Backdoors for SAT and CSP

Robert Ganian PCSS 2017 · September 3, 2017

Overview

- This talk is about:
 - The Boolean Satisfiability Problem (SAT)
 - The Constraint Satisfaction Problem (CSP)
 - Fixed-parameter tractability
- This talk is **not** about:
 - Parameterizing by solution size
 - Kernelization
 - Model counting

- Input: a CNF formula *F*, for instance: $(x \lor y) \land (\neg x \lor z \lor y) \land (\neg y \lor \neg z)$
- Terminology:
 - variables (3 x, y, z)
 - clauses $(3 (x \lor y), (\neg x \lor z \lor y), (\neg y \lor \neg z))$
 - literals $(7 x, y, \neg x...)$
- Question: Is F satisfiable?
 - Can you assign variables to 0/1 so that each clause is satisfied?

- Input: a CNF formula *F*, for instance: $(x \lor y) \land (\neg x \lor z \lor y) \land (\neg y \lor \neg z)$
- Terminology:
 - variables (3 x, y, z)
 - clauses $(3 (x \lor y), (\neg x \lor z \lor y), (\neg y \lor \neg z))$
 - literals $(7 x, y, \neg x)$
- Question: Is F satisfiable?
 - Can you assign variables to 0/1 so that each clause is satisfied?
 - Example: *x*, *y* = 1, *z* = 0

- Input: a CNF formula *F*, for instance:
 (1 ∨ 1) ∧ (0 ∨ 0 ∨ 1) ∧ (0 ∨ 1)
- Terminology:
 - variables (3 x, y, z)
 - clauses $(3 (x \lor y), (\neg x \lor z \lor y), (\neg y \lor \neg z))$
 - literals $(7 x, y, \neg x)$
- Question: Is F satisfiable?
 - Can you assign variables to 0/1 so that each clause is satisfied?
 - Example: *x*, *y* = 1, *z* = 0

- Many applications
- One of the best known **NP**-complete problems
- Dedicated annual conference (SAT)
 - Also includes a SAT competition

Solving SAT – Treewidth

- Several graph representations of CNF formulas exist
 - Representations capture variable-clause interactions
- SAT is FPT when parameterized by the treewidth of these graph representations
 - Standard dynamic programming

Graph Representations for SAT

- Example: $C_1 = (u \lor \neg v \lor y), C_2 = (\neg u \lor z \lor \neg y), C_3 = (v \lor \neg w), C_4 = (w \lor \neg x), C_5 = (x \lor y \lor \neg z)$
- Classical representations:

Primal graph

Dual graph

Incidence graph

• Are there others?

Graph Representations for SAT

- Example: $C_1 = (u \lor \neg v \lor y), C_2 = (\neg u \lor z \lor \neg y), C_3 = (v \lor \neg w), C_4 = (w \lor \neg x), C_5 = (x \lor y \lor \neg z)$
- Classical representations:

9

Solving SAT – Treewidth

SAT is FPT parameterized by the treewidth of the primal/dual/incidence/consensus graph.

- Single-exponential runtime
- Better to use incidence graph rather than primal or dual
 - Can have much lower treewidth, opposite doesn't hold
- Good dynamic programming exercise
 - Consensus graph case is a bit more complicated

Solving SAT without Treewidth

- Tractable classes for SAT were studied for decades
 - Some are older than treewidth
- General idea: impose syntactic restrictions on clauses
 - Incomparable to the restrictions on variable-clause interactions imposed by treewidth
- Here, we focus on the two most prominent polynomial-time tractable classes for SAT:
 - Horn
 - 2CNF (Krom)

- Each clause contains at most 1 positive literal
- Example: $C_1 = (\neg z \lor \neg y), C_2 = (u \lor \neg v \lor \neg y), C_3 = (\neg u \lor z \lor \neg y), C_4 = (b), C_5 = (v \lor \neg b),$
- Solving:
 - 1. Unit propagation
 - Unit clauses force a certain assignment apply it

- Each clause contains at most 1 positive literal
- Example: $C_1 = (\neg z \lor \neg y), C_2 = (u \lor \neg v \lor \neg y), C_3 = (\neg u \lor z \lor \neg y), C_4 = (1), C_5 = (v \lor \neg 1),$
- Solving:
 - 1. Unit propagation
 - Unit clauses force a certain assignment apply it

- Each clause contains at most 1 positive literal
- Example: $C_1 = (\neg z \lor \neg y), C_2 = (u \lor \neg v \lor \neg y), C_3 = (\neg u \lor z \lor \neg y), C_4 = (1), C_5 = (v),$
- Solving:
 - 1. Unit propagation
 - Unit clauses force a certain assignment apply it

- Each clause contains at most 1 positive literal
- Example: $C_1 = (\neg z \lor \neg y), C_2 = (u \lor \neg 1 \lor \neg y), C_3 = (\neg u \lor z \lor \neg y), C_4 = (1), C_5 = (1),$
- Solving:
 - 1. Unit propagation
 - Unit clauses force a certain assignment apply it

- Each clause contains at most 1 positive literal
- Example: $C_1 = (\neg z \lor \neg y), C_2 = (u \lor \neg y), C_3 = (\neg u \lor z \lor \neg y), C_4 = (1), C_5 = (1),$
- Solving:
 - 1. Unit propagation
 - Unit clauses force a certain assignment apply it

