, 2 of which occur positively

Obstructions for \{2CNF,Horn\}

- Case 1: clause that is neither 2CNF nor Horn
- Example: $(z \vee y \vee a \vee \neg b)$
- Must contain at least 2 positive literals and have size at least 3
- Obstruction: an arbitrary set of 3 variables occurring in the clause, 2 of which occur positively (here: y, a, b)
- Branching factor: 3

Obstructions for \{2CNF,Horn\}

- Case 2: the formula is neither "fully" Horn nor 2CNF
- Choose 1 clause that's only Horn and one that's only 2CNF
- Example: $\mathrm{C}_{1}=(z \vee \neg y \vee \neg a \vee \neg b), \mathrm{C}_{2}=(y \vee x)$
- X must either transform C_{1} to 2 CNF or C_{2} to Horn
- C_{2} contains at most 2 literals
- C_{1} can be large, but any 3 literals form an obstruction to 2CNF
- Branching factor: at most 5
- here: $\mathrm{z}, \mathrm{y}, \mathrm{a}, \mathrm{x}$

Obstructions for \{2CNF,Horn\}

- Case 3: the formula is either "fully" Horn or 2CNF
- Means this branch is ok
- Runtime bound:

$$
\begin{aligned}
& 5 \cdot\left(2^{1} n+5 \cdot\left(2^{2} n+5 \cdot\left(2^{3} n+\cdots\right)\right)\right)= \\
& 5^{\mathrm{O}(\mathrm{k})} n=2^{\mathrm{o}(\mathrm{k})} n
\end{aligned}
$$

Complexity map for other islands of tractability is known (FPT / W-hard).

Constraint Satisfaction (CSP)

- Introduced by Montanari in 1974
- Focus of intensive research (AI, TCS, Combinatorics, Algebra...)
- Dedicated conference

Problem Definition

- Instance: I=(V,D,C) where
- \mathbf{V} is a set of variables
- D is a set of values (the domain)
- C is a set of constraints
- Each constraint consists of a scope \mathbf{S} and relation \mathbf{R}
- \mathbf{S} is a tuple of variables (that the constraint applies to)
- \mathbf{R} encodes admissible values of \boldsymbol{S}

Constraint encoding XOR(x,y)

x	y
0	1
1	0

Problem Definition

- An assignment is a mapping $\mathbf{f}: \mathbf{V} \rightarrow \mathbf{D}$
- An assignment satisfies a CSP instance if for each constraint ($\mathbf{S}=\left(\mathbf{x}_{1}, \ldots \mathrm{X}_{\mathrm{r}}\right), \mathbf{R}$) we have $\left(\mathbf{f}\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{r}\right)\right) \in \mathbf{R}$.
- A CSP instance is satisfiable if it has at least one satisfying assignment
- The CSP problem asks whether the input instance is satisfiable
- CSP directly generalizes many known NP-complete problems

Example: 3-Coloring

$$
\begin{aligned}
& V=\{a, b, c, d\} \\
& D=\{\text { red,blue, green }\} \\
& C=\left\{\mathbf{c}_{\mathrm{ab}}, \mathbf{c}_{\mathrm{ac}}, \mathbf{c}_{\mathrm{b}}, \mathbf{c}_{\mathrm{bd}}, \mathbf{c}_{\mathrm{cd}}\right\}
\end{aligned}
$$

Each \mathbf{c}_{xy} contains the relation
Is it possible to color $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ by red, blue, green so that neighbors always get different colors?

\mathbf{x}	\mathbf{y}
red	blue
blue	red
blue	green
green	blue
red	green
green	red

CSP vs SAT

SAT

- Each clause prevents 1 assignment

$$
\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4} \vee x_{5} \vee x_{6}\right)
$$

- Each tuple in a constraint enables 1 assignment

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
0	0	0	0	0	0
1	1	1	1	1	1

Solving CSP

- Can define graph representations similarly as for SAT
- Primal graphs, dual graphs, incidence graphs...
- Can also define backdoors (to some tractable classes)

But do these actually help us solve CSP?

