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Overview 

• This talk is about: 

– The Boolean Satisfiability Problem (SAT) 

– The Constraint Satisfaction Problem (CSP) 

– Fixed-parameter tractability 

 

• This talk is not about: 

– Parameterizing by solution size 

– Kernelization 

– Model counting 
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SAT 

• Input: a CNF formula F, for instance: 
(𝑥 ∨ 𝑦) ∧ (¬𝑥 ∨ 𝑧 ∨ 𝑦) ∧ (¬𝑦 ∨ ¬𝑧) 

• Terminology: 

– variables (3 – 𝑥, 𝑦, 𝑧) 

– clauses (3 – (𝑥 ∨ 𝑦), ¬𝑥 ∨ 𝑧 ∨ 𝑦 ,(¬𝑦 ∨ ¬𝑧)) 

– literals (7 – 𝑥, 𝑦, ¬𝑥...) 

• Question: Is F satisfiable? 

– Can you assign variables to 0/1 so that each clause is 
satisfied? 
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SAT 

• Input: a CNF formula F, for instance: 
(𝑥 ∨ 𝑦) ∧ (¬𝑥 ∨ 𝑧 ∨ 𝑦) ∧ (¬𝑦 ∨ ¬𝑧) 

• Terminology: 

– variables (3 – 𝑥, 𝑦, 𝑧) 

– clauses (3 – (𝑥 ∨ 𝑦), ¬𝑥 ∨ 𝑧 ∨ 𝑦 ,(¬𝑦 ∨ ¬𝑧)) 

– literals (7 – 𝑥, 𝑦, ¬𝑥) 

• Question: Is F satisfiable? 

– Can you assign variables to 0/1 so that each clause is 
satisfied? 
• Example: 𝑥, 𝑦 = 1, 𝑧 = 0 
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SAT 

• Input: a CNF formula F, for instance: 
(1 ∨ 1) ∧ (0 ∨ 0 ∨ 1) ∧ (0 ∨ 1) 

• Terminology: 

– variables (3 – 𝑥, 𝑦, 𝑧) 

– clauses (3 – (𝑥 ∨ 𝑦), ¬𝑥 ∨ 𝑧 ∨ 𝑦 ,(¬𝑦 ∨ ¬𝑧)) 

– literals (7 – 𝑥, 𝑦, ¬𝑥) 

• Question: Is F satisfiable? 

– Can you assign variables to 0/1 so that each clause is 
satisfied? 
• Example: 𝑥, 𝑦 = 1, 𝑧 = 0 
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SAT 

 

• Many applications 

 

• One of the best known NP-complete problems 

 

• Dedicated annual conference (SAT) 

– Also includes a SAT competition 
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Solving SAT – Treewidth 

• Several graph representations of CNF formulas exist 

– Representations capture variable-clause interactions 

 

• SAT is FPT when parameterized by the treewidth of 
these graph representations 

– Standard dynamic programming 

tw=1 

tw=2 

Large tw 
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Graph Representations for SAT 

• Example: C1 = (𝑢 ∨ ¬𝑣 ∨ 𝑦), C2 = (¬𝑢 ∨ 𝑧 ∨ ¬𝑦),  
C3 = (𝑣 ∨ ¬𝑤), C4 = (𝑤 ∨ ¬𝑥), C5 = 𝑥 ∨ 𝑦 ∨ ¬𝑧  

• Classical representations: 

 

 

 

 

 

• Are there others?  
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Graph Representations for SAT 

• Example: C1 = (𝑢 ∨ ¬𝑣 ∨ 𝑦), C2 = (¬𝑢 ∨ 𝑧 ∨ ¬𝑦),  
C3 = (𝑣 ∨ ¬𝑤), C4 = (𝑤 ∨ ¬𝑥), C5 = 𝑥 ∨ 𝑦 ∨ ¬𝑧  

• Classical representations: 

 

 

 

 

 

• New representation:  

– Ganian, Szeider 2017 

Edge              no contradicting literals 
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Solving SAT – Treewidth 

 

 

 

 

– Single-exponential runtime 

– Better to use incidence graph rather than primal or dual 
• Can have much lower treewidth, opposite doesn’t hold 

– Good dynamic programming exercise 
• Consensus graph case is a bit more complicated 
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SAT is FPT parameterized by the treewidth of the  
primal/dual/incidence/consensus graph. 



Solving SAT without Treewidth 

• Tractable classes for SAT were studied for decades 

– Some are older than treewidth 

 

• General idea: impose syntactic restrictions on clauses 

– Incomparable to the restrictions on variable-clause 
interactions imposed by treewidth 

 

• Here, we focus on the two most prominent 
polynomial-time tractable classes for SAT: 

– Horn 

– 2CNF (Krom) 
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Horn formulas 

• Each clause contains at most 1 positive literal 

• Example: C1 = ¬𝑧 ∨ ¬𝑦 , C2 = (𝑢 ∨ ¬𝑣 ∨ ¬𝑦),  
C3 = (¬𝑢 ∨ 𝑧 ∨ ¬𝑦), C4 = (𝑏), C5 = (𝑣 ∨ ¬𝑏),  

 

• Solving: 

1. Unit propagation 
• Unit clauses force a certain assignment         apply it 
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Horn formulas 

• Each clause contains at most 1 positive literal 

• Example: C1 = ¬𝑧 ∨ ¬𝑦 , C2 = (𝑢 ∨ ¬𝑣 ∨ ¬𝑦),  
C3 = (¬𝑢 ∨ 𝑧 ∨ ¬𝑦), C4 = (1), C5 = (𝑣 ∨ ¬1),  

 

• Solving: 

1. Unit propagation 
• Unit clauses force a certain assignment         apply it 
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Horn formulas 

• Each clause contains at most 1 positive literal 

• Example: C1 = ¬𝑧 ∨ ¬𝑦 , C2 = (𝑢 ∨ ¬𝑣 ∨ ¬𝑦),  
C3 = (¬𝑢 ∨ 𝑧 ∨ ¬𝑦), C4 = (1), C5 = (𝑣),  

 

• Solving: 

1. Unit propagation 
• Unit clauses force a certain assignment         apply it 
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Horn formulas 

• Each clause contains at most 1 positive literal 

• Example: C1 = ¬𝑧 ∨ ¬𝑦 , C2 = (𝑢 ∨ ¬1 ∨ ¬𝑦),  
C3 = (¬𝑢 ∨ 𝑧 ∨ ¬𝑦), C4 = (1), C5 = (1),  