- Each clause contains at most 1 positive literal
- Example: $C_1 = (\neg z \lor \neg y), C_2 = (u \lor \neg y), C_3 = (\neg u \lor z \lor \neg y), C_4 = (1), C_5 = (1),$
- Solving:
 - 1. Unit propagation
 - Unit clauses force a certain assignment apply it
 - Afterwards, no unit clauses are left
 - 2. Assign all remaining variables to 0

- Each clause contains at most 1 positive literal
- Example: $C_1 = (\neg 0 \lor \neg 0), C_2 = (0 \lor \neg 0), C_3 = (\neg 0 \lor 0 \lor \neg 0), C_4 = (1), C_5 = (1),$
- Solving:
 - 1. Unit propagation
 - Unit clauses force a certain assignment apply it
 - Afterwards, no unit clauses are left
 - 2. Assign all remaining variables to 0

2CNF formulas

- Each clause contains at most 2 literals
- Example: $(\neg z \lor x) \land (y \lor a) \land (\neg z \lor \neg y) \land (z \lor y) \land (y \lor \neg a) \land (\neg z \lor \neg x)$
- For solving, we'll need the **implication graph**
 - 2 vertices per variable (positive / negative)
 - Edges represent implications arising from clauses

$$\begin{array}{c} (\neg z \lor x) \land (y \lor a) \land (\neg z \lor \neg y) \land (z \lor y) \\ \land (y \lor \neg a) \land (\neg z \lor \neg x) \end{array}$$

$$\begin{array}{c} (\neg z \lor x) \land (y \lor a) \land (\neg z \lor \neg y) \land (z \lor y) \\ \land (y \lor \neg a) \land (\neg z \lor \neg x) \end{array}$$

$$\begin{array}{c} (\neg z \lor x) \land (y \lor a) \land (\neg z \lor \neg y) \land (z \lor y) \\ \land (y \lor \neg a) \land (\neg z \lor \neg x) \end{array}$$

$$(\neg z \lor x) \land (y \lor a) \land (\neg z \lor \neg y) \land (z \lor y) \\ \land (y \lor \neg a) \land (\neg z \lor \neg x)$$

- Example: $(\neg z \lor x) \land (y \lor a) \land (\neg z \lor \neg y) \land (z \lor y) \land (y \lor \neg a) \land (\neg z \lor \neg x)$
- Algorithm:
 - 1. Construct implication graph

- Example: $(\neg z \lor x) \land (y \lor a) \land (\neg z \lor \neg y) \land (z \lor y) \land (y \lor \neg a) \land (\neg z \lor \neg x)$
- Algorithm:
 - 1. Construct implication graph
 - 2. Find strongly connected components (SCCs)

- Example: $(\neg z \lor x) \land (y \lor a) \land (\neg z \lor \neg y) \land (z \lor y) \land (y \lor \neg a) \land (\neg z \lor \neg x)$
- Algorithm:
 - 1. Construct implication graph
 - 2. Find strongly connected components (SCCs)
 - If any SCC contains both literals for a variable, reject

- Example: $(\neg z \lor x) \land (y \lor a) \land (\neg z \lor \neg y) \land (z \lor y) \land (y \lor \neg a) \land (\neg z \lor \neg x)$
- Algorithm:
 - 1. Construct implication graph
 - 2. Find strongly connected components (SCCs)
 - If any SCC contains both literals for a variable, reject
 - 3. Start assigning literals to 1 from SCCs which are *sinks*

- Example: $(1 \lor x) \land (1 \lor a) \land (1 \lor 0) \land (0 \lor 1) \land (1 \lor \neg a) \land (1 \lor \neg x)$
- Algorithm:
 - 1. Construct implication graph
 - 2. Find strongly connected components (SCCs)
 - If any SCC contains both literals for a variable, reject
 - 3. Start assigning literals to 1 from SCCs which are *sinks*
 - Continue until all clauses satisfied

Recap

SAT is polynomial-time tractable on 2CNF and Horn formulas.

- Result not covered by treewidth
 - Can easily construct an incidence graph that is a grid
- More general polynomial-time tractable classes exist
 q-Horn, Renamable Horn, Hidden Extended Horn...
- But what does this have to do with PC and backdoors?
 - Backdoors allow us to measure distance to triviality
 - Triviality here means one of our tractable classes for SAT

Backdoor Motivation

• Consider the following formula *F*: $(\neg z \lor x \lor y) \land (x \lor \neg a) \land (\neg z \lor \neg x \lor \neg y)$ $\land (z \lor y \lor a) \land (\neg y \lor \neg a \lor x) \land (a \lor \neg x \lor y)$

• Claim: F is almost a 2CNF formula

- Just need to branch on assigning a single variable (y)

 $- y \rightarrow 0:$ (\[\sigma z \neg x\]) \lambda (x \neg \sigma) \lambda (1) \lambda (z \neg a) \lambda (1) \lambda (a \neg \sigma x)

 $- y \rightarrow 1:$ (1) $\wedge (x \vee \neg a) \wedge (\neg z \vee \neg x) \wedge (1) \wedge (\neg a \vee x) \wedge (1)$

Strong Backdoors

- A set X of variables is a strong backdoor to a tractable class C if each assignment of X results in a formula in C
- Parameter: size of a smallest strong backdoor to C
- General approach for fixed-parameter SAT solving:
 - Find a size-k strong backdoor to a selected tractable class
 C (or identify that it doesn't exist)
 - 2. Use the strong backdoor to solve the instance
- Q: Why strong?