- Two cases: bounded vs. unbounded domain
- Constant-size vs. part of input

Unbounded Domain

- Can encode Multicolored Clique using \mathbf{k} variables
- One variable for each color
- Constraints encode edges

Domain:
$\{1,2,3\}$
Variables:
g, b

g	b
1	1
2	2
3	1
3	3

Unbounded Domain

- Can encode Multicolored Clique using \mathbf{k} variables
- One variable for each color
- Constraints encode edges between colors (at most \mathbf{k}^{2})

W[1]-hard parameterized by treewidth

- Holds for primal, dual, incidence graph representations
- XP algorithm known

W[1]-hard parameterized by backdoors

- Holds regardless of selected island of tractability
- Brute-force XP algorithm

Bounded Domain

- Can encode MCC using $\mathbf{k}^{\mathbf{2}}$ constraints
- One binary variable for each vertex
- Constraints ensure only one activated for each color
- Constraints ensure we get a clique

Domain: $\{0,1\}$
Variables: $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}$

\mathbf{v}_{1}	\mathbf{v}_{2}	\mathbf{v}_{3}	s_{1}	s_{2}	s_{3}
1	0	0	1	0	0
0	1	0	0	1	0
0	0	1	1	0	0
0	0	1	0	0	1

Bounded Domain

- Can encode MCC using $\mathbf{k}^{\mathbf{2}+\mathbf{k}}$ constraints
- One binary variable for each vertex
- Constraints ensure only one activated for each color
- Constraints ensure we get a clique

W[1]-hard par. by incidence and dual treewidth

- FPT par. by primal treewidth (standard dyn. programming)

Bounded Domain

- If we are given a (strong) backdoor to any island \mathbf{C} :
- FPT algorithm - runtime: $|D|^{k} \cdot n^{O(1)}$
- Holds for each island of tractability C
- But what are the islands of tractability for CSP?
- Main direction: definition via languages
- Language = set of relations that can be used in constraints
- Example: Boolean language 「:

0	1	0	1
1	0	1	0
1	1	0	0

- CSP[「] is precisely 2CNF.

Schaefer＇s Theorem

For every finite Boolean language 「：either 「 satisfies one of Schaefer＇s

 polymorphisms and CSP［Г］is in \mathbf{P} ，or CSP［Г］is NP－complete．－Polymorphism：a procedure for constructing a new tuple from a fixed number of tuples in a relation
－New tuple is built＂column－by－column＂by the same rule
－「 satisfies a polymorphism δ iff Γ is closed under δ
－Example：Majority polymorphism
－Take 3 tuples，rule for new columns：take what occurs most frequently in that column

0	0	1
1	1	1
1	0	0

Schaefer＇s Theorem：Exercise

For every finite Boolean language 「：either 「 satisfies one of Schaefer＇s

 polymorphisms and CSP［Г］is in \mathbf{P} ，or CSP［Г］is NP－complete．－Schaefer＇s Theorem implies tractability of 2CNF
－Recall the ternary Majority polymorphism
－Each 2CNF formula is equivalent to an instance of CSP［「］

0	0
1	1
1	0

0	0
1	1
0	1

0	1
1	0
1	1

0	1
1	0
0	0

－Each of the above relations is closed under Majority Γ satisfies Majority and CSP［Г］is in \mathbf{P}

Schaefer's Theorem: Islands

For every finite Boolean language Γ : either Γ satisfies one of Schaefer's polymorphisms and CSP[Г] is in \mathbf{P}, or CSP[Г] is NP-complete.

- Schaefer's Theorem leads to 6 islands of tractability

1. 0 -valid
2. 1-valid
3. Horn
4. Anti-Horn
5. Affine
6. Bijunctive (2CNF)

Beyond Schaefer

- Feder-Vardi Conjecture: extension of Schaefer's Theorem to all finite languages
- Remark: finite language \square bounded domain and arity

For every finite language Γ : either CSP[「] is in \mathbf{P} or NP-complete.

- Recently settled (Bulatov; Zhuk 2017)
- Bulatov's Conservative Dichotomy:

For every finite conservative language Γ : either Γ satisfies certain polymorphisms and CSP[Г] is in \mathbf{P}, or CSP[[] is NP-complete.

