Backdoors for SAT and CSP

Robert Ganian
PCSS 2017 - September 3, 2017

ac I I I I ALGORITHMS AND
COMPLEXITY GROUP

Overview

* This talk is about:
— The Boolean Satisfiability Problem (SAT)
— The Constraint Satisfaction Problem (CSP)
— Fixed-parameter tractability

* This talk is not about:
— Parameterizing by solution size
— Kernelization
— Model counting

SAT

* Input: a CNF formula F, for instance:
(xVY)AN(=xVzZzVY)A(myV az)
 Terminology:
— variables (3—-x, y, z)
— clauses (3—-(xVy),(=xVzVYy),(=yVaz))
— literals (7—x, y, —x...)
* Question: Is F satisfiable?

— Can you assign variables to 0/1 so that each clause is
satisfied?

SAT

* Input: a CNF formula F, for instance:
(xVY)AN(=xVzZzVY)A(myV az)
 Terminology:
— variables (3—-x, y, z)
— clauses (3—-(xVy),(=xVzVYy),(=yVaz))
— literals (7 —x, y, =x)
* Question: Is F satisfiable?

— Can you assign variables to 0/1 so that each clause is
satisfied?
* Example:x,y=1,z=0

SAT

* Input: a CNF formula F, for instance:
1Avi)AOvovi)AOvl)
 Terminology:
— variables (3—-x, y, z)
— clauses (3—-(xVy),(=xVzVYy),(=yVaz))
— literals (7 —x, y, =x)
* Question: Is F satisfiable?

— Can you assign variables to 0/1 so that each clause is
satisfied?
* Example:x,y=1,z=0

SAT

* Many applications

* One of the best known NP-complete problems

* Dedicated annual conference (SAT)
— Also includes a SAT competition

Solving SAT — Treewidth

e Several graph representations of CNF formulas exist
— Representations capture variable-clause interactions

e SAT is FPT when parameterized by the treewidth of
these graph representations

— Standard dynamic programming

L
— | \ .
tw=1 A

Graph Representations for SAT

* Example:C;=(uVvV-vVvy),C=(-uVvzVv-ay),
C; = (vV-aw),C =WV x), C; = (XV:)/V—|Z)
e (Classical representations:

Clo _Co

/ \ C 1; (;.'1 C's Y Ch

T ~uv \ | / T v
. Cy 'y Cae _Ch

Primal graph Dual graph Incidence graph

e Are there others?

Graph Representations for SAT

* Example:C;=(uVvV-vVvy),C=(-uVvzVv-ay),
C; = (vV-aw),C =WV x), C; = (XV}IV—|Z)

* (Classical representations:

C'2

Primal graph

* New representation:

— Ganian, Szeider 2017

VN

Dual graph

Edge 4mmm) no contradicting literals

L Ca N
/N
C's Y C1
l, i

N\ /

Cy “‘*m-u_!’/ €

Incidence graph

¢ Consensus
graph

Solving SAT — Treewidth

SAT is FPT parameterized by the treewidth of the
primal/dual/incidence/consensus graph.

— Single-exponential runtime
— Better to use incidence graph rather than primal or dual
e Can have much lower treewidth, opposite doesn’t hold

— Good dynamic programming exercise

* Consensus graph case is a bit more complicated

10

Solving SAT without Treewidth

 Tractable classes for SAT were studied for decades
— Some are older than treewidth

* General idea: impose syntactic restrictions on clauses

— Incomparable to the restrictions on variable-clause
interactions imposed by treewidth

* Here, we focus on the two most prominent
polynomial-time tractable classes for SAT:
— Horn
— 2CNF (Krom)

Horn formulas

* Each clause contains at most 1 positive literal

e Example:C,=(=zV=y),C, =V vV ay),
C;=(—uvzv-y)_C=(b),C=({wV-b),

* Solving:
1. Unit propagation

Unit clauses force a certain assignment — apply it

12

Horn formulas

* Each clause contains at most 1 positive literal

e Example:C,=(=zV=y),C, =V vV ay),
C;=(—-uvzv-y),(C=(1)C=(wVal),

* Solving:
1. Unit propagation

Unit clauses force a certain assignment — apply it

13

Horn formulas

* Each clause contains at most 1 positive literal

e Example:C,=(=zV=y),C, =V vV ay),
C;=(—uvzv-y),C=(1),C=(v),

* Solving:
1. Unit propagation

Unit clauses force a certain assignment — apply it

14

Horn formulas

* Each clause contains at most 1 positive literal

* Example:C,=(=zVy),C,=(uValVay),
C,=(—uvzv-y),(C=(1),C=(1),

* Solving:
1. Unit propagation

Unit clauses force a certain assignment — apply it

15

Horn formulas

* Each clause contains at most 1 positive literal

e Example:C,=(=zV y),C,=(uVay),
C;=(auvzVvay),C,=(1),C = (1),

* Solving:
1. Unit propagation

Unit clauses force a certain assignment — apply it

16

Horn formulas

* Each clause contains at most 1 positive literal

e Example:C,=(=zV y),C,=(uVay),
C;=(auvzVvay),C,=(1),C = (1),

* Solving:
1. Unit propagation
 Unit clauses force a certain assignment — apply it
 Afterwards, no unit clauses are left