Weak Backdoors

 A set X of variables is a weak backdoor to a tractable class C if there exists an assignment of X which results in a *satisfiable* formula in C

Can be arbitrarily smaller than a strong backdoor

Example: backdoors to 2CNF, many large clauses that can all be satisfied by setting a single variable to 0

Doesn't exist for NO-instances

Detection usually W[2]-hard

In this talk we focus *mostly* on strong backdoors

Using Strong Backdoors

SAT can be solved in time $O^*(2^k)$ if a strong backdoor of size k to a tractable class C is provided on the input

• Simple branching over at most 2^k many assignments

Main difficulty: finding a strong backdoor to C

- Algorithms and techniques depend on C
- **XP** algorithm is trivial (assuming **C** is polynomial-time recognizable)

Backdoor Detection

• For Horn and 2CNF, we show equivalence to the simpler notion of *variable deletion*

X is a strong backdoor for Horn/2CNF iff deleting all occurrences of X results in a Horn/2CNF formula.

- Sometimes called a deletion backdoor
- For many classes, these are larger than strong backdoors

Example:
$$(\neg z \lor x \lor y) \land (x \lor \neg a) \land (\neg z \lor \neg x \lor \neg y)$$

 $\land (z \lor y \lor a) \land (\neg y \lor \neg a \lor x) \land (a \lor \neg x \lor y)$

Backdoor Detection

• For Horn and 2CNF, we show equivalence to the simpler notion of *variable deletion*

X is a strong backdoor for Horn/2CNF iff deleting all occurrences of X results in a Horn/2CNF formula.

- Sometimes called a deletion backdoor
- For many classes, these are larger than strong backdoors

Example:
$$(\neg z \lor x \lor y) \land (x \lor \neg a) \land (\neg z \lor \neg x \lor \neg y)$$

 $\land (z \lor y \lor a) \land (\neg y \lor \neg a \lor x) \land (a \lor \neg x \lor y)$
 $- \text{Let's try deleting } x$
• For Horn and 2CNF, we show equivalence to the simpler notion of *variable deletion*

- Sometimes called a deletion backdoor
- For many classes, these are larger than strong backdoors

Example:
$$(\neg z \lor y) \land (x \lor \neg a) \land (\neg z \lor \neg x \lor \neg y)$$

 $\land (z \lor y \lor a) \land (\neg y \lor \neg a \lor x) \land (a \lor \neg x \lor y)$
 $- \text{Let's try deleting } x$

• For Horn and 2CNF, we show equivalence to the simpler notion of *variable deletion*

- Sometimes called a deletion backdoor
- For many classes, these are larger than strong backdoors

Example:
$$(\neg z \lor y) \land (\neg a) \land (\neg z \lor \neg x \lor \neg y)$$

 $\land (z \lor y \lor a) \land (\neg y \lor \neg a \lor x) \land (a \lor \neg x \lor y)$
 $- \text{Let's try deleting } x$

• For Horn and 2CNF, we show equivalence to the simpler notion of *variable deletion*

- Sometimes called a deletion backdoor
- For many classes, these are larger than strong backdoors

Example:
$$(\neg z \lor y) \land (\neg a) \land (\neg z \lor \neg y)$$

 $\land (z \lor y \lor a) \land (\neg y \lor \neg a \lor x) \land (a \lor \neg x \lor y)$
 $- \text{Let's try deleting } x$

• For Horn and 2CNF, we show equivalence to the simpler notion of *variable deletion*

- Sometimes called a deletion backdoor
- For many classes, these are larger than strong backdoors

Example:
$$(\neg z \lor y) \land (\neg a) \land (\neg z \lor \neg y)$$

 $\land (z \lor y \lor a) \land (\neg y \lor \neg a) \land (a \lor \neg x \lor y)$
 $- \text{Let's try deleting } x$

• For Horn and 2CNF, we show equivalence to the simpler notion of *variable deletion*

- Sometimes called a deletion backdoor
- For many classes, these are larger than strong backdoors

Example:
$$(\neg z \lor y) \land (\neg a) \land (\neg z \lor \neg y)$$

 $\land (z \lor y \lor a) \land (\neg y \lor \neg a) \land (a \lor y)$
 $- \text{Let's try deleting } x$

Deletion = Strong Backdoors

- X is strong: For each clause d, there is an assignment to X which doesn't satisfy d, hence d-X must be Horn/2CNF
- X is a deletion set: For each clause d, we know that d-X is Horn/2CNF. Each assignment to X will either delete d or result in d-X for this clause.

Backdoor Detection: Horn

- We reduce the deletion problem to Vertex Cover Example: $(\neg z \lor x \lor y) \land (x \lor \neg a) \land (\neg z \lor \neg x \lor \neg y)$ $\land (z \lor y \lor a) \land (\neg y \lor \neg a \lor x) \land (a \lor \neg x \lor y)$
- Construct a graph **G** as follows:
 - Variables are vertices...