- Conservative = includes all unary relations
= allows domain restrictions 2

Languages and Backdoors

For every finite language Γ, strong backdoor detection to CSP[[] is FPT parameterized by backdoor size.

- Recall: variable set \mathbf{X} is a strong backdoor if each assignment of X results in an instance of CSP[「]
- Observation: assume Γ has maximum arity of c and we're searching for a backdoor of size k in instance I

\mathbf{v}_{1}	\mathbf{v}_{2}	\mathbf{v}_{3}	\mathbf{v}_{4}	\mathbf{v}_{5}	\mathbf{v}_{6}
1	0	0	1	0	2
0	1	0	0	2	0
2	0	2	0	0	1
0	2	1	0	0	1

Constraint of arity $>\mathrm{k}+\mathrm{c}$

Languages and Backdoors

For every finite language Γ, strong backdoor detection

 to CSP[「] is FPT parameterized by backdoor size.- Recall: variable set \mathbf{X} is a strong backdoor if each assignment of X results in an instance of CSP[「]
- Observation: assume Γ has maximum arity of c and we're searching for a backdoor of size k in instance I

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	$\begin{aligned} & v_{4}=0 \\ & v_{5}=0 \\ & v_{6}=0 \end{aligned}$
1	0	0	1	0	2	
0	1	0	0	2	0	
2	0	2	0	0	1	
0	2	1	0	0	1	$k=3, c=2$

Constraint of arity $>\mathrm{k}+\mathrm{c}$

Languages and Backdoors

For every finite language Γ, strong backdoor detection to CSP[「] is FPT parameterized by backdoor size.

- Recall: variable set \mathbf{X} is a strong backdoor if each assignment of X results in an instance of CSP[「]
- Observation: assume Γ has maximum arity of c and we're searching for a backdoor of size k in instance I

Languages and Backdoors

For every finite language Γ, strong backdoor detection to CSP[「] is FPT parameterized by backdoor size.

- Recall: variable set \mathbf{X} is a strong backdoor if each assignment of X results in an instance of CSP[「]
- Observation: assume Γ has maximum arity of c and we're searching for a backdoor of size k in instance I

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	$\begin{aligned} & v_{4}=0 \\ & v_{5}=0 \\ & v_{6}=1 \end{aligned}$
1	0	0	1	0	2	
0	1	0	0	2	0	
2	0	2	0	0	1	
0	2	1	0	0	1	$k=3, c=2$

Languages and Backdoors

For every finite language Γ, strong backdoor detection to CSP[「] is FPT parameterized by backdoor size.

- Recall: variable set \mathbf{X} is a strong backdoor if each assignment of X results in an instance of CSP[「]
- Observation: assume Γ has maximum arity of c and we're searching for a backdoor of size k in instance I

v_{1}	v_{2}	v_{3}	$v_{4}=0$ $v_{5}=0$ $v_{6}=1$ 2$\| 0$
0	2	2	

Languages and Backdoors

For every finite language Γ ，strong backdoor detection to CSP［「］is FPT parameterized by backdoor size．

－Recall：variable set \mathbf{X} is a strong backdoor if each assignment of X results in an instance of CSP［「］
－Observation：assume Γ has maximum arity of c and we＇re searching for a backdoor of size k in instance I

\mathbf{v}_{1}	\mathbf{v}_{2}	\mathbf{v}_{3}	\mathbf{v}_{4}	\mathbf{v}_{5}	\mathbf{v}_{6}
1	0	0	1	0	2
0	1	0	0	2	0
2	0	2	0	0	1
0	2	1	0	0	1

Arity too big；
no backdoor of size k
to CSP［「］can exist

$$
k=3, c=2
$$

Languages and Backdoors

For every finite language Γ, strong backdoor detection to CSP[「] is FPT parameterized by backdoor size.

1. Check that each constraint has arity at most $\mathrm{c}+\mathrm{k}$

- $\mathrm{k}=$ backdoor size, $\mathrm{c}=$ maximum arity in Γ

2. Proceed similarly as for Heterogeneous Backdoors for SAT

- Start with $\mathbf{X}=\emptyset$
- Try all assignments of \mathbf{X}, if we're always in $\operatorname{CSP}[\Gamma]$ then
- If not, then branch over which of the at most $\mathrm{k}+\mathrm{c}$ variables from a bad constraint goes to \mathbf{X}
- Restart
- Total runtime: $k^{0(k)} \cdot n^{O(1)}$
- Once we have such a backdoor, solving CSP is easily FPT.