2. Assign all remaining variables to O

17

Horn formulas

* Each clause contains at most 1 positive literal

« Example: C,=(=0V =0),C,=(0V =0),
C; = (—lO VOV —|O), C, = (1), C. = (1),

* Solving:
1. Unit propagation
 Unit clauses force a certain assignment — apply it
 Afterwards, no unit clauses are left

2. Assign all remaining variables to O

18

2CNF formulas

e Each clause contains at most 2 literals

e Example: (mzVx)A(yVa)A(=zVay)A
(sz)/\(yV—ua)/\(—lzv—lx)

* For solving, we'll need the implication graph
— 2 vertices per variable (positive / negative)
— Edges represent implications arising from clauses

19

Implication Graph

(=zVx)A(yVa)A(=zVay)A(zVYy)
/\(yV—lCl)/\(—lZV—lX)

& ©

& O

ONONONO

Implication Graph

(=zVx)AN(yVa)A(=zVay)A(zVYy)
/\(yv_la)/\(_IZV_IX)

» -x would imply -z

& O

©,

21

Implication Graph

(=zVx)AN(yVa)A(=zVay)A(zVy)
/\(yv_la)/\(_IZV_IX)

ol
L

Implication Graph

(=zVx)AN(yVa)A(=zV-y)A(zVYy)
/\(yv_la)/\(_IZV_IX)

z ©:

,T

l@

Implication Graph

(=zVx)A(yVa)A(=zV-y)A(zVYy)
/\(yv_la)/\(_IZV_IX)

Solving 2CNF Formulas

 Example: (mzVx)A(yVa)A(=zVay)A
(sz)/\ (yV—ICl) A(=zV —x)

e Algorithm:
1. Construct implication graph

Solving 2CNF Formulas

 Example: (mzVx)A(yVa)A(=zVay)A
(sz)/\ (yV—ICl) A(=zV —x)

e Algorithm:
1. Construct implication graph

2. Find strongly connected
components (SCCs)

Solving 2CNF Formulas

 Example: (mzVx)A(yVa)A(=zVay)A
(sz)/\ (yV—ICl) /\(—lZV—|X)

e Algorithm:
1. Construct implication graph RS,

2. Find strongly connected ,---
components (SCCs)

If any SCC contains both
literals for a variable, reject

— o o = o o o o o

Solving 2CNF Formulas

 Example: (mzVx)A(yVa)A(=zVay)A
(sz)/\ (yV—ICl) N (—lZV—|X)

e Algorithm:
1. Construct implication graph RS,

2. Find strongly connected ,---
components (SCCs)

 If any SCC contains both

|

. . . I
literals for a variable, reject , I
I |
I |
|

|

—— o —

3. Start assigning literalsto 1
from SCCs which are sinks

Solving 2CNF Formulas

 Example: (1Vx)A(AVa)A(AIVOAOVI)A
(1 \% —ICl) N (1 \ —|X)

e Algorithm:
1. Construct implication graph RS,

2. Find strongly connected ,---
components (SCCs)

 If any SCC contains both

|

. . . I
literals for a variable, reject , I
I |
I |
|

|

—— o —

3. Start assigning literalsto 1
from SCCs which are sinks

|
|
. Continue until all :

clauses satisfied I

Recap

SAT is polynomial-time tractable on 2CNF and Horn formulas.

* Result not covered by treewidth
— Can easily construct an incidence graph that is a grid

 More general polynomial-time tractable classes exist
— g-Horn, Renamable Horn, Hidden Extended Horn...

* But what does this have to do with PC and
backdoors?

— Backdoors allow us to measure distance to triviality
— Triviality here means one of our tractable classes for SAT

T

I Also called islands of tractability I

30

Backdoor Motivation

* Consider the following formula F:
(—IszVy) A(xV=aa)A (—|ZV—|XV—|y)
ANzVyVa)A(=yVvV—-aVvVx)A(aV-xVy)
 Claim: Fis almost a 2CNF formula
— Just need to branch on assigning a single variable (y)
—y—0:
(mzVx)A(xVaa)A(D)A(EZVa)A(DQ)A(aV —x)

-y —>1:

(DAGVaa)A(mzV=ax)A(D)A(=aVx)A(D)

Strong Backdoors

* Aset X of variables is a strong backdoor to a
tractable class C if each assignment of X results in a
formulain C

* Parameter: size of a smallest strong backdoor to C

* General approach for fixed-parameter SAT solving:

1. Find a size-k strong backdoor to a selected tractable class
C (or identify that it doesn’t exist)

2. Use the strong backdoor to solve the instance

* Q:Why strong?