Backdoor Detection: Horn

- We reduce the deletion problem to Vertex Cover Example: $(\neg z \lor x \lor y) \land (x \lor \neg a) \land (\neg z \lor \neg x \lor \neg y)$ $\land (z \lor y \lor a) \land (\neg y \lor \neg a \lor x) \land (a \lor \neg x \lor y)$
- Construct a graph **G** as follows:
 - Variables are vertices...
 - Add edge if both variables occur positively in some clause

Backdoor Detection: 2CNF

- We reduce the deletion problem to **3-Hitting Set**
 - Note: could also use bounded search trees

Example: $(\neg a \lor e \lor c) \land (d \lor e) \land (\neg b \lor \neg c \lor \neg d)$ $\land (d \lor c \lor \neg a \lor b) \land (b \lor \neg e \lor a)$

- Construct a **3-Hitting Set** instance **H** as follows:
 - Ground set is the set of variables
 - Target sets are all triples which occur together in a clause
 - For our example: {ace}, {abc}, {abd}, {acd}, {bcd}, {abe}

Strong Backdoors: Summary

SAT can be solved in time O^{*}(2^k) parameterized by the size of a strong backdoor to Horn.

- Runtime: $O^*(1.3^k)$ for finding and then $O^*(2^k)$ for using
 - Uses Vertex Cover algorithm of Chen, Kanj and Xia [2010]

SAT can be solved in time O^{*}(2.27^k) parameterized by the size of a strong backdoor to 2CNF.

- Runtime: $O^*(2.27^k)$ for finding and then $O^*(2^k)$ for using
 - Uses **3-Hitting Set** algorithm of Niedermeier, Rossmanith [2003]

Intermezzo: Weak BD Detection

- Why is weak backdoor detection harder?
- Recall:

A set **X** of variables is a **weak backdoor** to a tractable class **C** if there exists an assignment of **X** which results in a *satisfiable* formula in **C**

Intermezzo: Weak BD Detection

- Why is weak backdoor detection harder?
- Intuition: weak backdoors can "kill" large obstructions with a single variable

- Can't reliably find small obstructions to branch on
- Example: Weak BD detection to Horn is W[2]-hard
- Proof: Reduction from **Hitting Set**

General template

• Starting point: Hitting Set instance **S**, parameter **k**

- Elements -> main variables
- For each set (R,S,T), we create k+1 clauses such that:
 - they are not Horn
 - they can be satisfied by any element (variable) in the set
 - they contain auxiliary variables which shouldn't be in a BD

• Starting point: Hitting Set instance **S**, parameter **k**

• Clauses:

 $(r_1 \lor a \lor b \lor c) \land (r_2 \lor a \lor b \lor c) \land (r_3 \lor a \lor b \lor c) \land (s_1 \lor b \lor d \lor e) \land (s_2 \lor b \lor d \lor e) \land (s_3 \lor b \lor d \lor e) \land (s_1 \lor c \lor e \lor f) \land (t_2 \lor c \lor e \lor f) \land (t_3 \lor c \lor e \lor f)$

- Taking any variables other than a,b,c,d,e,f is suboptimal

k=2

• Starting point: Hitting Set instance **S**, parameter **k**

Consider a Hitting Set solution

• Clauses:

 $(r_1 \lor a \lor b \lor c) \land (r_2 \lor a \lor b \lor c) \land (r_3 \lor a \lor b \lor c) \land (s_1 \lor b \lor d \lor e) \land (s_2 \lor b \lor d \lor e) \land (s_3 \lor b \lor d \lor e) \land (s_1 \lor c \lor e \lor f) \land (t_2 \lor c \lor e \lor f) \land (t_3 \lor c \lor e \lor f)$

k=2

• Starting point: Hitting Set instance **S**, parameter **k**

Consider a Hitting Set solution

• Clauses:

 $(r_1 \lor a \lor b \lor c) \land (r_2 \lor a \lor b \lor c) \land (r_3 \lor a \lor b \lor c) \land (s_1 \lor b \lor d \lor e) \land (s_2 \lor b \lor d \lor e) \land (s_3 \lor b \lor d \lor e) \land (s_1 \lor c \lor e \lor f) \land (t_2 \lor c \lor e \lor f) \land (t_3 \lor c \lor e \lor f)$

k=2

• Starting point: Hitting Set instance **S**, parameter **k**

Consider a Hitting Set solution

• Clauses:

 $\begin{array}{c} (r_1 \lor a \lor b \lor 1) \land (r_2 \lor a \lor b \lor 1) \land (r_3 \lor a \lor b \lor 1) \\ \land (s_1 \lor b \lor 1 \lor e) \land (s_2 \lor b \lor 1 \lor e) \land (s_3 \lor b \lor 1 \lor e) \\ \land (t_1 \lor 1 \lor e \lor f) \land (t_2 \lor 1 \lor e \lor f) \land (t_3 \lor 1 \lor e \lor f) \end{array}$

- We obtain a weak backdoor of size at most **k**

k=2

• Starting point: Hitting Set instance **S**, parameter **k**

Consider a Weak Backdoor X of size ≤k

• Clauses:

 $(r_1 \lor a \lor b \lor c) \land (r_2 \lor a \lor b \lor c) \land (r_3 \lor a \lor b \lor c) \land (s_1 \lor b \lor d \lor e) \land (s_2 \lor b \lor d \lor e) \land (s_3 \lor b \lor d \lor e) \land (s_1 \lor c \lor e \lor f) \land (t_2 \lor c \lor e \lor f) \land (t_3 \lor c \lor e \lor f)$

k=2

• Starting point: Hitting Set instance **S**, parameter **k**

Consider a Weak Backdoor X of size ≤k

• Clauses:

 $(r_1 \lor a \lor b \lor c) \land (r_2 \lor a \lor b \lor c) \land (r_3 \lor a \lor b \lor c) \land (s_1 \lor b \lor d \lor e) \land (s_2 \lor b \lor d \lor e) \land (s_3 \lor b \lor d \lor e) \land (s_1 \lor c \lor e \lor f) \land (t_2 \lor c \lor e \lor f) \land (t_3 \lor c \lor e \lor f)$