Advanced Backdoors

- Backdoors can do much more...
- Example (Boolean CSP):

Advanced Backdoors

- Backdoors can do much more...
- Example (Boolean CSP):

Advanced Backdoors

- Backdoors can do much more...
- Example (Boolean CSP):

Advanced Backdoors

- Backdoors can do much more...
- Example (Boolean CSP):

Bijunctive

Advanced Backdoors

- Backdoors can do much more...
- Example (Boolean CSP):

Bijunctive

- Each connected component could belong to a different island

If we had such a backdoor, we could solve CSP in FPT time

Advanced Backdoors

- Backdoors can do much more...
- Example (Boolean CSP):

- Each connected component could belong to a different island

If we had such a backdoor, we could solve CSP in FPT time

Advanced Backdoors

- Backdoors can do much more...
- Example (Boolean CSP):

- Each connected component could belong to a different island

If we had such a backdoor, we could solve CSP in FPT time

Advanced Backdoors

- Backdoors can do much more...
- Example (Boolean CSP):

Affine

Horn
Horn

- Each connected component could belong to a different island

If we had such a backdoor, we could solve CSP in FPT time

Advanced Backdoors

- Backdoors can do much more...
- Example (Boolean CSP):

Affine

Horn
Horn

- Each connected component could belong to a different island
- Islands can change (like with heterogeneous backdoors) If we had such a backdoor, we could solve CSP in FPT time

Formalizing

Definition: The scattered class $\operatorname{CSP}\left(\Gamma_{1}\right) \oplus \operatorname{CSP}\left(\Gamma_{2}\right) \oplus \ldots \oplus \operatorname{CSP}\left(\Gamma_{j}\right)$ contains all instances where each component belongs to at least one of $\operatorname{CSP}\left(\Gamma_{1}\right), \operatorname{CSP}\left(\Gamma_{2}\right), \ldots, \operatorname{CSP}\left(\Gamma_{j}\right)$.

The good: backdoors to scattered classes
are as easy to evaluate as standard backdoors

- try all instantiations

Affine

- for each, we can process every component separately

Formalizing

Definition: The scattered class $\operatorname{CSP}\left(\Gamma_{1}\right) \oplus \operatorname{CSP}\left(\Gamma_{2}\right) \oplus \ldots \oplus \operatorname{CSP}\left(\Gamma_{j}\right)$ contains all instances where each component belongs to at least one of $\operatorname{CSP}\left(\Gamma_{1}\right), \operatorname{CSP}\left(\Gamma_{2}\right), \ldots, \operatorname{CSP}\left(\Gamma_{j}\right)$.

The good: backdoors to scattered classes
are as easy to evaluate as standard backdoors

Formalizing

Definition: The scattered class $\operatorname{CSP}\left(\Gamma_{1}\right) \oplus \operatorname{CSP}\left(\Gamma_{2}\right) \oplus \ldots \oplus \operatorname{CSP}\left(\Gamma_{j}\right)$

 contains all instances where each component belongs to at least one of $\operatorname{CSP}\left(\Gamma_{1}\right), \operatorname{CSP}\left(\Gamma_{2}\right), \ldots, \operatorname{CSP}\left(\Gamma_{j}\right)$.
Bijunctive

The good: backdoors to scattered classes are as easy to evaluate as standard backdoors

Affine

 The bad: backdoors to scattered classes are much more challenging to find than standard backdoors- Previously: each variable is used to kill some "bad constraints"
- Now: variables may also be used to disconnect instance; "bad constraints" no longer defined

Formalizing

Definition: The scattered class $\operatorname{CSP}\left(\Gamma_{1}\right) \oplus \operatorname{CSP}\left(\Gamma_{2}\right) \oplus \ldots \oplus \operatorname{CSP}\left(\Gamma_{j}\right)$ contains all instances where each component belongs to at least one of $\operatorname{CSP}\left(\Gamma_{1}\right), \operatorname{CSP}\left(\Gamma_{2}\right), \ldots, \operatorname{CSP}\left(\Gamma_{j}\right)$.