Weak Backdoors

e A set X of variables is a weak backdoor to a tractable
class Cif there exists an assignment of X which

results in a satisfiable formula in C
J * Example: backdoors to 2CNF, many large clauses that can all be
satisfied by setting a single variable to O

@ Doesn’t exist for NO-instances

Can be arbitrarily smaller than a strong backdoor

@ Detection usually W[2]-hard

‘ In this talk we focus mostly on strong backdoors

33

Using Strong Backdoors

SAT can be solved in time O*(2¥) if a strong backdoor
of size k to a tractable class C is provided on the input

* Simple branching over at most 2k many assignments

Main difficulty: finding a strong backdoor to C
— Algorithms and techniques depend on C

— XP algorithm is trivial (assuming C is polynomial-time
recognizable)

34

Backdoor Detection

* For Horn and 2CNF, we show equivalence to the
simpler notion of variable deletion

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

— Sometimes called a deletion backdoor
— For many classes, these are larger than strong backdoors

Example: (7zVxVY)A(xV=aa)A(=zV axVay)
ANzVvyva)A(myV-aVvVx)A(@aV-xVy)

35

Backdoor Detection

* For Horn and 2CNF, we show equivalence to the
simpler notion of variable deletion

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

— Sometimes called a deletion backdoor
— For many classes, these are larger than strong backdoors

Example: (7zVxVY)A(xV=aa)A(=zV axVay)
ANzVyVa)A(=yVvV—-aVvVx)A(aV-axVy)
— Let’s try deleting x

36

Backdoor Detection

* For Horn and 2CNF, we show equivalence to the
simpler notion of variable deletion

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

— Sometimes called a deletion backdoor
— For many classes, these are larger than strong backdoors

Example: (mzVy)A(xV aa) A(=zV —axV —y)
ANzVvyva)A(myV-aVvVx)A(@aV-xVy)
— Let’s try deleting x

37

Backdoor Detection

* For Horn and 2CNF, we show equivalence to the
simpler notion of variable deletion

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

— Sometimes called a deletion backdoor
— For many classes, these are larger than strong backdoors

Example: (zVyY)A(ma) A(=zV ax V y)
ANzVyVvVa)A(-myV—-aVx)A(aV-xVy)
— Let’s try deleting x

38

Backdoor Detection

 For Horn and 2CNF, we show equivalence to the
simpler notion of variable deletion

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

— Sometimes called a deletion backdoor
— For many classes, these are larger than strong backdoors

Example: (zVy) A (=a) A (=z V —y)
ANzVvyvVa)A(myV-aVvVx)A(aV-xVYy)
— Let’s try deleting x

39

Backdoor Detection

* For Horn and 2CNF, we show equivalence to the
simpler notion of variable deletion

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

— Sometimes called a deletion backdoor
— For many classes, these are larger than strong backdoors

Example: (zVy) A (=a) A (=z V —y)
AzVyVa)A(=yV-aa)A(aV—xVy)
— Let’s try deleting x

40

Backdoor Detection

* For Horn and 2CNF, we show equivalence to the
simpler notion of variable deletion

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

— Sometimes called a deletion backdoor
— For many classes, these are larger than strong backdoors

Example: (zVy) A (=a) A (=z V —y)
AzVvyVvVa)AN(=yV-aa)A(aVy)
— Let’s try deleting x

41

Deletion = Strong Backdoors

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

— X is strong: For each clause d, there is an assignment to X
which doesn’t satisfy d, hence d-X must be Horn/2CNF

— X is a deletion set: For each clause d, we know that d-X is
Horn/2CNF. Each assignment to X will either delete d or
result in d-X for this clause.

42

Backdoor Detection: Horn

 We reduce the deletion problem to Vertex Cover

Example: (=zVxVY)A(xVaa)A(=zV -axVay)
ANzVyvVa)A(myV-aaVvVx)A(aV-xVy)

e Construct a graph G as follows:
— Variables are vertices...

Backdoor Detection: Horn

 We reduce the deletion problem to Vertex Cover

Example: (=zVxVY)A(xVaa)A(=zV -axVay)
ANzVyvVa)A(myV-aaVvVx)A(aV-xVy)

e Construct a graph G as follows:
— Variables are vertices...
— Add edge if both variables occur positively in some clause

Vertex cover in G

!

Deletion backdoor to Horn

Backdoor Detection: 2CNF

 We reduce the deletion problem to 3-Hitting Set
— Note: could also use bounded search trees

Example: (maveVvVcec)A(dVe)A(=bV acVad)
ANdVcecVv-aaVb)AN(bV=aeVa)

* Construct a 3-Hitting Set instance H as follows:
— Ground set is the set of variables
— Target sets are all triples which occur together in a clause

— For our example: {ace}, {fabc}, {abd}, {acd}, {bcd}, {abe}

Hitting Set 4= Deletion backdoor to Horn

Strong Backdoors: Summary

SAT can be solved in time O*(2k) parameterized
by the size of a strong backdoor to Horn.

— Runtime: 0%(1.3%) for finding and then O*(2¥) for using
* Uses Vertex Cover algorithm of Chen, Kanj and Xia [2010]

SAT can be solved in time 07(2.27%) parameterized
by the size of a strong backdoor to 2CNF.

— Runtime: 07(2.27%) for finding and then O*(2¥) for using
* Uses 3-Hitting Set algorithm of Niedermeier, Rossmanith [2003]

46

Intermezzo: Weak BD Detection

 Why is weak backdoor detection harder?

e Recall:

A set X of variables is a weak backdoor to a tractable
class C if there exists an assignment of X which results
in a satisfiable formula in C

Intermezzo: Weak BD Detection

Why is weak backdoor detection harder?