- Can assume X disjoint from red variables
- X must intersect each of (R,S,T)

X is a Hitting Set

Better Backdoors

• Consider the following example:

$$\mathbf{F} = (\neg a \lor b \lor c) \land (\neg a \lor b \lor d) \land (\neg a \lor c \lor e)$$

$$\land (\neg a \lor d \lor e) \land (a \lor \neg b \lor c \lor \neg d \lor \neg e)$$

$$\land (a \lor b \lor \neg c \lor \neg e) \land (a \lor \neg b \lor \neg c \lor \neg d \lor e)$$

$$\land (a \lor \neg b \lor \neg c \lor d)$$

- F has no small strong backdoor to Horn or 2CNF
- But what happens if we try assigning a?

Heterogeneous Backdoors

 A set X of variables is a heterogeneous backdoor to tractable classes {C₁,C₂,...} if each assignment of X results in a formula in some C_i

- Gaspers, Misra, Ordyniak, Szeider, Zivny (2014)

- As easy to use as standard strong backdoors
- What about detection (finding)?

Finding Heterogeneous Backdoors

- Let's set C = {2CNF,Horn}
 - This means we'll be searching for a set of variables X such that each assignment to X results in a 2CNF or Horn formula
 - Main idea: Find an obstruction and branch on how to fix it

- **Case 1**: clause that is neither 2CNF nor Horn
 - Example: $(z \lor y \lor a \lor \neg b)$
 - Must contain at least 2 positive literals and have size at least 3
 - Obstruction: an arbitrary set of 3 variables occurring in the clause, 2 of which occur positively

- **Case 1**: clause that is neither 2CNF nor Horn
 - Example: $(z \lor y \lor a \lor \neg b)$
 - Must contain at least 2 positive literals and have size at least 3
 - Obstruction: an arbitrary set of 3 variables occurring in the clause, 2 of which occur positively (here: y, a, b)
 - Branching factor: 3

- Case 2: the formula is neither "fully" Horn nor 2CNF
 - Choose 1 clause that's only Horn and one that's only 2CNF
 - Example: $C_1 = (z \lor \neg y \lor \neg a \lor \neg b), C_2 = (y \lor x)$
 - **X** must either transform C_1 to 2CNF or C_2 to Horn
 - C₂ contains at most 2 literals
 - C₁ can be large, but any 3 literals form an obstruction to 2CNF
 - Branching factor: at most 5
 - here: z, y, a, x

- Case 3: the formula is either "fully" Horn or 2CNF
 - Means this branch is ok

• Runtime bound:

$$5 \cdot (2^{1}n + 5 \cdot (2^{2}n + 5 \cdot (2^{3}n + \dots))) = 5^{O(k)}n = 2^{O(k)}n$$

Complexity map for other islands of tractability is known (FPT / W-hard).

Constraint Satisfaction (CSP)

- Introduced by Montanari in 1974
- Focus of intensive research (AI, TCS, Combinatorics, Algebra...)
- Dedicated conference

Problem Definition

- Instance: I=(V,D,C) where
 - V is a set of variables
 - **D** is a set of values (the **domain**)
 - C is a set of constraints
- Each constraint consists of a *scope* **S** and *relation* **R**
 - **S** is a tuple of variables (that the constraint applies to)
 - R encodes admissible values of S

Constraint encoding XOR(x,y)

Problem Definition

- An **assignment** is a mapping $\mathbf{f}: \mathbf{V} \rightarrow \mathbf{D}$
- An assignment satisfies a CSP instance if for each constraint (S=(x₁,...x_r),R) we have (f(x₁),...,f(x_r)) ∈ R.
- A CSP instance is **satisfiable** if it has at least one satisfying assignment
- The CSP problem asks whether the input instance is **satisfiable**
- CSP directly generalizes many known NP-complete problems

Example: 3-Coloring

V={a,b,c,d} D={red,blue,green}

 $C = \{ \mathbf{c}_{ab}, \ \mathbf{c}_{ac}, \ \mathbf{c}_{bc}, \ \mathbf{c}_{bd}, \ \mathbf{c}_{cd} \}$

Is it possible to color **a**,**b**,**c**,**d** by red, blue, green so that neighbors always get different colors? Each $\mathbf{c}_{\mathbf{x}\mathbf{y}}$ contains the relation

x	у
red	blue
blue	red
blue	green
green	blue
red	green
green	red
CSP vs SAT

SAT

Each clause prevents
 1 assignment

$$(x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5 \lor x_6)$$

• Each tuple in a constraint enables 1 assignment

x ₁	x ₂	X ₃	x ₄	x ₅	x ₆
0	0	0	0	0	0
1	1	1	1	1	1

Solving CSP

- Can define graph representations similarly as for SAT
 Primal graphs, dual graphs, incidence graphs...
- Can also define backdoors (to some tractable classes)

But do these actually help us solve CSP?