 

• Solving: 

1. Unit propagation 
• Unit clauses force a certain assignment         apply it 

15 



Horn formulas 

• Each clause contains at most 1 positive literal 

• Example: C1 = ¬𝑧 ∨ ¬𝑦 , C2 = (𝑢 ∨ ¬𝑦),  
C3 = (¬𝑢 ∨ 𝑧 ∨ ¬𝑦), C4 = (1), C5 = (1),  

 

• Solving: 

1. Unit propagation 
• Unit clauses force a certain assignment         apply it 
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Horn formulas 

• Each clause contains at most 1 positive literal 

• Example: C1 = ¬𝑧 ∨ ¬𝑦 , C2 = (𝑢 ∨ ¬𝑦),  
C3 = (¬𝑢 ∨ 𝑧 ∨ ¬𝑦), C4 = (1), C5 = (1),  

 

• Solving: 

1. Unit propagation 
• Unit clauses force a certain assignment         apply it 

• Afterwards, no unit clauses are left 

2. Assign all remaining variables to 0 
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Horn formulas 

• Each clause contains at most 1 positive literal 

• Example: C1 = ¬0 ∨ ¬0 , C2 = (0 ∨ ¬0),  
C3 = (¬0 ∨ 0 ∨ ¬0), C4 = (1), C5 = (1),  

 

• Solving: 

1. Unit propagation 
• Unit clauses force a certain assignment         apply it 

• Afterwards, no unit clauses are left 

2. Assign all remaining variables to 0 
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2CNF formulas 

• Each clause contains at most 2 literals 

• Example: ¬𝑧 ∨ 𝑥 ∧ 𝑦 ∨ 𝑎 ∧ ¬𝑧 ∨ ¬𝑦 ∧
𝑧 ∨ 𝑦 ∧ 𝑦 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥  

 

• For solving, we‘ll need the implication graph 

– 2 vertices per variable (positive / negative) 

– Edges represent implications arising from clauses 
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Implication Graph 

¬𝑧 ∨ 𝑥 ∧ 𝑦 ∨ 𝑎 ∧ ¬𝑧 ∨ ¬𝑦 ∧ 𝑧 ∨ 𝑦  
∧ 𝑦 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥  
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Implication Graph 

¬𝑧 ∨ 𝑥 ∧ 𝑦 ∨ 𝑎 ∧ ¬𝑧 ∨ ¬𝑦 ∧ 𝑧 ∨ 𝑦  
∧ 𝑦 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥  
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Implication Graph 

¬𝑧 ∨ 𝑥 ∧ 𝑦 ∨ 𝑎 ∧ ¬𝑧 ∨ ¬𝑦 ∧ 𝑧 ∨ 𝑦  
∧ 𝑦 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥  
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Implication Graph 

¬𝑧 ∨ 𝑥 ∧ 𝑦 ∨ 𝑎 ∧ ¬𝑧 ∨ ¬𝑦 ∧ 𝑧 ∨ 𝑦  
∧ 𝑦 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥  
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Implication Graph 

¬𝑧 ∨ 𝑥 ∧ 𝑦 ∨ 𝑎 ∧ ¬𝑧 ∨ ¬𝑦 ∧ 𝑧 ∨ 𝑦  
∧ 𝑦 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥  
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Solving 2CNF Formulas 

• Example: ¬𝑧 ∨ 𝑥 ∧ 𝑦 ∨ 𝑎 ∧ ¬𝑧 ∨ ¬𝑦 ∧
𝑧 ∨ 𝑦 ∧ 𝑦 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥  

• Algorithm: 

1. Construct implication graph 
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Solving 2CNF Formulas 

• Example: ¬𝑧 ∨ 𝑥 ∧ 𝑦 ∨ 𝑎 ∧ ¬𝑧 ∨ ¬𝑦 ∧
𝑧 ∨ 𝑦 ∧ 𝑦 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥  

• Algorithm: 

1. Construct implication graph 

2. Find strongly connected  
components (SCCs) 
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Solving 2CNF Formulas 

• Example: ¬𝑧 ∨ 𝑥 ∧ 𝑦 ∨ 𝑎 ∧ ¬𝑧 ∨ ¬𝑦 ∧
𝑧 ∨ 𝑦 ∧ 𝑦 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥  

• Algorithm: 

1. Construct implication graph 

2. Find strongly connected  
components (SCCs) 
• If any SCC contains both 

literals for a variable, reject 
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Solving 2CNF Formulas 

• Example: ¬𝑧 ∨ 𝑥 ∧ 𝑦 ∨ 𝑎 ∧ ¬𝑧 ∨ ¬𝑦 ∧
𝑧 ∨ 𝑦 ∧ 𝑦 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥  

• Algorithm: 

1. Construct implication graph 

2. Find strongly connected  
components (SCCs) 
• If any SCC contains both 

literals for a variable, reject 

3. Start assigning literals to 1 
from SCCs which are sinks 
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Solving 2CNF Formulas 

• Example: 1 ∨ 𝑥 ∧ 1 ∨ 𝑎 ∧ 1 ∨ 0 ∧ 0 ∨ 1 ∧
1 ∨ ¬𝑎 ∧ 1 ∨ ¬𝑥  

• Algorithm: 

1. Construct implication graph 

2. Find strongly connected  
components (SCCs) 
• If any SCC contains both 

literals for a variable, reject 

3. Start assigning literals to 1 
from SCCs which are sinks 
• Continue until all  

clauses satisfied 
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Recap 

 

• Result not covered by treewidth 

– Can easily construct an incidence graph that is a grid 

• More general polynomial-time tractable classes exist 

– q-Horn, Renamable Horn, Hidden Extended Horn... 

• But what does this have to do with PC and 
backdoors? 

– Backdoors allow us to measure distance to triviality 

– Triviality here means one of our tractable classes for SAT 
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SAT is polynomial-time tractable on 2CNF and Horn formulas. 