Intuition: weak backdoors can “kill” large
obstructions with a single variable

4

Can’t reliably find small obstructions to branch on

Example: Weak BD detection to Horn is W[2]-hard
Proof: Reduction from Hitting Set

|Genera| template |

The Reduction

e Starting point: Hitting Set instance S, parameter k

R
@ [0/ > k=2
® /7T
s| @ \©

e Elements -> main variables

* For each set (R,S,T), we create k+1 clauses such that:
— they are not Horn
— they can be satisfied by any element (variable) in the set
— they contain auxiliary variables which shouldn’t be in a BD

The Reduction

e Starting point: Hitting Set instance S, parameter k

R
@ [0]/e> k=2
®)71
s| @ ©
 Clauses:

(ryVavbVvVc)AN(r,VaVbVc)A(rs;VaVvVbVrc)
A(s;vbvdve)A(s,VbVvdVve)A(s;VbVdVe)
A(t,VeveV[fIAN(t,VcVeV)A(t;VeVeV()

— Taking any variables other than a,b,c,d,e,f is suboptimal

50

The Reduction

e Starting point: Hitting Set instance S, parameter k

R
Consider a
@ ® @ k=2 Hitting Set
® /)T solution
s| @ ©
 Clauses:

(ryVavbVvVc)AN(r,VaVbVc)A(rs;VaVvVbVrc)
A(s;vbvdve)A(s,VbVvdVve)A(s;VbVdVe)
A(t,VeveV[fIAN(t,VcVeV)A(t;VeVeV()

51

The Reduction

e Starting point: Hitting Set instance S, parameter k

R
Consider a
@ ® @ k=2 Hitting Set
® /)T solution
s| @ ©
 Clauses:

(ryVavbVvVc)AN(r,VaVbVcec)A(rs;VaVvVbVo)
A(s;VbVdVe)A(s,VbVdVe)A(s;VbVdVe)
A(t,VeveV A, VeveVf)A(t;VeVveVf)

52

The Reduction

e Starting point: Hitting Set instance S, parameter k

R
Consider a
@ ® @ k=2 Hitting Set
® /)T solution
s| @ ©
 Clauses:

(r;VvavbV1)A(r,vavVbV1)A(r;vavbvl)
A(s;VBVIVeE)A(s,VBVIVe)A(s;VhV1Ve)
A(t;VIVeVA(E,VIVeV)A(t;VIVeVf)

— We obtain a weak backdoor of size at most k

53

The Reduction

e Starting point: Hitting Set instance S, parameter k

R
Consider a
@ ® @ k=2 Weak Backdoor X
® /7 of size <k
s| @ ©
 Clauses:

(ryVavbVvVc)AN(r,VaVbVc)A(rs;VaVvVbVrc)
A(s;vbvdve)A(s,VbVvdVve)A(s;VbVdVe)
A(t,VeveV[fIAN(t,VcVeV)A(t;VeVeV()

54

The Reduction

e Starting point: Hitting Set instance S, parameter k

R
Consider a
@ ® @ k=2 Weak Backdoor X
® /7 of size <k
s| @ ©
 Clauses:

(ryVavbVvVc)AN(r,VaVbVc)A(rs;VaVvVbVrc)

A(s;VbVdVe)A(s,VbVdVe)A(s,VvbVdVe)

/\(t1VCVer)/\(t2VCVer)/\(t3VCVer)
— Can assume X disjoint from red variables Xis 4

— X must intersect each of (R,S,T) ‘ Hitting Set

55

Better Backdoors

e Consider the following example:

F=(navbVvVc)A(—avbVvd)A(—aVcVe)
AN(mavdve)A(aV-abVcV-adV-e)
ANlavbV-acV=ae)A(aV—=abV-acV-adVe)
A(aV-bV-acvd)

* F has no small strong backdoor to Horn or 2CNF
 But what happens if we try assigning a?

Better Backdoors

a=1

F=(bvo)AVdA) A(cVe)A(dVe)

a=0

4

F=(abVcV-adV-ae)A(bV-acV-e)A
(abV-acVvV-adVve)A(=bV-acVvd)

Better Backdoors

a=1

F=(bvo)AVdA) A(cVe)A(dVe)

!

F=(abVcV-adV-ae)A(bV-acV-e)A
(abV-acVvV-adVve)A(=bV-acVvd)

58

Heterogeneous Backdoors

* A set X of variables is a heterogeneous backdoor to
tractable classes {C,,C,,...} if each assignment of X
results in a formula in some C,

— Gaspers, Misra, Ordyniak, Szeider, Zivny (2014)
e As easy to use as standard strong backdoors

 What about detection (finding)?

Finding Heterogeneous Backdoors

e Let’s set C = {2CNF,Horn}

— This means we’ll be searching for a set of variables X such
that each assignment to X results in a 2CNF or Horn
formula

— Main idea: Find an obstruction and branch on how to fix it

o

Obstruction over variables a,b,c

Branch

61

o

Obstruction over variables a,b,c

Branch

62

Compute all assignments of X

O

Obstruction over variables d,e,c

Branch

63

Compute all assignments of X

64

Obstructions for {2CNF,Horn}

e Case 1: clause that is neither 2CNF nor Horn
— Example: (zVyVaV =b)

— Must contain at least 2 positive literals and have size at
least 3

— Obstruction: an arbitrary set of 3 variables occurring in the
clause, 2 of which occur positively

Obstructions for {2CNF,Horn}

e Case 1: clause that is neither 2CNF nor Horn
— Example: (zVyVaV =b)

— Must contain at least 2 positive literals and have size at
least 3

— Obstruction: an arbitrary set of 3 variables occurring in the
clause, 2 of which occur positively (here: y, a, b)