- Two cases: bounded vs. unbounded domain
 - Constant-size vs. part of input

Unbounded Domain

- Can encode Multicolored Clique using **k** variables
 - One variable for each color
 - Constraints encode edges

Domain:	{1,2,3}
Variables:	g, b

g	b
1	1
2	2
3	1
3	3

Unbounded Domain

- Can encode Multicolored Clique using **k** variables
 - One variable for each color
 - Constraints encode edges between colors (at most k²)

W[1]-hard parameterized by treewidth

- Holds for primal, dual, incidence graph representations
- XP algorithm known

W[1]-hard parameterized by backdoors

- Holds regardless of selected island of tractability
- Brute-force XP algorithm

Bounded Domain

- Can encode MCC using k² constraints
 - One binary variable for each vertex
 - Constraints ensure only one activated for each color
 - Constraints ensure we get a clique

Domain: {0,1} Variables: v₁, v₂, v₃, s₁, s₂, s₃

Bounded Domain

- Can encode MCC using **k²+k** constraints
 - One binary variable for each vertex
 - Constraints ensure only one activated for each color
 - Constraints ensure we get a clique

W[1]-hard par. by incidence and dual treewidth

- FPT par. by primal treewidth (standard dyn. programming)

Bounded Domain

- If we are given a (strong) backdoor to any island **C**:
 - FPT algorithm runtime: $|D|^k \cdot n^{O(1)}$
 - Holds for each island of tractability C
- But what are the islands of tractability for CSP?
 - Main direction: definition via languages
 - Language = set of relations that can be used in constraints
 - Example: Boolean language Г:

0	0	0	0
1	1	1	1
1	0	0	1

- CSP[Γ] is precisely 2CNF.

Schaefer's Theorem

For every finite Boolean language Γ: either Γ satisfies one of Schaefer's **polymorphisms** and CSP[Γ] is in **P**, or CSP[Γ] is **NP**-complete.

- Polymorphism: a procedure for constructing a new tuple from a fixed number of tuples in a relation
 - New tuple is built "column-by-column" by the same rule
- Γ satisfies a polymorphism δ iff Γ is closed under δ
- Example: Majority polymorphism
 - Take 3 tuples, rule for new columns: take what occurs most frequently in that column

Schaefer's Theorem: Exercise

For every finite Boolean language Γ: either Γ satisfies one of Schaefer's **polymorphisms** and CSP[Γ] is in **P**, or CSP[Γ] is **NP**-complete.

- Schaefer's Theorem implies tractability of 2CNF
 - Recall the ternary Majority polymorphism
 - Each 2CNF formula is equivalent to an instance of $CSP[\Gamma]$

Each of the above relations is closed under Majority

 Γ satisfies Majority and $\text{CSP}[\Gamma]$ is in P

Schaefer's Theorem: Islands

For every finite Boolean language Γ: either Γ satisfies one of Schaefer's **polymorphisms** and CSP[Γ] is in **P**, or CSP[Γ] is **NP**-complete.

- Schaefer's Theorem leads to 6 islands of tractability
 - 1. 0-valid
 - 2. 1-valid
 - 3. Horn
 - 4. Anti-Horn
 - 5. Affine
 - 6. Bijunctive (2CNF)

Beyond Schaefer

- Feder-Vardi Conjecture: extension of Schaefer's Theorem to all finite languages
 - Remark: finite language bounded domain and arity

For every finite language Γ: either CSP[Γ] is in **P** or **NP**-complete.

- Recently settled (Bulatov; Zhuk 2017)
- Bulatov's Conservative Dichotomy:

For every finite conservative language Γ : either Γ satisfies certain polymorphisms and CSP[Γ] is in **P**, or CSP[Γ] is **NP**-complete.

– Conservative = includes all unary relations

= allows domain restrictions

0

2

For every finite language Γ, strong backdoor detection to CSP[Γ] is FPT parameterized by backdoor size.

- Recall: variable set X is a strong backdoor if each assignment of X results in an instance of CSP[Γ]
- Observation: assume Γ has maximum arity of *c* and we're searching for a backdoor of size *k* in instance I

v ₁	V ₂	V ₃	v ₄	v ₅	v ₆
1	0	0	1	0	2
0	1	0	0	2	0
2	0	2	0	0	1
0	2	1	0	0	1
					_

Constraint of arity > k+c

For every finite language Γ, strong backdoor detection to CSP[Γ] is FPT parameterized by backdoor size.

- Recall: variable set X is a strong backdoor if each assignment of X results in an instance of CSP[Γ]
- **Observation**: assume Γ has maximum arity of *c* and we're searching for a backdoor of size k in instance I

V	V	V	V	V	V.
v 1	v ₂	۷3	v 4	v 5	♥6
1	0	0	1	0	2
0	1	0	0	2	0
2	0	2	0	0	1
0	2	1	0	0	1

Constraint of arity > k+c

- Recall: variable set X is a strong backdoor if each assignment of X results in an instance of CSP[Γ]
- Observation: assume Γ has maximum arity of *c* and we're searching for a backdoor of size *k* in instance I

$$v_4 = 0$$

 $v_5 = 0$
 $v_6 = 0$

- Recall: variable set X is a strong backdoor if each assignment of X results in an instance of CSP[Γ]
- Observation: assume Γ has maximum arity of *c* and we're searching for a backdoor of size *k* in instance I

v ₁	v ₂	v ₃	v ₄	v ₅	v ₆
1	0	0	1	0	2
0	1	0	0	2	0
2	0	2	0	0	1
0	2	1	0	0	1

- Recall: variable set X is a strong backdoor if each assignment of X results in an instance of CSP[Γ]
- Observation: assume Γ has maximum arity of *c* and we're searching for a backdoor of size *k* in instance I

- Recall: variable set X is a strong backdoor if each assignment of X results in an instance of CSP[Γ]
- Observation: assume Γ has maximum arity of *c* and we're searching for a backdoor of size *k* in instance I

- 1. Check that each constraint has arity at most c+k
 - k = backdoor size, c = maximum arity in Γ
- 2. Proceed similarly as for Heterogeneous Backdoors for SAT
 - Start with $\mathbf{X} = \emptyset$
 - Try all assignments of **X**, if we're always in CSP[Γ] then
 - If not, then branch over which of the at most k+c variables from a bad constraint goes to X
 - Restart
- Total runtime: $k^{O(k)} \cdot n^{O(1)}$
- Once we have such a backdoor, solving CSP is easily FPT.

