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Overview

* This talk is about:
— The Boolean Satisfiability Problem (SAT)
— The Constraint Satisfaction Problem (CSP)
— Fixed-parameter tractability

* This talk is not about:
— Parameterizing by solution size
— Kernelization
— Model counting




SAT

* Input: a CNF formula F, for instance:
(xVY)AN(=xVzZzVY)A(myV az)
 Terminology:
— variables (3—-x, y, z)
— clauses (3—-(xVy),(=xVzVYy),(=yVaz))
— literals (7—x, y, —x...)
* Question: Is F satisfiable?

— Can you assign variables to 0/1 so that each clause is
satisfied?




SAT

* Input: a CNF formula F, for instance:
(xVY)AN(=xVzZzVY)A(myV az)
 Terminology:
— variables (3—-x, y, z)
— clauses (3—-(xVy),(=xVzVYy),(=yVaz))
— literals (7 —x, y, =x)
* Question: Is F satisfiable?

— Can you assign variables to 0/1 so that each clause is
satisfied?
* Example:x,y=1,z=0




SAT

* Input: a CNF formula F, for instance:
1Avi)AOvovi)AOvl)
 Terminology:
— variables (3—-x, y, z)
— clauses (3—-(xVy),(=xVzVYy),(=yVaz))
— literals (7 —x, y, =x)
* Question: Is F satisfiable?

— Can you assign variables to 0/1 so that each clause is
satisfied?
* Example:x,y=1,z=0




SAT

* Many applications

* One of the best known NP-complete problems

* Dedicated annual conference (SAT)
— Also includes a SAT competition




Solving SAT — Treewidth

e Several graph representations of CNF formulas exist
— Representations capture variable-clause interactions

e SAT is FPT when parameterized by the treewidth of
these graph representations

— Standard dynamic programming
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Graph Representations for SAT

* Example:C;=(uVvV-vVvy),C=(-uVvzVv-ay),
C; = (vV-aw),C =WV x), C; = (XV:)/V—|Z)
e (Classical representations:
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Primal graph Dual graph Incidence graph

e Are there others?



Graph Representations for SAT

* Example:C;=(uVvV-vVvy),C=(-uVvzVv-ay),
C; = (vV-aw),C =WV x), C; = (XV}IV—|Z)

* (Classical representations:
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Primal graph

* New representation:

— Ganian, Szeider 2017
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Solving SAT — Treewidth

SAT is FPT parameterized by the treewidth of the
primal/dual/incidence/consensus graph.

— Single-exponential runtime
— Better to use incidence graph rather than primal or dual
e Can have much lower treewidth, opposite doesn’t hold

— Good dynamic programming exercise

* Consensus graph case is a bit more complicated
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Solving SAT without Treewidth

 Tractable classes for SAT were studied for decades
— Some are older than treewidth

* General idea: impose syntactic restrictions on clauses

— Incomparable to the restrictions on variable-clause
interactions imposed by treewidth

* Here, we focus on the two most prominent
polynomial-time tractable classes for SAT:
— Horn
— 2CNF (Krom)



Horn formulas

* Each clause contains at most 1 positive literal

e Example:C,=(=zV=y),C, =V vV ay),
C;=(—uvzv-y)_C=(b),C=({wV-b),

* Solving:
1. Unit propagation

Unit clauses force a certain assignment — apply it
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Horn formulas

* Each clause contains at most 1 positive literal

e Example:C,=(=zV=y),C, =V vV ay),
C;=(—-uvzv-y),(C=(1)C=(wVal),

* Solving:
1. Unit propagation

Unit clauses force a certain assignment — apply it
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Horn formulas

* Each clause contains at most 1 positive literal

e Example:C,=(=zV=y),C, =V vV ay),
C;=(—uvzv-y),C=(1),C=(v),

* Solving:
1. Unit propagation

Unit clauses force a certain assignment — apply it
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Horn formulas

* Each clause contains at most 1 positive literal

* Example:C,=(=zVy),C,=(uValVay),
C,=(—uvzv-y),(C=(1),C=(1),

* Solving:
1. Unit propagation

Unit clauses force a certain assignment — apply it
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Horn formulas

* Each clause contains at most 1 positive literal

e Example:C,=(=zV y),C,=(uVay),
C;=(auvzVvay),C,=(1),C = (1),

* Solving:
1. Unit propagation

Unit clauses force a certain assignment — apply it
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Horn formulas