Also called islands of tractability 



Backdoor Motivation 

• Consider the following formula F: 
¬𝑧 ∨ 𝑥 ∨ 𝑦 ∧ 𝑥 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥 ∨ ¬𝑦  

∧ 𝑧 ∨ 𝑦 ∨ 𝑎 ∧ ¬𝑦 ∨ ¬𝑎 ∨ 𝑥 ∧ 𝑎 ∨ ¬𝑥 ∨ 𝑦  

• Claim: F is almost a 2CNF formula  

– Just need to branch on assigning a single variable (y) 

– y        0: 

¬𝑧 ∨ 𝑥 ∧ 𝑥 ∨ ¬𝑎 ∧ 1 ∧ 𝑧 ∨ 𝑎 ∧ 1 ∧ 𝑎 ∨ ¬𝑥  

 

– y        1: 

1 ∧ 𝑥 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥 ∧ 1 ∧ ¬𝑎 ∨ 𝑥 ∧ 1  
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Strong Backdoors 

• A set X of variables is a strong backdoor to a 
tractable class C if each assignment of X results in a 
formula in C 

• Parameter: size of a smallest strong backdoor to C 

 

• General approach for fixed-parameter SAT solving: 

1. Find a size-k strong backdoor to a selected tractable class 
C (or identify that it doesn’t exist) 

2. Use the strong backdoor to solve the instance 

 

• Q: Why strong? 
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Weak Backdoors 

• A set X of variables is a weak backdoor to a tractable 
class C if there exists an assignment of X which 
results in a satisfiable formula in C 

 

–      Can be arbitrarily smaller than a strong backdoor 
• Example: backdoors to 2CNF, many large clauses that can all be 

satisfied by setting a single variable to 0 

–      Doesn’t exist for NO-instances 

 

–      Detection usually W[2]-hard 

 

–        In this talk we focus mostly on strong backdoors 
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Using Strong Backdoors 

 

 

 

• Simple branching over at most 2k many assignments 

 

 

             Main difficulty: finding a strong backdoor to C 

– Algorithms and techniques depend on C 

– XP algorithm is trivial (assuming C is polynomial-time 
recognizable) 
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SAT can be solved in time O*(2k) if a strong backdoor  
of size k to a tractable class C is provided on the input 



Backdoor Detection 

• For Horn and 2CNF, we show equivalence to the 
simpler notion of variable deletion 

 

 

 

– Sometimes called a deletion backdoor 

– For many classes, these are larger than strong backdoors 

 

Example: ¬𝑧 ∨ 𝑥 ∨ 𝑦 ∧ 𝑥 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥 ∨ ¬𝑦  

           ∧ 𝑧 ∨ 𝑦 ∨ 𝑎 ∧ ¬𝑦 ∨ ¬𝑎 ∨ 𝑥 ∧ 𝑎 ∨ ¬𝑥 ∨ 𝑦  
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X is a strong backdoor for Horn/2CNF iff deleting  
all occurrences of X results in a Horn/2CNF formula. 



Backdoor Detection 

• For Horn and 2CNF, we show equivalence to the 
simpler notion of variable deletion 

 

 

 

– Sometimes called a deletion backdoor 

– For many classes, these are larger than strong backdoors 

 

Example: ¬𝑧 ∨ 𝑥 ∨ 𝑦 ∧ 𝑥 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥 ∨ ¬𝑦  

           ∧ 𝑧 ∨ 𝑦 ∨ 𝑎 ∧ ¬𝑦 ∨ ¬𝑎 ∨ 𝑥 ∧ 𝑎 ∨ ¬𝑥 ∨ 𝑦  

– Let’s try deleting x 
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X is a strong backdoor for Horn/2CNF iff deleting  
all occurrences of X results in a Horn/2CNF formula. 



Backdoor Detection 

• For Horn and 2CNF, we show equivalence to the 
simpler notion of variable deletion 

 

 

 

– Sometimes called a deletion backdoor 

– For many classes, these are larger than strong backdoors 

 

Example: ¬𝑧 ∨ 𝑦 ∧ 𝑥 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥 ∨ ¬𝑦  

           ∧ 𝑧 ∨ 𝑦 ∨ 𝑎 ∧ ¬𝑦 ∨ ¬𝑎 ∨ 𝑥 ∧ 𝑎 ∨ ¬𝑥 ∨ 𝑦  

– Let’s try deleting x 

 37 

X is a strong backdoor for Horn/2CNF iff deleting  
all occurrences of X results in a Horn/2CNF formula. 



Backdoor Detection 

• For Horn and 2CNF, we show equivalence to the 
simpler notion of variable deletion 

 

 

 

– Sometimes called a deletion backdoor 

– For many classes, these are larger than strong backdoors 

 

Example: ¬𝑧 ∨ 𝑦 ∧ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥 ∨ ¬𝑦  

           ∧ 𝑧 ∨ 𝑦 ∨ 𝑎 ∧ ¬𝑦 ∨ ¬𝑎 ∨ 𝑥 ∧ 𝑎 ∨ ¬𝑥 ∨ 𝑦  

– Let’s try deleting x 
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X is a strong backdoor for Horn/2CNF iff deleting  
all occurrences of X results in a Horn/2CNF formula. 



Backdoor Detection 

• For Horn and 2CNF, we show equivalence to the 
simpler notion of variable deletion 

 

 

 

– Sometimes called a deletion backdoor 

– For many classes, these are larger than strong backdoors 

 

Example: ¬𝑧 ∨ 𝑦 ∧ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑦  

           ∧ 𝑧 ∨ 𝑦 ∨ 𝑎 ∧ ¬𝑦 ∨ ¬𝑎 ∨ 𝑥 ∧ 𝑎 ∨ ¬𝑥 ∨ 𝑦  

– Let’s try deleting x 
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X is a strong backdoor for Horn/2CNF iff deleting  
all occurrences of X results in a Horn/2CNF formula. 



Backdoor Detection 

• For Horn and 2CNF, we show equivalence to the 
simpler notion of variable deletion 

 

 

 

– Sometimes called a deletion backdoor 

– For many classes, these are larger than strong backdoors 

 

Example: ¬𝑧 ∨ 𝑦 ∧ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑦  

           ∧ 𝑧 ∨ 𝑦 ∨ 𝑎 ∧ ¬𝑦 ∨ ¬𝑎 ∧ 𝑎 ∨ ¬𝑥 ∨ 𝑦  

– Let’s try deleting x 
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X is a strong backdoor for Horn/2CNF iff deleting  
all occurrences of X results in a Horn/2CNF formula. 



Backdoor Detection 

• For Horn and 2CNF, we show equivalence to the 
simpler notion of variable deletion 

 

 

 

– Sometimes called a deletion backdoor 

– For many classes, these are larger than strong backdoors 

 

Example: ¬𝑧 ∨ 𝑦 ∧ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑦  

           ∧ 𝑧 ∨ 𝑦 ∨ 𝑎 ∧ ¬𝑦 ∨ ¬𝑎 ∧ 𝑎 ∨ 𝑦  

– Let’s try deleting x 
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X is a strong backdoor for Horn/2CNF iff deleting  
all occurrences of X results in a Horn/2CNF formula. 