- Backdoors can do much more...
 - Example (Boolean CSP):

- Backdoors can do much more...
 - Example (Boolean CSP):

- Backdoors can do much more...
 - Example (Boolean CSP):

- Backdoors can do much more...
 - Example (Boolean CSP):

- Backdoors can do much more...
 - Example (Boolean CSP):

• Each connected component could belong to a different island

- Backdoors can do much more...
 - Example (Boolean CSP):

• Each connected component could belong to a different island

- Backdoors can do much more...
 - Example (Boolean CSP):

• Each connected component could belong to a different island

- Backdoors can do much more...
 - Example (Boolean CSP):

• Each connected component could belong to a different island

- Backdoors can do much more...
 - Example (Boolean CSP):

- Each connected component could belong to a different island
- Islands can change (like with heterogeneous backdoors)
 If we had such a backdoor, we could solve CSP in FPT time

Definition: The scattered class $CSP(\Gamma_1) \oplus CSP(\Gamma_2) \oplus ... \oplus CSP(\Gamma_j)$ contains all instances where each component belongs to at least one of $CSP(\Gamma_1), CSP(\Gamma_2), ..., CSP(\Gamma_j)$.

The good: backdoors to **scattered classes** are as easy to evaluate as standard backdoors

- try all instantiations
- for each, we can process every component separately

Bijunctive

Affine

Horn

Definition: The scattered class $CSP(\Gamma_1) \oplus CSP(\Gamma_2) \oplus ... \oplus CSP(\Gamma_j)$ contains all instances where each component belongs to at least one of $CSP(\Gamma_1), CSP(\Gamma_2), ..., CSP(\Gamma_j)$.

The good: backdoors to **scattered classes** are as easy to evaluate as standard backdoors

Definition: The scattered class $CSP(\Gamma_1) \oplus CSP(\Gamma_2) \oplus ... \oplus CSP(\Gamma_j)$ contains all instances where each component belongs to at least one of $CSP(\Gamma_1), CSP(\Gamma_2), ..., CSP(\Gamma_j)$.

The good: backdoors to **scattered classes** are as easy to evaluate as standard backdoors

The bad: backdoors to scattered classes

are much more challenging to find than standard backdoors

- Previously: each variable is used to kill some "bad constraints"
- Now: variables may also be used to disconnect instance;

"bad constraints" no longer defined

Bijunctive

Affine

Horn

Definition: The scattered class $CSP(\Gamma_1) \oplus CSP(\Gamma_2) \oplus ... \oplus CSP(\Gamma_j)$ contains all instances where each component belongs to at least one of $CSP(\Gamma_1), CSP(\Gamma_2), ..., CSP(\Gamma_j)$.

The good:backdoors to scattered classesare as easy to evaluate as standard backdoorsHorn

Affine

Bijunctive

The bad: backdoors to **scattered classes** are much more challenging to find than standard backdoors

Definition: The scattered class $CSP(\Gamma_1) \oplus CSP(\Gamma_2) \oplus ... \oplus CSP(\Gamma_j)$ contains all instances where each component belongs to at least one of $CSP(\Gamma_1), CSP(\Gamma_2), ..., CSP(\Gamma_j)$.

The good: backdoors to **scattered classes** are as easy to evaluate as standard backdoors

The bad: backdoors to scattered classes are much more challenging to find than standard backdoors

The pretty: backdoors to **scattered classes** can be arbitrarily smaller than standard backdoors

Bijunctive

Affine

Horn

Backdoors to Scattered Classes

CSP is FPT parameterized by the size of a minimum backdoor into $CSP(\Gamma_1) \bigoplus CSP(\Gamma_2) \bigoplus ... \bigoplus CSP(\Gamma_j)$ for any finite, tractable and conservative $\Gamma_1, \Gamma_2, ..., \Gamma_j$.

- Ganian, Ramanujan, Szeider 2016
- Classification result

Can we get *efficient* algorithms for specific languages

Large Backdoors

- Assume we have a backdoor **X** to a tractable **CSP(Γ)** which:
 - is large, but
 - has "simple" interactions with the rest of I
- Can we use X to solve I efficiently?
 - cannot try all instantiations
 - cannot use incidence treewidth
 - can use dynamic programming
 - Process backdoor variables in sequence
 - Only keep track of feasible instantiations for current pair
 - see if any satisfying instantiation survives till the end

Large Backdoors

- Assume we have a backdoor **X** to a tractable **CSP(Γ)** which:
 - is large, but
 - has "simple" interactions with the rest of I
- Can we use X to solve I efficiently?
 - cannot try all instantiations
 - cannot use incidence treewidth
 - can use dynamic programming
 - Process backdoor variables in sequence
 - Only keep track of feasible instantiations for current pair
 - see if any satisfying instantiation survives till the end