* Each clause contains at most 1 positive literal

e Example:C,=(=zV y),C,=(uVay),
C;=(auvzVvay),C,=(1),C = (1),

* Solving:
1. Unit propagation
 Unit clauses force a certain assignment — apply it
 Afterwards, no unit clauses are left

2. Assign all remaining variables to O
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Horn formulas

* Each clause contains at most 1 positive literal

« Example: C,=(=0V =0),C,=(0V =0),
C; = (—lO VOV —|O), C, = (1), C. = (1),

* Solving:
1. Unit propagation
 Unit clauses force a certain assignment — apply it
 Afterwards, no unit clauses are left

2. Assign all remaining variables to O
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2CNF formulas

e Each clause contains at most 2 literals

e Example: (mzVx)A(yVa)A(=zVay)A
(sz)/\(yV—ua)/\(—lzv—lx)

* For solving, we'll need the implication graph
— 2 vertices per variable (positive / negative)
— Edges represent implications arising from clauses
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Implication Graph

(=zVx)A(yVa)A(=zVay)A(zVYy)
/\(yV—lCl)/\(—lZV—lX)
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Implication Graph

(=zVx)AN(yVa)A(=zVay)A(zVYy)
/\(yv_la)/\(_IZV_IX)

» -x would imply -z

& O

©,
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Implication Graph

(=zVx)AN(yVa)A(=zVay)A(zVy)
/\(yv_la)/\(_IZV_IX)
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Implication Graph

(=zVx)AN(yVa)A(=zV-y)A(zVYy)
/\(yv_la)/\(_IZV_IX)
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Implication Graph

(=zVx)A(yVa)A(=zV-y)A(zVYy)
/\(yv_la)/\(_IZV_IX)




Solving 2CNF Formulas

 Example: (mzVx)A(yVa)A(=zVay)A
(sz)/\ (yV—ICl) A(=zV —x)

e Algorithm:
1. Construct implication graph




Solving 2CNF Formulas

 Example: (mzVx)A(yVa)A(=zVay)A
(sz)/\ (yV—ICl) A(=zV —x)

e Algorithm:
1. Construct implication graph

2. Find strongly connected
components (SCCs)




Solving 2CNF Formulas

 Example: (mzVx)A(yVa)A(=zVay)A
(sz)/\ (yV—ICl) /\(—lZV—|X)

e Algorithm:
1. Construct implication graph RS,

2. Find strongly connected ,---
components (SCCs)

If any SCC contains both
literals for a variable, reject

— o o = o o o o o




Solving 2CNF Formulas

 Example: (mzVx)A(yVa)A(=zVay)A
(sz)/\ (yV—ICl) N (—lZV—|X)

e Algorithm:
1. Construct implication graph RS,

2. Find strongly connected ,---
components (SCCs)

 If any SCC contains both

|

. . . I
literals for a variable, reject , I
I |
I |
|

|

—— o —

3. Start assigning literalsto 1
from SCCs which are sinks




Solving 2CNF Formulas

 Example: (1Vx)A(AVa)A(AIVOAOVI)A
(1 \% —ICl) N (1 \ —|X)

e Algorithm:
1. Construct implication graph RS,

2. Find strongly connected ,---
components (SCCs)

 If any SCC contains both

|

. . . I
literals for a variable, reject , I
I |
I |
|

|

—— o —

3. Start assigning literalsto 1
from SCCs which are sinks

|
|
. Continue until all :

clauses satisfied I




Recap

SAT is polynomial-time tractable on 2CNF and Horn formulas.

* Result not covered by treewidth
— Can easily construct an incidence graph that is a grid

 More general polynomial-time tractable classes exist
— g-Horn, Renamable Horn, Hidden Extended Horn...

* But what does this have to do with PC and
backdoors?

— Backdoors allow us to measure distance to triviality
— Triviality here means one of our tractable classes for SAT

T

I Also called islands of tractability I
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Backdoor Motivation

* Consider the following formula F:
(—IszVy) A(xV=aa)A (—|ZV—|XV—|y)
ANzVyVa)A(=yVvV—-aVvVx)A(aV-xVy)
 Claim: Fis almost a 2CNF formula
— Just need to branch on assigning a single variable (y)
—y—0:
(mzVx)A(xVaa)A(D)A(EZVa)A(DQ)A(aV —x)

-y —>1:

(DAGVaa)A(mzV=ax)A(D)A(=aVx)A(D)



Strong Backdoors

* Aset X of variables is a strong backdoor to a
tractable class C if each assignment of X results in a
formulain C

* Parameter: size of a smallest strong backdoor to C

* General approach for fixed-parameter SAT solving:

1. Find a size-k strong backdoor to a selected tractable class
C (or identify that it doesn’t exist)

2. Use the strong backdoor to solve the instance

* Q:Why strong?