Deletion = Strong Backdoors 

 

 

 

– X is strong: For each clause d, there is an assignment to X 
which doesn’t satisfy d, hence d-X must be Horn/2CNF 

 

– X is a deletion set: For each clause d, we know that d-X is 
Horn/2CNF. Each assignment to X will either delete d or 
result in d-X for this clause. 

42 

X is a strong backdoor for Horn/2CNF iff deleting  
all occurrences of X results in a Horn/2CNF formula. 



Backdoor Detection: Horn 

• We reduce the deletion problem to Vertex Cover 

Example: ¬𝑧 ∨ 𝑥 ∨ 𝑦 ∧ 𝑥 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥 ∨ ¬𝑦  
∧ 𝑧 ∨ 𝑦 ∨ 𝑎 ∧ ¬𝑦 ∨ ¬𝑎 ∨ 𝑥 ∧ 𝑎 ∨ ¬𝑥 ∨ 𝑦  

 

• Construct a graph G as follows: 

– Variables are vertices... 
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Backdoor Detection: Horn 

• We reduce the deletion problem to Vertex Cover 

Example: ¬𝑧 ∨ 𝑥 ∨ 𝑦 ∧ 𝑥 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥 ∨ ¬𝑦  
∧ 𝑧 ∨ 𝑦 ∨ 𝑎 ∧ ¬𝑦 ∨ ¬𝑎 ∨ 𝑥 ∧ 𝑎 ∨ ¬𝑥 ∨ 𝑦  

 

• Construct a graph G as follows: 

– Variables are vertices... 

– Add edge if both variables occur positively in some clause  

 
Vertex cover in G               

 

Deletion backdoor to Horn 
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Backdoor Detection: 2CNF 

• We reduce the deletion problem to 3-Hitting Set 

– Note: could also use bounded search trees 

Example: ¬𝑎 ∨ 𝑒 ∨ 𝑐 ∧ 𝑑 ∨ 𝑒 ∧ ¬𝑏 ∨ ¬𝑐 ∨ ¬𝑑  
∧ 𝑑 ∨ 𝑐 ∨ ¬𝑎 ∨ 𝑏 ∧ 𝑏 ∨ ¬𝑒 ∨ 𝑎  

 

• Construct a 3-Hitting Set instance H as follows: 

– Ground set is the set of variables 

– Target sets are all triples which occur together in a clause 

– For our example: {ace}, {abc}, {abd}, {acd}, {bcd}, {abe} 

 

Hitting Set                 Deletion backdoor to Horn 
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Strong Backdoors: Summary 

 

 

 

– Runtime: O*(1.3k) for finding and then O*(2k) for using 
• Uses Vertex Cover algorithm of Chen, Kanj and Xia [2010] 

 

 

 

– Runtime: O*(2.27k) for finding and then O*(2k) for using 
• Uses 3-Hitting Set algorithm of Niedermeier, Rossmanith [2003] 
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SAT can be solved in time O*(2k) parameterized  
by the size of a strong backdoor to Horn. 

SAT can be solved in time O*(2.27k) parameterized  
by the size of a strong backdoor to 2CNF. 



Intermezzo: Weak BD Detection 

• Why is weak backdoor detection harder? 

 

• Recall: 

A set X of variables is a weak backdoor to a tractable 
class C if there exists an assignment of X which results 
in a satisfiable formula in C 
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Intermezzo: Weak BD Detection 

• Why is weak backdoor detection harder? 

 

• Intuition: weak backdoors can “kill” large 
obstructions with a single variable 

 

 

• Can’t reliably find small obstructions to branch on 

 

• Example: Weak BD detection to Horn is W[2]-hard 

• Proof: Reduction from Hitting Set 

48 

General template 



The Reduction 

• Starting point: Hitting Set instance S, parameter k 

      

     k=2  

 

 

• Elements -> main variables 

• For each set (R,S,T), we create k+1 clauses such that: 

– they are not Horn 

– they can be satisfied by any element (variable) in the set 

– they contain auxiliary variables which shouldn’t be in a BD 
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The Reduction 

• Starting point: Hitting Set instance S, parameter k 

      

     k=2  
 

 

• Clauses: 
(𝑟1 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑟2 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑟3 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) 

∧ (𝑠1 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (𝑠2 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (𝑠3 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) 
∧ (𝑡1 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡2 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡3 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) 

 

– Taking any variables other than a,b,c,d,e,f is suboptimal 
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The Reduction 

• Starting point: Hitting Set instance S, parameter k 

      

     k=2  
 

 

• Clauses: 
(𝑟1 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑟2 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑟3 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) 

∧ (𝑠1 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (𝑠2 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (𝑠3 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) 
∧ (𝑡1 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡2 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡3 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) 
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The Reduction 

• Starting point: Hitting Set instance S, parameter k 

      

     k=2  
 

 

• Clauses: 
(𝑟1 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑟2 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑟3 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) 

∧ (𝑠1 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (𝑠2 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (𝑠3 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) 
∧ (𝑡1 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡2 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡3 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) 
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The Reduction 

• Starting point: Hitting Set instance S, parameter k 

      

     k=2  
 

 

• Clauses: 
(𝑟1 ∨ 𝑎 ∨ 𝑏 ∨ 1) ∧ (𝑟2 ∨ 𝑎 ∨ 𝑏 ∨ 1) ∧ (𝑟3 ∨ 𝑎 ∨ 𝑏 ∨ 1) 

∧ (𝑠1 ∨ 𝑏 ∨ 1 ∨ 𝑒) ∧ (𝑠2 ∨ 𝑏 ∨ 1 ∨ 𝑒) ∧ (𝑠3 ∨ 𝑏 ∨ 1 ∨ 𝑒) 
∧ (𝑡1 ∨ 1 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡2 ∨ 1 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡3 ∨ 1 ∨ 𝑒 ∨ 𝑓) 

 

– We obtain a weak backdoor of size at most k 
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The Reduction 

• Starting point: Hitting Set instance S, parameter k 

      

     k=2  
 

 

• Clauses: 
(𝑟1 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑟2 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑟3 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) 