Large Backdoors

- Assume we have a backdoor **X** to a tractable **CSP(Γ)** which:
 - is large, but
 - has "simple" interactions with the rest of I
- Can we use X to solve I efficiently?
 - cannot try all instantiations
 - cannot use incidence treewidth
 - can use dynamic programming
 - Process backdoor variables in sequence
 - Only keep track of feasible instantiations for current pair
 - see if any satisfying instantiation survives till the end

- Assume we have a backdoor **X** to a tractable **CSP(Γ)** which:
 - is large, but
 - has "simple" interactions with the rest of I
- Can we use X to solve I efficiently?
 - cannot try all instantiations
 - cannot use incidence treewidth
 - can use dynamic programming
 - Process backdoor variables in sequence
 - Only keep track of feasible instantiations for current pair
 - see if any satisfying instantiation survives till the end

- Assume we have a backdoor **X** to a tractable **CSP(Γ)** which:
 - is large, but
 - has "simple" interactions with the rest of I
- Can we use X to solve I efficiently?
 - cannot try all instantiations
 - cannot use incidence treewidth
 - can use dynamic programming
 - Process backdoor variables in sequence
 - Only keep track of feasible instantiations for current pair
 - see if any satisfying instantiation survives till the end

- Assume we have a backdoor **X** to a tractable **CSP(Γ)** which:
 - is large, but
 - has "simple" interactions with the rest of I
- Can we use X to solve I efficiently?
 - cannot try all instantiations
 - cannot use incidence treewidth
 - can use dynamic programming
 - Process backdoor variables in sequence
 - Only keep track of feasible instantiations for current pair
 - see if any satisfying instantiation survives till the end

- Assume we have a backdoor **X** to a tractable **CSP(Γ)** which:
 - is large, but
 - has "simple" interactions with the rest of I
- Can we use X to solve I efficiently?
 - cannot try all instantiations
 - cannot use incidence treewidth
 - can use dynamic programming
 - Process backdoor variables in sequence
 - Only keep track of feasible instantiations for current pair
 - see if any satisfying instantiation survives till the end

Formalizing the idea

Definition: The **backdoor treewidth** w.r.t. **Γ** is the minimum treewidth of the **torso of a backdoor** to **CSP(Γ)**.

Torso of a backdoor:

- collapses everything into the backdoor
- fully captures interactions between backdoor variables

Backdoor Treewidth

• Evaluation:

A backdoor of treewidth **k** into tractable **r** can be used to solve **CSP** in FPT time

Dynamic programming (example)

Requires bounded domain (like backdoors and treewidth)

• Finding:

Much more challenging than finding backdoors of size **k**

- Backdoors of small treewidth need not be minimum backdoors into F
- Instances could have large treewidth and only large backdoors
- Even membership in XP is not obvious

Backdoor Treewidth

Finding a backdoor to CSP(Γ) of width at most k is FPT for every finite language Γ .

- Ganian, Ramanujan, Szeider (2017)
- Also works for SAT (e.g., backdoors to Horn) without arity restrictions

Thank you for

your attention

Questions?

b

С

a

d

Finding small-treewidth backdoors

- First task: dealing with nice instances
 - an instance I is nice if at least one of these hold:
 - I has small incidence treewidth, or

 $\leq f(k)$

 I has a small-treewidth backdoor X with precisely one connected component C such that I-C is small

Why "nice"?

Nice instances are easy to solve

- If incidence treewidth is small...
 - we can use, e.g., Courcelle's Theorem to find a smalltreewidth backdoor
 - (we could also solve the instance directly if we wanted to)
- If everything outside of **C** is small...

- then everything outside of **C** is actually a small backdoor

Nice instances will also be important later on

Dealing with ugly instances

 ugly instances have a good separation (assuming they have a small-treewidth backdoor X)

Dealing with ugly instances

 ugly instances have a good separation (assuming they have a small-treewidth backdoor X)

Why?

- Find biggest component
 C in G-X
- If C or G-N[C] is small then the instance is nice
- Otherwise we have a good separation

Finding good separations

 Using standard techniques, we find a "*left-most"* good separation in FPT time

Finite State machinery

- Our next goal will be to replace the left side with a small representative
 - Requires development of finite state machinery for CSPs capturing contribution to a small-treewidth backdoor
 - End result: small set **Q** of small representatives for all possible parts on one side of a separator

Finite State machinery

Our next goal will be to replace the left side with a small representative

Finite State machinery

Our next goal will be to replace the left side with a small representative

- New instance strictly smaller but equivalent
 - We now restart with new smaller instance

Choosing the right representative

- How to choose the correct representative from Q?
 - Test the left side against all possible representatives

Choosing the right representative

- How to choose the correct representative from Q?
 - Test the left side against all possible representatives
 - Can prove that resulting instances contain no good separation (w.r.t. slightly bigger constants)
 - they are nice can determine how left side interacts with all possible representatives

Choosing the right representative

- How to choose the correct representative from Q?
 - Pick representative for left side which interacts the same way with all representatives in Q

Final Recap

Finding a backdoor to $CSP(\Gamma)$ of width at most k is FPT for every finite language Γ .

- If I is nice, directly find a small-treewidth backdoor
- Otherwise, try to find a left-most good separation

 if it doesn't exist then there's no small-treewidth backdoor
- Determine which **representative** fits for the left side
- Use it to obtain an equivalent but smaller instance
 - Restart on new instance

Thank you for

your attention

Questions?

b

С

a

d