— Branching factor: 3

Obstructions for {2CNF,Horn}

e Case 2: the formula is neither “fully” Horn nor 2CNF
— Choose 1 clause that’s only Horn and one that’s only 2CNF
— Example: C,=(zV =y V —=aV =b),C=(y Vx)

— X must either transform C, to 2CNF or C, to Horn
* C, contains at most 2 literals
* C, can be large, but any 3 literals form an obstruction to 2CNF

— Branching factor: at most 5

* here:z,vy, a, x

Obstructions for {2CNF,Horn}

e Case 3: the formula is either “fully” Horn or 2CNF

/_\\

— Means this branch is ok

* Runtime bound:
5:2n+5-2n+5-2n+:-))) =
50k = 20(kp

Complexity map for other islands of
tractability is known (FPT / W-hard).

68

Constraint Satisfaction (CSP)

* |ntroduced by Montanariin 1974

* Focus of intensive research (Al, TCS, Combinatorics, Algebra...)

e Dedicated conference

Problem Definition

Instance: I1=(V,D,C) where
— Vs a set of variables
— Dis a set of values (the domain)
— Cis a set of constraints

Each constraint consists of a scope S and relation R

— Sis a tuple of variables (that the constraint applies to)
— R encodes admissible values of S

Constraint
encoding
XOR(x,y)

x|y

70

Problem Definition

An assignment is a mappingf: V> D

An assignment satisfies a CSP instance if for each constraint
(S=(xa,...xr),R) we have (f(x1),...,f(xr)) € R.

A CSP instance is satisfiable if it has at least one satisfying
assignment

The CSP problem asks whether the input instance is satisfiable

CSP directly generalizes many known NP-complete problems

71

Example: 3-Coloring

Is it possible to color a,b,c,d by red, blue, green
so that neighbors always get different colors?

V={a,b,c,d}
D={red,blue,green}

Cz{cab' cac' Cbc' de' ccd}

Each c,, contains the relation

T

red blue
blue red
blue green
green blue
red green

green red
72

CSP vs SAT

SAT

* Each clause prevents
1 assignment

(x; VX, VX3V X, VXV X)

CSP

Each tuple in a constraint
enables 1 assignment

% | x| x| % | %
0 0 0 0 0 0

1 1 1 1 1 1

73

Solving CSP

e Can define graph representations similarly as for SAT
— Primal graphs, dual graphs, incidence graphs...

e Can also define backdoors (to some tractable classes)

But do these actually help us solve CSP? ‘

e Two cases: bounded vs. unbounded domain

— Constant-size vs. part of input

75

Unbounded Domain

* Can encode Multicolored Cligue using k variables
— One variable for each color
— Constraints encode edges

Domain: {1,2,3}
Variables: g, b

1 1
2 2
3 1
3 3

Unbounded Domain

* Can encode Multicolored Clique using k variables
— One variable for each color
— Constraints encode edges between colors (at most k?)

‘ W|[1]-hard parameterized by treewidth

— Holds for primal, dual, incidence graph representations
— XP algorithm known

‘ W[1]-hard parameterized by backdoors

— Holds regardless of selected island of tractability
— Brute-force XP algorithm

77

Bounded Domain

* Can encode MCC using k? constraints
— One binary variable for each vertex
— Constraints ensure only one activated for each color
— Constraints ensure we get a clique

Domain: {0,1}
@ S l Variables: v, v,, Vs, S, S5, S3
v v, v s s | s
v Gy 1 0 0 1 0 0

0 1 0 0 1 0
0 0 1 1 0 0
0 0 1 0 0 1

79

Bounded Domain

* Can encode MCC using k?+k constraints
— One binary variable for each vertex
— Constraints ensure only one activated for each color
— Constraints ensure we get a clique

‘ W|[1]-hard par. by incidence and dual treewidth

— FPT par. by primal treewidth (standard dyn. programming)

Bounded Domain

* If we are given a (strong) backdoor to any island C:
— FPT algorithm — runtime: |D|¥ - n®()
— Holds for each island of tractability C

* But what are the islands of tractability for CSP?

— Main direction: definition via languages
— Language = set of relations that can be used in constraints

— Example: Boolean language I 0 1 0 1
0 o0 0 o0 - Sl
11 11 | S
1 0 0 1

— CSP[I] is precisely 2CNF.

Schaefer’s Theorem

For every finite Boolean language I': either I satisfies one of Schaefer’s
polymorphisms and CSP[l] is in P, or CSP[l] is NP-complete.

* Polymorphism: a procedure for constructing a new
tuple from a fixed number of tuples in a relation

— New tuple is built “column-by-column” by the same rule
e [satisfies a polymorphism ¢ iff [is closed under 6
 Example: Majority polymorphism

— Take 3 tuples, rule for new columns: take what occurs most
frequently in that column

0 0 1

1 1 1 WP 1[0 1

1 0 0

82

Schaefer’s Theorem: Exercise

For every finite Boolean language I': either I satisfies one of Schaefer’s
polymorphisms and CSP[l] is in P, or CSP[l] is NP-complete.