∧ (𝑠1 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (𝑠2 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (𝑠3 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) 
∧ (𝑡1 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡2 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡3 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) 
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The Reduction 

• Starting point: Hitting Set instance S, parameter k 

      

     k=2  
 

 

• Clauses: 
(𝑟1 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑟2 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑟3 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) 

∧ (𝑠1 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (𝑠2 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (𝑠3 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) 
∧ (𝑡1 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡2 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡3 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) 

– Can assume X disjoint from red variables 

– X must intersect each of (R,S,T) 
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Better Backdoors 

• Consider the following example: 

 F = ¬𝑎 ∨ 𝑏 ∨ 𝑐 ∧ ¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑎 ∨ 𝑐 ∨ 𝑒  
            ∧ ¬𝑎 ∨ 𝑑 ∨ 𝑒 ∧ 𝑎 ∨ ¬𝑏 ∨ 𝑐 ∨ ¬𝑑 ∨ ¬𝑒

∧ 𝑎 ∨ 𝑏 ∨ ¬𝑐 ∨ ¬𝑒 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∨ 𝑒
∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑐 ∨ 𝑑  

 

• F has no small strong backdoor to Horn or 2CNF 

• But what happens if we try assigning a? 
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Better Backdoors 

a = 1 

 

          

F = 𝑏 ∨ 𝑐 ∧ 𝑏 ∨ 𝑑 ∧ 𝑐 ∨ 𝑒 ∧ 𝑑 ∨ 𝑒  

 

a = 0 

 

 

          F = ¬𝑏 ∨ 𝑐 ∨ ¬𝑑 ∨ ¬𝑒 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑒 ∧ 
¬𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∨ 𝑒 ∧ ¬𝑏 ∨ ¬𝑐 ∨ 𝑑  
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Better Backdoors 

a = 1 

 

          

F = 𝑏 ∨ 𝑐 ∧ 𝑏 ∨ 𝑑 ∧ 𝑐 ∨ 𝑒 ∧ 𝑑 ∨ 𝑒  

 

a = 0 

 

 

          F = ¬𝑏 ∨ 𝑐 ∨ ¬𝑑 ∨ ¬𝑒 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑒 ∧ 
¬𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∨ 𝑒 ∧ ¬𝑏 ∨ ¬𝑐 ∨ 𝑑  
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Heterogeneous Backdoors 

 

• A set X of variables is a heterogeneous backdoor to 
tractable classes {C1,C2,...} if each assignment of X 
results in a formula in some Ci 

– Gaspers, Misra, Ordyniak, Szeider, Zivny (2014) 

 

• As easy to use as standard strong backdoors 

 

• What about detection (finding)? 
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Finding Heterogeneous Backdoors 

 

• Let’s set C = {2CNF,Horn} 

– This means we’ll be searching for a set of variables X such 
that each assignment to X results in a 2CNF or Horn 
formula 

– Main idea: Find an obstruction and branch on how to fix it 
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X = ∅ Obstruction over variables a,b,c 

Branch X:=X U a X:=X U b X:=X U c 
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X = ∅ Obstruction over variables a,b,c 

Branch X:=X U a X:=X U b X:=X U c 



63 

X = {a} Compute all assignments of X 

X[a=1] X[a=0] 

Obstruction over variables d,e,c 

Branch 

X:=X U d X:=X U e X:=X U c 



64 

X = {a,d} Compute all assignments of X 

X[a,d=1] X[a=1,d=0] ... 



Obstructions for {2CNF,Horn} 

• Case 1: clause that is neither 2CNF nor Horn 

– Example: 𝑧 ∨ 𝑦 ∨ 𝑎 ∨ ¬𝑏  

 

– Must contain at least 2 positive literals and have size at 
least 3 

– Obstruction: an arbitrary set of 3 variables occurring in the 
clause, 2 of which occur positively 
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Obstructions for {2CNF,Horn} 

• Case 1: clause that is neither 2CNF nor Horn 

– Example: 𝑧 ∨ 𝑦 ∨ 𝑎 ∨ ¬𝑏  

 

– Must contain at least 2 positive literals and have size at 
least 3 

– Obstruction: an arbitrary set of 3 variables occurring in the 
clause, 2 of which occur positively (here: y, a, b) 

– Branching factor: 3 
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Obstructions for {2CNF,Horn} 

• Case 2: the formula is neither “fully” Horn nor 2CNF 

– Choose 1 clause that’s only Horn and one that’s only 2CNF 

– Example: C1= 𝑧 ∨ ¬𝑦 ∨ ¬𝑎 ∨ ¬𝑏 , C2= (𝑦 ∨ 𝑥) 

 

– X must either transform C1 to 2CNF or C2 to Horn 
• C2 contains at most 2 literals 

• C1 can be large, but any 3 literals form an obstruction to 2CNF 

 

– Branching factor: at most 5  
• here: z, y, a, x 
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Obstructions for {2CNF,Horn} 

• Case 3: the formula is either “fully” Horn or 2CNF 

– Means this branch is ok 

 

 

• Runtime bound:  

 5 ∙ 21𝑛 + 5 ∙ 22𝑛 + 5 ∙ 23𝑛 + ⋯   = 

 5O(k)𝑛 = 2O(k)𝑛 

 

  Complexity map for other islands of   
  tractability is known (FPT / W-hard). 
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Constraint Satisfaction (CSP) 

 

• Introduced by Montanari in 1974 

 

• Focus of intensive research (AI, TCS, Combinatorics, Algebra…) 

 

• Dedicated conference 
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• Instance: I=(V,D,C) where 
– V is a set of variables 

– D is a set of values (the domain) 

– C is a set of constraints 

 

• Each constraint consists of a scope S and relation R 
– S is a tuple of variables (that the constraint applies to) 

– R encodes admissible values of S 

 

 

 
 

 

x y 

0 1 

1 0 

Constraint 
encoding 
XOR(x,y) 

Problem Definition 
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Problem Definition 

• An assignment is a mapping f: V → D  

 

• An assignment satisfies a CSP instance if for each constraint 
(S=(x1,…xr),R) we have (f(x1),…,f(xr)) ∈ R. 

 

• A CSP instance is satisfiable if it has at least one satisfying 
assignment 

 

• The CSP problem asks whether the input instance is satisfiable 

 

• CSP directly generalizes many known NP-complete  problems 
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Example: 3-Coloring 

 

 

 

 
a 

c 

b 

d 

Is it possible to color a,b,c,d by red, blue, green  
so that neighbors always get different colors? 