The good: backdoors to scattered classes are as easy to evaluate as standard backdoors The bad: backdoors to scattered classes are much more challenging to find than standard backdoors

Formalizing

Definition: The scattered class $\operatorname{CSP}\left(\Gamma_{1}\right) \oplus \operatorname{CSP}\left(\Gamma_{2}\right) \oplus \ldots \oplus \operatorname{CSP}\left(\Gamma_{j}\right)$ contains all instances where each component belongs to at least one of $\operatorname{CSP}\left(\Gamma_{1}\right), \operatorname{CSP}\left(\Gamma_{2}\right), \ldots, \operatorname{CSP}\left(\Gamma_{j}\right)$.

The good: backdoors to scattered classes are as easy to evaluate as standard backdoors

Affine

 The bad: backdoors to scattered classes are much more challenging to find than standard backdoorsThe pretty: backdoors to scattered classes can be arbitrarily smaller than standard backdoors

Backdoors to Scattered Classes

CSP is FPT parameterized by the size of a minimum backdoor into $\operatorname{CSP}\left(\Gamma_{1}\right) \oplus \operatorname{CSP}\left(\Gamma_{2}\right) \oplus \ldots \oplus \operatorname{CSP}\left(\Gamma_{j}\right)$ for any finite, tractable and conservative $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{j}$.

- Ganian, Ramanujan, Szeider 2016
- Classification result

Can we get efficient algorithms for specific languages

Large Backdoors

- Assume we have a backdoor \mathbf{X} to a tractable CSP(Г) which:
- is large, but
- has "simple" interactions with the rest of I
- Can we use \mathbf{X} to solve I efficiently?
- cannot try all instantiations
- cannot use incidence treewidth
- can use dynamic programming
- Process backdoor variables in sequence
- Only keep track of feasible instantiations for current pair

- see if any satisfying instantiation survives till the end

Large Backdoors

- Assume we have a backdoor \mathbf{X} to a tractable CSP(Г) which:
- is large, but
- has "simple" interactions with the rest of I
- Can we use \mathbf{X} to solve I efficiently?
- cannot try all instantiations
- cannot use incidence treewidth
- can use dynamic programming
- Process backdoor variables in sequence
- Only keep track of feasible instantiations for current pair

- see if any satisfying instantiation survives till the end

Large Backdoors

- Assume we have a backdoor \mathbf{X} to a tractable CSP(Г) which:
- is large, but
- has "simple" interactions with the rest of I
- Can we use \mathbf{X} to solve I efficiently?
- cannot try all instantiations
- cannot use incidence treewidth
- can use dynamic programming
- Process backdoor variables in sequence
- Only keep track of feasible instantiations for current pair

- see if any satisfying instantiation survives till the end

Large Backdoors

- Assume we have a backdoor \mathbf{X} to a tractable CSP(Г) which:
- is large, but
- has "simple" interactions with the rest of I
- Can we use \mathbf{X} to solve I efficiently?
- cannot try all instantiations
- cannot use incidence treewidth
- can use dynamic programming
- Process backdoor variables in sequence
- Only keep track of feasible instantiations for current pair

- see if any satisfying instantiation survives till the end

Large Backdoors

- Assume we have a backdoor \mathbf{X} to a tractable CSP(Г) which:
- is large, but
- has "simple" interactions with the rest of I
- Can we use \mathbf{X} to solve I efficiently?
- cannot try all instantiations
- cannot use incidence treewidth
- can use dynamic programming
- Process backdoor variables in sequence
- Only keep track of feasible instantiations for current pair

- see if any satisfying instantiation survives till the end

Large Backdoors

- Assume we have a backdoor \mathbf{X} to a tractable CSP(Г) which:
- is large, but
- has "simple" interactions with the rest of I
- Can we use \mathbf{X} to solve I efficiently?
- cannot try all instantiations
- cannot use incidence treewidth
- can use dynamic programming
- Process backdoor variables in sequence
- Only keep track of feasible instantiations for current pair

- see if any satisfying instantiation survives till the end

Large Backdoors

- Assume we have a backdoor \mathbf{X} to a tractable CSP(Г) which:
- is large, but
- has "simple" interactions with the rest of I
- Can we use \mathbf{X} to solve I efficiently?
- cannot try all instantiations
- cannot use incidence treewidth
- can use dynamic programming
- Process backdoor variables in sequence
- Only keep track of feasible instantiations for current pair

- see if any satisfying instantiation survives till the end

Formalizing the idea

Definition: The backdoor treewidth w.r.t. Γ is the minimum treewidth of the torso of a backdoor to $\operatorname{CSP}(\Gamma)$.