* Schaefer’s Theorem implies tractability of 2CNF
— Recall the ternary Majority polymorphism
— Each 2CNF formula is equivalent to an instance of CSP[[l]

0 0 0 0 0 1 0 1
1 1 1 1 1 0 1 0
1 0 0 1 1 1 0 0

— Each of the above relations is closed under Majority
‘ [satisfies Majority and CSP[l] isin P

83

Schaefer’s Theorem: Islands

For every finite Boolean language I': either I satisfies one of Schaefer’s
polymorphisms and CSP[l] is in P, or CSP[l] is NP-complete.

* Schaefer’s Theorem leads to 6 islands of tractability
1. O-valid

1-valid

Horn

Anti-Horn

Affine

Bijunctive (2CNF)

o vk W N

84

Beyond Schaefer

* Feder-Vardi Conjecture: extension of Schaefer’s

Theorem to all finite languages
* Remark: finite language ‘ bounded domain and arity

‘ For every finite language I': either CSP[I] is in P or NP-complete.

— Recently settled (Bulatov; Zhuk 2017)

* Bulatov’s Conservative Dichotomy:

For every finite conservative language I': either I satisfies certain
polymorphisms and CSP[I] is in P, or CSP[l'] is NP-complete.

— Conservative = includes all unary relations 0
= allows domain restrictions 2

85

Languages and Backdoors

For every finite language I, strong backdoor detection
to CSP[I] is FPT parameterized by backdoor size.

— Recall: variable set X is a strong backdoor if each
assignment of X results in an instance of CSP[[l]

— Observation: assume I has maximum arity of ¢ and we’re
searching for a backdoor of size k in instance |

v v | v | v v e
1 0 0 1 0 2

2 0
0 1
0 1

0 1 0 0
2 0 2 0
0 2 1 0
|k=3,c=2

Constraint of arity > k+c | 86

Languages and Backdoors

For every finite language I, strong backdoor detection
to CSP[I] is FPT parameterized by backdoor size.

— Recall: variable set X is a strong backdoor if each
assignment of X results in an instance of CSP[[l]

— Observation: assume I has maximum arity of ¢ and we’re
searching for a backdoor of size k in instance |

v v v, v v v [e
1 0 0 1 0 2 4

2 0
0 1
0 1

0 1 0 0
2 0 2 0
0 2 1 0

Constraint of arity > k+c | 87

Languages and Backdoors

For every finite language I, strong backdoor detection
to CSP[I] is FPT parameterized by backdoor size.

— Recall: variable set X is a strong backdoor if each
assignment of X results in an instance of CSP[[l]

— Observation: assume I has maximum arity of ¢ and we’re
searching for a backdoor of size k in instance |

88

Languages and Backdoors

For every finite language I, strong backdoor detection
to CSP[I] is FPT parameterized by backdoor size.

— Recall: variable set X is a strong backdoor if each
assignment of X results in an instance of CSP[[l]

— Observation: assume I has maximum arity of ¢ and we’re
searching for a backdoor of size k in instance |

v v v, v v v [e
1 0 0 1 0 2 4

R R O

2
0
0

0 1 0 0
2 0 2 0
0 2 1 0

89

Languages and Backdoors

For every finite language I, strong backdoor detection
to CSP[I] is FPT parameterized by backdoor size.

— Recall: variable set X is a strong backdoor if each
assignment of X results in an instance of CSP[[l]

— Observation: assume I has maximum arity of ¢ and we’re
searching for a backdoor of size k in instance |

v, =0
ve =0
v.=1
2 0 2 6
0 2 1

90

Languages and Backdoors

For every finite language I, strong backdoor detection
to CSP[I] is FPT parameterized by backdoor size.

— Recall: variable set X is a strong backdoor if each
assignment of X results in an instance of CSP[[l]

— Observation: assume I has maximum arity of ¢ and we’re
searching for a backdoor of size k in instance |

v vy v v | v | v | |
1 0 0 1 0 5 Arity too big;
‘ no backdoor of size k

to CSP[l] can exist

R R O

2
0
0

0 1 0 0
2 0 2 0
0 2 1 0
| k=3,c=2 |

Constraint of arity > k+c | o1

Languages and Backdoors

For every finite language I, strong backdoor detection
to CSP[I] is FPT parameterized by backdoor size.

1. Check that each constraint has arity at most c+k
« k=backdoor size, c = maximum arity in I
2. Proceed similarly as for Heterogeneous Backdoors for SAT

« StartwithX=0 Py
 Try all assignments of X, if we’re always in CSP[[] then y

* If not, then branch over which of the at most
k+c variables from a bad constraint goes to X

. Restart
— Total runtime: kCk) . nO1)

— Once we have such a backdoor, solving CSP is easily FPT.

92

Advanced Backdoors

* Backdoors can do much more...

— Example (Boolean CSP):

Nz
T~
— 1y /

Advanced Backdoors

* Backdoors can do much more...