V={a,b,c,d} 
D={red,blue,green} 
 
C={cab, cac, cbc, cbd, ccd} 
 
Each cxy contains the relation 
 
 
 

x y 

red blue 

blue red 

blue green  

green  blue 

red green  

green red 
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CSP vs SAT 

73 

x1 x2 x3 x4 x5 x6 

0 0 0 0 0 0 

1 1 1 1 1 1 

𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∨ 𝑥4 ∨ 𝑥5 ∨ 𝑥6  

SAT 
 

• Each clause prevents  
1 assignment 

CSP 
 

• Each tuple in a constraint 
enables 1 assignment 



Solving CSP 

 

• Can define graph representations similarly as for SAT 

– Primal graphs, dual graphs, incidence graphs... 

• Can also define backdoors (to some tractable classes) 

 

 

 

• Two cases: bounded vs. unbounded domain 

– Constant-size vs. part of input 
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But do these actually help us solve CSP? 



Unbounded Domain 

• Can encode Multicolored Clique using k variables 

– One variable for each color  

– Constraints encode edges 
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v1 

v2 

v3 

s1 

s2 

s3 

Domain:  {1,2,3} 
Variables:  g, b 

g b 

1 1 

2 2 

3 1 

3 3 



Unbounded Domain 

• Can encode Multicolored Clique using k variables 

– One variable for each color  

– Constraints encode edges between colors (at most k2) 

 

 W[1]-hard parameterized by treewidth 
– Holds for primal, dual, incidence graph representations 

– XP algorithm known 

 

 W[1]-hard parameterized by backdoors 
– Holds regardless of selected island of tractability  

– Brute-force XP algorithm 
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Bounded Domain 

• Can encode MCC using k2 constraints 

– One binary variable for each vertex 

– Constraints ensure only one activated for each color 

– Constraints ensure we get a clique 
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v1 

v2 

v3 

s1 

s2 

s3 

Domain:  {0,1} 
Variables: v1, v2, v3, s1, s2, s3 

v1 v2 v3 s1 s2 s3 

1 0 0 1 0 0 

0 1 0 0 1 0 

0 0 1 1 0 0 

0 0 1 0 0 1 



Bounded Domain 

• Can encode MCC using k2+k constraints 

– One binary variable for each vertex 

– Constraints ensure only one activated for each color 

– Constraints ensure we get a clique 

 

  W[1]-hard par. by incidence and dual treewidth 

 

– FPT par. by primal treewidth (standard dyn. programming) 
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Bounded Domain 

• If we are given a (strong) backdoor to any island C: 

– FPT algorithm – runtime: |D|k ∙ nO(1) 

– Holds for each island of tractability C 

• But what are the islands of tractability for CSP? 

– Main direction: definition via languages 

– Language = set of relations that can be used in constraints 

– Example: Boolean language Γ: 

 

 

 

– CSP[Γ] is precisely 2CNF. 
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0 1 

1 0 

1 1 

0 1 

1 0 

0 0 
0 0 

1 1 

1 0 

0 0 

1 1 

0 1 



Schaefer’s Theorem 

 

 

• Polymorphism: a procedure for constructing a new 
tuple from a fixed number of tuples in a relation 

– New tuple is built “column-by-column” by the same rule 

• Γ satisfies a polymorphism 𝛿 iff Γ is closed under 𝛿 

• Example: Majority polymorphism 

– Take 3 tuples, rule for new columns: take what occurs most 
frequently in that column 

 

82 

For every finite Boolean language Γ: either Γ satisfies one of Schaefer’s 
polymorphisms and CSP[Γ] is in P, or CSP[Γ] is NP-complete. 

0 0 1 

1 1 1 

1 0 0 

1 0 1 



Schaefer’s Theorem: Exercise 

 

 

• Schaefer’s Theorem implies tractability of 2CNF 

– Recall the ternary Majority polymorphism 

– Each 2CNF formula is equivalent to an instance of CSP[Γ]  

 

 

 

– Each of the above relations is closed under Majority  

–      Γ satisfies Majority and CSP[Γ] is in P 
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For every finite Boolean language Γ: either Γ satisfies one of Schaefer’s 
polymorphisms and CSP[Γ] is in P, or CSP[Γ] is NP-complete. 

0 1 

1 0 

1 1 

0 1 

1 0 

0 0 

0 0 

1 1 

1 0 

0 0 

1 1 

0 1 



Schaefer’s Theorem: Islands 

 

 

• Schaefer’s Theorem leads to 6 islands of tractability 

1. 0-valid 

2. 1-valid 

3. Horn 

4. Anti-Horn 

5. Affine 

6. Bijunctive (2CNF) 
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For every finite Boolean language Γ: either Γ satisfies one of Schaefer’s 
polymorphisms and CSP[Γ] is in P, or CSP[Γ] is NP-complete. 



Beyond Schaefer 

• Feder-Vardi Conjecture: extension of Schaefer’s 
Theorem to all finite languages 

• Remark: finite language                bounded domain and arity 

 

 

– Recently settled (Bulatov; Zhuk 2017) 
 

• Bulatov’s Conservative Dichotomy: 

 

 

– Conservative  = includes all unary relations 

            = allows domain restrictions 

85 

For every finite language Γ: either CSP[Γ] is in P or NP-complete. 

For every finite conservative language Γ: either Γ satisfies certain 
polymorphisms and CSP[Γ] is in P, or CSP[Γ] is NP-complete. 

0 

2 



Languages and Backdoors 

 

 

– Recall: variable set X is a strong backdoor if each 
assignment of X results in an instance of CSP[Γ] 

 

– Observation: assume Γ has maximum arity of c and we’re 
searching for a backdoor of size k in instance I 

 

     

86 

For every finite language Γ, strong backdoor detection 
to CSP[Γ] is FPT parameterized by backdoor size. 

v1 v2 v3 v4 v5 v6 

1 0 0 1 0 2 

0 1 0 0 2 0 

2 0 2 0 0 1 

0 2 1 0 0 1 
k = 3, c = 2 

Constraint of arity > k+c 



Languages and Backdoors 

 

 

– Recall: variable set X is a strong backdoor if each 
assignment of X results in an instance of CSP[Γ] 

 

– Observation: assume Γ has maximum arity of c and we’re 
searching for a backdoor of size k in instance I 
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For every finite language Γ, strong backdoor detection 
to CSP[Γ] is FPT parameterized by backdoor size. 