Torso of a backdoor:

- collapses everything into the backdoor
- fully captures interactions between backdoor variables

Backdoor Treewidth

- Evaluation:

A backdoor of treewidth \mathbf{k} into tractable $\mathbf{\Gamma}$ can be used to solve CSP in FPT time

- Dynamic programming (example)
- Requires bounded domain (like backdoors and treewidth)
- Finding:

Much more challenging than finding backdoors of size \mathbf{k}

- Backdoors of small treewidth need not be minimum backdoors into 「
- Instances could have large treewidth and only large backdoors
- Even membership in XP is not obvious

Backdoor Treewidth

Finding a backdoor to $\operatorname{CSP}(\Gamma)$ of width at most k is FPT for every finite language Γ.

- Ganian, Ramanujan, Szeider (2017)
- Also works for SAT (e.g., backdoors to Horn) without arity restrictions

Thank you for your attention

Questions?

Finding small-treewidth backdoors

- First task: dealing with nice instances
- an instance I is nice if at least one of these hold:
$\leq f(k) \stackrel{I}{ }$ - I has a small-treewidth backdoor \mathbf{X} with precisely one connected component \mathbf{C} such that I-C is small

Why "nice"?

Nice instances are easy to solve

- If incidence treewidth is small...
- we can use, e.g., Courcelle's Theorem to find a smalltreewidth backdoor
- (we could also solve the instance directly if we wanted to)
- If everything outside of \mathbf{C} is small...
- then everything outside of \mathbf{C} is actually a small backdoor

Nice instances will also be important later on

Dealing with ugly instances

- ugly instances have a good separation
(assuming they have a small-treewidth backdoor \mathbf{X})

Dealing with ugly instances

- ugly instances have a good separation (assuming they have a small-treewidth backdoor \mathbf{X})

Why?

- Find biggest component \mathbf{C} in $\mathbf{G - X}$
- If C or G-N[C] is small then the instance is nice
- Otherwise we have a good separation

Finding good separations

- Using standard techniques, we find a "left-most" good separation in FPT time

Finite State machinery

- Our next goal will be to replace the left side with a small representative
- Requires development of finite state machinery for CSPs capturing contribution to a small-treewidth backdoor
- End result: small set \mathbf{Q} of small representatives for all possible parts on one side of a separator

Finite State machinery

- Our next goal will be to replace the left side with a small representative

Finite State machinery

- Our next goal will be to replace the left side with a small representative

- New instance strictly smaller but equivalent
- We now restart with new smaller instance

Choosing the right representative

no good separation

- How to choose the correct representative from \mathbf{Q} ?
- Test the left side against all possible representatives

Choosing the right representative

no good separation

- How to choose the correct representative from \mathbf{Q} ?
- Test the left side against all possible representatives
- Can prove that resulting instances contain no good separation (w.r.t. slightly bigger constants)
\longrightarrow they are nice \longrightarrow can determine how left side interacts with all possible representatives

Choosing the right representative

Has small-tw backdoor with Q1, Q4, Q6...

- How to choose the correct representative from \mathbf{Q} ?
- Pick representative for left side which interacts the same way with all representatives in \mathbf{Q}

Final Recap

Finding a backdoor to $\operatorname{CSP}(\Gamma)$ of width at most k is FPT for every finite language Γ.

- If I is nice, directly find a small-treewidth backdoor
- Otherwise, try to find a left-most good separation
- if it doesn't exist then there's no small-treewidth backdoor
- Determine which representative fits for the left side
- Use it to obtain an equivalent but smaller instance
- Restart on new instance

Thank you for your attention

Questions?