— Example (Boolean CSP):

Advanced Backdoors

e Backdoors can do much more...
— Example (Boolean CSP):

Bijunctive \
z=0

A ~

— y=0 \

Horn
—— x=0 /

Affine

Advanced Backdoors

e Backdoors can do much more...
— Example (Boolean CSP):

Bijunctive

Affine
Horn

Advanced Backdoors

Backdoors can do much more...
— Example (Boolean CSP):

Bijunctive

Affine
Horn

Each connected component could belong to a different island

If we had such a backdoor, we could solve CSP in FPT time

97

Advanced Backdoors

Backdoors can do much more...
— Example (Boolean CSP):

AN
—1Y=1 ~_
— x=1 /

Each connected component could belong to a different island

If we had such a backdoor, we could solve CSP in FPT time

98

Advanced Backdoors

e Backdoors can do much more...
— Example (Boolean CSP):

Affine \ —
\ <

—_— y=1 \
Horn
—1y=1 /

* Each connected component could belong to a different island

Horn

If we had such a backdoor, we could solve CSP in FPT time

Advanced Backdoors

e Backdoors can do much more...
— Example (Boolean CSP):

Affine

Horn
Horn

* Each connected component could belong to a different island

If we had such a backdoor, we could solve CSP in FPT time

100

Advanced Backdoors

e Backdoors can do much more...
— Example (Boolean CSP):

Affine

Horn
Horn

* Each connected component could belong to a different island
* |slands can change (like with heterogeneous backdoors)

If we had such a backdoor, we could solve CSP in FPT time |

101

Formalizing

Definition: The scattered class CSP(I') CSP(I,)®... O CSP(T))
contains all instances where each component belongs to at least
one of CSP(I,),CSP(r,),...,CSP(T;).

Bijunctive

Horn

@ The good: backdoors to scattered classes
J are as easy to evaluate as standard backdoors

— try all instantiations

Affine

— for each, we can process every component separately

102

Formalizing

Definition: The scattered class CSP(I') CSP(I,)®... O CSP(T))
contains all instances where each component belongs to at least
one of CSP(I,),CSP(r,),...,CSP(T;).

Bijunctive

Horn

@ The good: backdoors to scattered classes

w7 are as easy to evaluate as standard backdoors Af
ine

103

Formalizing

Definition: The scattered class CSP(I') CSP(I,)®... O CSP(T))
contains all instances where each component belongs to at least
one of CSP(I,),CSP(r,),...,CSP(T;).

Bijunctive
‘ ; The good: backdoors to scattered classes

' Horn
J are as easy to evaluate as standard backdoors

Affine
e The bad: backdoors to scattered classes
4

| . .
are much more challenging to find than standard backdoors
— Previously: each variable is used to kill some “bad constraints”

— Now: variables may also be used to disconnect instance;
“bad constraints” no longer defined

104

Formalizing

Definition: The scattered class CSP(I') CSP(I,)®... O CSP(T))
contains all instances where each component belongs to at least
one of CSP(I,),CSP(r,),...,CSP(T;).

Bijunctive
Horn

‘ ; The good: backdoors to scattered classes

J are as easy to evaluate as standard backdoors AfF
ine

- The bad: backdoors to scattered classes
@J are much more challenging to find than standard backdoors

105

Formalizing

Definition: The scattered class CSP(I') CSP(I,)®... O CSP(T))
contains all instances where each component belongs to at least
one of CSP(I,),CSP(r,),...,CSP(T;).

Bijunctive

Horn

@ The good: backdoors to scattered classes

&Y are as easy to evaluate as standard backdoors AfF
ine

- The bad: backdoors to scattered classes
@ are much more challenging to find than standard backdoors

{# The pretty: backdoors to scattered classes
can be arbitrarily smaller than standard backdoors

V‘/z

106

Backdoors to Scattered Classes

CSP is FPT parameterized by the size of a minimum

backdoor into CSP(T,)DCSP(I,)D...cDCSP(T;)
for any finite, tractable and conservative Y DY

— Ganian, Ramanujan, Szeider 2016

— Classification result

? Can we get efficient algorithms for specific languages ?

108

Large Backdoors

* Assume we have a backdoor X to a tractable CSP(I') which:

— islarge, but
— has “simple” interactions with the rest of |

 Can we use X to solve |
efficiently?
— cannot try all instantiations
— cannot use incidence treewidth

— can use dynamic programming
* Process backdoor variables in sequence
* Only keep track of feasible

instantiations for current pair

* see if any satisfying instantiation
survives till the end

109

Large Backdoors

* Assume we have a backdoor X to a tractable CSP(I') which:

— islarge, but
— has “simple” interactions with the rest of |

 Can we use X to solve |
efficiently?
— cannot try all instantiations

— cannot use incidence treewidth

— can use dynamic programming
* Process backdoor variables in sequence
* Only keep track of feasible

instantiations for current pair

* see if any satisfying instantiation
survives till the end

110

* Assume we have a backdoor X to a tractable CSP(I') which:

Large Backdoors

— islarge, but

— has “simple” interactions with the rest of |

Can we use X to solve |
efficiently?

— cannot try all instantiations

— cannot use incidence treewidth

— can use dynamic programming
* Process backdoor variables in sequence
* Only keep track of feasible
instantiations for current pair

* see if any satisfying instantiation
survives till the end

x=0

Irrelevant
for future

111

Large Backdoors

* Assume we have a backdoor X to a tractable CSP(I') which:
— islarge, but
— has “simple” interactions with the rest of |

e Can we use X to solvel
efficiently?