v1 v2 v3 v4 v5 v6 

1 0 0 1 0 2 

0 1 0 0 2 0 

2 0 2 0 0 1 

0 2 1 0 0 1 
k = 3, c = 2 

v4 = 0 
v5 = 0 
v6 = 0 

Constraint of arity > k+c 



Languages and Backdoors 

 

 

– Recall: variable set X is a strong backdoor if each 
assignment of X results in an instance of CSP[Γ] 

 

– Observation: assume Γ has maximum arity of c and we’re 
searching for a backdoor of size k in instance I 
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For every finite language Γ, strong backdoor detection 
to CSP[Γ] is FPT parameterized by backdoor size. 

v1 v2 v3 

k = 3, c = 2 

v4 = 0 
v5 = 0 
v6 = 0 



Languages and Backdoors 

 

 

– Recall: variable set X is a strong backdoor if each 
assignment of X results in an instance of CSP[Γ] 

 

– Observation: assume Γ has maximum arity of c and we’re 
searching for a backdoor of size k in instance I 
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For every finite language Γ, strong backdoor detection 
to CSP[Γ] is FPT parameterized by backdoor size. 

v1 v2 v3 v4 v5 v6 

1 0 0 1 0 2 

0 1 0 0 2 0 

2 0 2 0 0 1 

0 2 1 0 0 1 
k = 3, c = 2 

v4 = 0 
v5 = 0 
v6 = 1 



Languages and Backdoors 

 

 

– Recall: variable set X is a strong backdoor if each 
assignment of X results in an instance of CSP[Γ] 

 

– Observation: assume Γ has maximum arity of c and we’re 
searching for a backdoor of size k in instance I 
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For every finite language Γ, strong backdoor detection 
to CSP[Γ] is FPT parameterized by backdoor size. 

v1 v2 v3 

2 0 2 

0 2 1 
k = 3, c = 2 

v4 = 0 
v5 = 0 
v6 = 1 



Languages and Backdoors 

 

 

– Recall: variable set X is a strong backdoor if each 
assignment of X results in an instance of CSP[Γ] 

 

– Observation: assume Γ has maximum arity of c and we’re 
searching for a backdoor of size k in instance I 

 

           Arity too big; 

           no backdoor of size k  

                to CSP[Γ] can exist 
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For every finite language Γ, strong backdoor detection 
to CSP[Γ] is FPT parameterized by backdoor size. 

v1 v2 v3 v4 v5 v6 

1 0 0 1 0 2 

0 1 0 0 2 0 

2 0 2 0 0 1 

0 2 1 0 0 1 
k = 3, c = 2 

Constraint of arity > k+c 



Languages and Backdoors 

 

 
 

1. Check that each constraint has arity at most c+k 
• k = backdoor size, c = maximum arity in Γ 

2. Proceed similarly as for Heterogeneous Backdoors for SAT  

• Start with X = ∅ 

• Try all assignments of X, if we’re always in CSP[Γ] then  

• If not, then branch over which of the at most  
k+c variables from a bad constraint goes to X 

• Restart 

– Total runtime: kO(k) ⋅ nO(1) 

– Once we have such a backdoor, solving CSP is easily FPT. 
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For every finite language Γ, strong backdoor detection 
to CSP[Γ] is FPT parameterized by backdoor size. 



Advanced Backdoors 

• Backdoors can do much more… 
– Example (Boolean CSP): 

 

 

 

 

 

 
x 

y 

z 
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Advanced Backdoors 

• Backdoors can do much more… 
– Example (Boolean CSP): 

 

 

 

 

 

 

 
x=0 

y=0 

z=0 
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Advanced Backdoors 

• Backdoors can do much more… 
– Example (Boolean CSP): 

 

 

 

 

 

 

 

Horn 
Affine 

Bijunctive 

x=0 

y=0 

z=0 
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Advanced Backdoors 

• Backdoors can do much more… 
– Example (Boolean CSP): 

 

 

 

 

 

 

 

Horn 
Affine 

Bijunctive 
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Advanced Backdoors 

• Backdoors can do much more… 
– Example (Boolean CSP): 

 

 

 

 

 

 

 

• Each connected component could belong to a different island 

Horn 
Affine 

Bijunctive 

If we had such a backdoor, we could solve CSP in FPT time 
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Advanced Backdoors 

• Backdoors can do much more… 
– Example (Boolean CSP): 

 

 

 

 

 

 

 

• Each connected component could belong to a different island 

If we had such a backdoor, we could solve CSP in FPT time 

x=1 

y=1 

z=0 
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Advanced Backdoors 

• Backdoors can do much more… 
– Example (Boolean CSP): 

 

 

 

 

 

 

 

• Each connected component could belong to a different island 

If we had such a backdoor, we could solve CSP in FPT time 

Horn 
Horn 

Affine 

x=1 

y=1 

z=0 
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Advanced Backdoors 

• Backdoors can do much more… 
– Example (Boolean CSP): 

 

 

 

 

 

 

 

• Each connected component could belong to a different island 

If we had such a backdoor, we could solve CSP in FPT time 

Horn 
Horn 

Affine 
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Advanced Backdoors 

• Backdoors can do much more… 
– Example (Boolean CSP): 

 

 

 

 

 

 

 

• Each connected component could belong to a different island 

• Islands can change (like with heterogeneous backdoors) 

If we had such a backdoor, we could solve CSP in FPT time 

Horn 
Horn 

Affine 
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Formalizing 

Definition: The scattered class CSP(Γ1)⊕CSP(Γ2)⊕…⊕CSP(Γj) 
contains all instances where each component belongs to at least 
one of CSP(Γ1),CSP(Γ2),…,CSP(Γj). 

 

• The good:  backdoors to scattered classes  
are as easy to evaluate as standard backdoors 
– try all instantiations  

– for each, we can process every component separately 

Horn 

Affine 

Bijunctive 
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Formalizing 

Definition: The scattered class CSP(Γ1)⊕CSP(Γ2)⊕…⊕CSP(Γj) 
contains all instances where each component belongs to at least 
one of CSP(Γ1),CSP(Γ2),…,CSP(Γj). 

 

• The good:  backdoors to scattered classes  
are as easy to evaluate as standard backdoors 

Horn 

Affine 

Bijunctive 
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Formalizing 

Definition: The scattered class CSP(Γ1)⊕CSP(Γ2)⊕…⊕CSP(Γj) 
contains all instances where each component belongs to at least 
one of CSP(Γ1),CSP(Γ2),…,CSP(Γj). 