— cannot try all instantiations

— cannot use incidence treewidth - = o o @ X
— can use dynamic programming o

* Process backdoor variables in sequence _

* Only keep track of feasible e

instantiations for current pair

* see if any satisfying instantiation
survives till the end

112

Large Backdoors

* Assume we have a backdoor X to a tractable CSP(I') which:
— islarge, but
— has “simple” interactions with the rest of |

e Can we use X tosolvel
efficiently? gl

— cannot try all instantiations Zé}@‘

— cannot use incidence treewidth o o @ X

— can use dynamic programming

* Process backdoor variables in sequence

* Only keep track of feasible
instantiations for current pair

* see if any satisfying instantiation
survives till the end

113

Large Backdoors

* Assume we have a backdoor X to a tractable CSP(I') which:
— islarge, but
— has “simple” interactions with the rest of |

e Can we use Xtosolvel
efficiently? =0T

— cannot try all instantiations Z%}/
— cannot use incidence treewidth — o o @ X
— can use dynamic programming i

* Process backdoor variables in sequence

* Only keep track of feasible e

instantiations for current pair

* see if any satisfying instantiation
survives till the end

114

Large Backdoors

* Assume we have a backdoor X to a tractable CSP(I') which:
— islarge, but
— has “simple” interactions with the rest of |

e Can we use Xtosolvel
efficiently? =0T

— cannot try all instantiations z%;/

— cannot use incidence treewidth N @y X

— can use dynamic programming
* Process backdoor variables in sequence
* Only keep track of feasible
instantiations for current pair

* see if any satisfying instantiation
survives till the end

115

Formalizing the idea

Definition: The backdoor treewidth w.r.t. I is the minimum
treewidth of the torso of a backdoor to CSP(T).

Torso of a backdoor:
— collapses everything into the backdoor
— fully captures interactions between backdoor variables

|Treewidth? |

116

Backdoor Treewidth

e Evaluation:
A backdoor of treewidth k into tractable I
can be used to solve CSP in FPT time

— Dynamic programming (example)

— Requires bounded domain (like backdoors and treewidth)

* Finding:
Much more challenging than finding backdoors of size k
— Backdoors of small treewidth need not be minimum backdoors into T
— Instances could have large treewidth and only large backdoors
— Even membership in XP is not obvious

117

Backdoor Treewidth

Finding a backdoor to CSP(I') of width at most k is
FPT for every finite language I.

— Ganian, Ramanujan, Szeider (2017)

— Also works for SAT (e.g., backdoors to Horn)
without arity restrictions

118

ﬁ”g
ﬁﬁ} Thank you for 9‘ >@
2L

your attention

USE
IBACKDOOR : p)
| > Questions:

i NO EXCEPTIONS

y

®
@

fo

119

Finding small-treewidth backdoors

* First task: dealing with nice instances
— an instance |l is nice if at least one of these hold:

* | has small incidence treewidth, or

I —5
‘ S f(k) | ¢ Ihasasmall-treewidth backdoor X with precisely one connected
component C such that I-C is small

huge C

120

Why “nice”?

Nice instances are easy to solve
* If incidence treewidth is small...

— we can use, e.g., Courcelle’s Theorem to find a small-
treewidth backdoor

— (we could also solve the instance directly if we wanted to)

* If everything outside of Cis small...
— then everything outside of Cis actually a small backdoor

Nice instances will also be important later on

Dealing with ugly instances

* ugly instances have a good separation
(assuming they have a small-treewidth backdoor X)

small
separator

| big parts |

122

Dealing with ugly instances

* ugly instances have a good separation
(assuming they have a small-treewidth backdoor X)

Why? lG-N[c] |

* Find biggest component
Cin G-X

* If Cor G-N[C] is small
then the instance is nice

* Otherwise we have
a good separation

Finding good separations

e Using standard techniques, we find a “left-most”

good separation in FPT time

no good separation |

small

separator

| big parts |

124

Finite State machinery

* Our next goal will be to replace the left side with a
small representative

— Requires development of finite state machinery for CSPs
capturing contribution to a small-treewidth backdoor

— End result: small set Q of small representatives for all
possible parts on one side of a separator

125

Finite State machinery

* Our next goal will be to replace the left side with a
small representative

/4 —

126

Finite State machinery

* Our next goal will be to replace the left side with a
small representative

Q\
small ——
N —O -

* New instance strictly smaller but equivalent

— We now restart with new smaller instance

127

Choosing the right representative

s
i

no good separation |

* How to choose the correct representative from Q?
— Test the left side against all possible representatives

128

Choosing the right representative

Q1l, Q2...

A

no good separation |

* How to choose the correct representative from Q?
— Test the left side against all possible representatives

— Can prove that resulting instances contain no good
separation (w.r.t. slightly bigger constants)

mmm) they are nice ssmp can determine how left side interacts
with all possible representatives

129

Choosing the right representative

o B ai, Q2..

Has small-tw backdoor with Q1, Q4, Q6... |
* How to choose the correct representative from Q?

A

— Pick representative for left side which interacts the same
way with all representatives in Q

130

Final Recap

Finding a backdoor to CSP(I') of width at most k is
FPT for every finite language I.

If 1 is nice, directly find a small-treewidth backdoor
Otherwise, try to find a left-most good separation

— if it doesn’t exist then there’s no small-treewidth backdoor

Determine which representative fits for the left side

Use it to obtain an equivalent but smaller instance

— Restart on new instance

131

ﬁ”g
ﬁﬁ} Thank you for 9‘ >@
2L

your attention

USE
IBACKDOOR : p)
| > Questions:

i NO EXCEPTIONS

y

®
@

fo

132