 

• The good:  backdoors to scattered classes  
are as easy to evaluate as standard backdoors 

• The bad:  backdoors to scattered classes  
are much more challenging to find than standard backdoors 
– Previously: each variable is used to kill some “bad constraints” 

– Now: variables may also be used to disconnect instance;  
        “bad constraints” no longer defined 

 

Horn 

Affine 

Bijunctive 
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Formalizing 

Definition: The scattered class CSP(Γ1)⊕CSP(Γ2)⊕…⊕CSP(Γj) 
contains all instances where each component belongs to at least 
one of CSP(Γ1),CSP(Γ2),…,CSP(Γj). 

 

• The good:  backdoors to scattered classes  
are as easy to evaluate as standard backdoors 

• The bad:  backdoors to scattered classes  
are much more challenging to find than standard backdoors 

 

Horn 

Affine 

Bijunctive 
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Formalizing 

Definition: The scattered class CSP(Γ1)⊕CSP(Γ2)⊕…⊕CSP(Γj) 
contains all instances where each component belongs to at least 
one of CSP(Γ1),CSP(Γ2),…,CSP(Γj). 

 

• The good:  backdoors to scattered classes  
are as easy to evaluate as standard backdoors 

• The bad:     backdoors to scattered classes  
are much more challenging to find than standard backdoors 

• The pretty:  backdoors to scattered classes  
can be arbitrarily smaller than standard backdoors 

 

 

Horn 

Affine 

Bijunctive 
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Backdoors to Scattered Classes 

 

 

 
 

 

– Ganian, Ramanujan, Szeider 2016 

– Classification result 

 

             Can we get efficient algorithms for specific languages 
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CSP is FPT parameterized by the size of a minimum  
backdoor into CSP(Γ1)⊕CSP(Γ2)⊕…⊕CSP(Γj)  
for any finite, tractable and conservative Γ1,Γ2,…,Γj. 



Large Backdoors 

• Assume we have a backdoor X to a tractable CSP(Γ) which: 
– is large, but 

– has “simple” interactions with the rest of I 

 

• Can we use X to solve I 
efficiently? 
– cannot try all instantiations 

– cannot use incidence treewidth 

– can use dynamic programming 
• Process backdoor variables in sequence 

• Only keep track of feasible  

     instantiations for current pair 

• see if any satisfying instantiation  
survives till the end 
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Large Backdoors 

• Assume we have a backdoor X to a tractable CSP(Γ) which: 
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Formalizing the idea 

Definition: The backdoor treewidth w.r.t. Γ is the minimum 
treewidth of the torso of a backdoor to CSP(Γ). 

 

Torso of a backdoor: 
– collapses everything into the backdoor 

– fully captures interactions between backdoor variables 

 

Torso 

Treewidth? 
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Backdoor Treewidth 

• Evaluation:  
A backdoor of treewidth k into tractable Γ  
can be used to solve CSP in FPT time 
– Dynamic programming (example) 

– Requires bounded domain (like backdoors and treewidth) 

 

• Finding: 
Much more challenging than finding backdoors of size k 
– Backdoors of small treewidth need not be minimum backdoors into Γ  

– Instances could have large treewidth and only large backdoors 

– Even membership in XP is not obvious 
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– Ganian, Ramanujan, Szeider (2017) 

 

– Also works for SAT (e.g., backdoors to Horn)  
without arity restrictions 
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Finding a backdoor to CSP(Γ) of width at most k is 
FPT for every finite language Γ. 

Backdoor Treewidth 



Thank you for 

your attention 
 

Questions? 
 

a 

c 

b 

d 
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Finding small-treewidth backdoors 

• First task: dealing with nice instances 

– an instance I is nice if at least one of these hold: 
• I has small incidence treewidth, or 

• I has a small-treewidth backdoor X with precisely one connected 
component C such that I-C is small 
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huge C 

small 

≤ 𝑓(𝑘) 



Why “nice”? 

Nice instances are easy to solve 

• If incidence treewidth is small… 

– we can use, e.g., Courcelle’s Theorem to find a small-
treewidth backdoor 

– (we could also solve the instance directly if we wanted to) 

 

• If everything outside of C is small… 

– then everything outside of C is actually a small backdoor 

 

Nice instances will also be important later on 
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Dealing with ugly instances 

• ugly instances have a good separation 
(assuming they have a small-treewidth backdoor X) 
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Dealing with ugly instances 

• ugly instances have a good separation 
(assuming they have a small-treewidth backdoor X) 

 

Why? 

• Find biggest component 
C in G-X 

• If C or G-N[C] is small  
then the instance is nice 

• Otherwise we have 
a good separation 

 123 
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G-N[C] 



Finding good separations 

• Using standard techniques, we find a “left-most” 
good separation in FPT time 
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Finite State machinery 

• Our next goal will be to replace the left side with a 
small representative 

 

– Requires development of finite state machinery for CSPs 
capturing contribution to a small-treewidth backdoor 

 

– End result: small set Q of small representatives for all 
possible parts on one side of a separator 

125 125 



Finite State machinery 
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Finite State machinery 

• Our next goal will be to replace the left side with a 
small representative 

 

 

 

 

 

• New instance strictly smaller but equivalent 

– We now restart with new smaller instance 
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Choosing the right representative 

 

 

 

 

 

• How to choose the correct representative from Q? 

– Test the left side against all possible representatives 
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Choosing the right representative 

 

 

 

 

 

• How to choose the correct representative from Q? 

– Test the left side against all possible representatives 

– Can prove that resulting instances contain no good 
separation (w.r.t. slightly bigger constants) 

–  they are nice           can determine how left side interacts 
with all possible representatives 
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Choosing the right representative 

 

 

 

 

 

• How to choose the correct representative from Q? 

 

– Pick representative for left side which interacts the same 
way with all representatives in Q 
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Has small-tw backdoor with Q1, Q4, Q6… 
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Final Recap 

 

 

 

• If I is nice, directly find a small-treewidth backdoor 

• Otherwise, try to find a left-most good separation 

– if it doesn’t exist then there’s no small-treewidth backdoor 

• Determine which representative fits for the left side 

• Use it to obtain an equivalent but smaller instance 

– Restart on new instance 
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Finding a backdoor to CSP(Γ) of width at most k is 
FPT for every finite language Γ. 
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