Weak Backdoors

e A set X of variables is a weak backdoor to a tractable
class Cif there exists an assignment of X which

results in a satisfiable formula in C
J * Example: backdoors to 2CNF, many large clauses that can all be
satisfied by setting a single variable to O

@ Doesn’t exist for NO-instances

Can be arbitrarily smaller than a strong backdoor

@ Detection usually W[2]-hard

‘ In this talk we focus mostly on strong backdoors
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Using Strong Backdoors

SAT can be solved in time O*(2¥) if a strong backdoor
of size k to a tractable class C is provided on the input

* Simple branching over at most 2k many assignments

Main difficulty: finding a strong backdoor to C
— Algorithms and techniques depend on C

— XP algorithm is trivial (assuming C is polynomial-time
recognizable)
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Backdoor Detection

* For Horn and 2CNF, we show equivalence to the
simpler notion of variable deletion

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

— Sometimes called a deletion backdoor
— For many classes, these are larger than strong backdoors

Example: (7zVxVY)A(xV=aa)A(=zV axVay)
ANzVvyva)A(myV-aVvVx)A(@aV-xVy)
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Backdoor Detection

* For Horn and 2CNF, we show equivalence to the
simpler notion of variable deletion

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

— Sometimes called a deletion backdoor
— For many classes, these are larger than strong backdoors

Example: (7zVxVY)A(xV=aa)A(=zV axVay)
ANzVyVa)A(=yVvV—-aVvVx)A(aV-axVy)
— Let’s try deleting x
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Backdoor Detection

* For Horn and 2CNF, we show equivalence to the
simpler notion of variable deletion

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

— Sometimes called a deletion backdoor
— For many classes, these are larger than strong backdoors

Example: (mzVy)A(xV aa) A(=zV —axV —y)
ANzVvyva)A(myV-aVvVx)A(@aV-xVy)
— Let’s try deleting x
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Backdoor Detection

* For Horn and 2CNF, we show equivalence to the
simpler notion of variable deletion

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

— Sometimes called a deletion backdoor
— For many classes, these are larger than strong backdoors

Example: (zVyY)A(ma) A(=zV ax V y)
ANzVyVvVa)A(-myV—-aVx)A(aV-xVy)
— Let’s try deleting x
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Backdoor Detection

 For Horn and 2CNF, we show equivalence to the
simpler notion of variable deletion

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

— Sometimes called a deletion backdoor
— For many classes, these are larger than strong backdoors

Example: (zVy) A (=a) A (=z V —y)
ANzVvyvVa)A(myV-aVvVx)A(aV-xVYy)
— Let’s try deleting x
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Backdoor Detection

* For Horn and 2CNF, we show equivalence to the
simpler notion of variable deletion

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

— Sometimes called a deletion backdoor
— For many classes, these are larger than strong backdoors

Example: (zVy) A (=a) A (=z V —y)
AzVyVa)A(=yV-aa)A(aV—xVy)
— Let’s try deleting x
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Backdoor Detection

* For Horn and 2CNF, we show equivalence to the
simpler notion of variable deletion

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

— Sometimes called a deletion backdoor
— For many classes, these are larger than strong backdoors

Example: (zVy) A (=a) A (=z V —y)
AzVvyVvVa)AN(=yV-aa)A(aVy)
— Let’s try deleting x

41



Deletion = Strong Backdoors

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

— X is strong: For each clause d, there is an assignment to X
which doesn’t satisfy d, hence d-X must be Horn/2CNF

— X is a deletion set: For each clause d, we know that d-X is
Horn/2CNF. Each assignment to X will either delete d or
result in d-X for this clause.
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Backdoor Detection: Horn

 We reduce the deletion problem to Vertex Cover

Example: (=zVxVY)A(xVaa)A(=zV -axVay)
ANzVyvVa)A(myV-aaVvVx)A(aV-xVy)

e Construct a graph G as follows:
— Variables are vertices...



Backdoor Detection: Horn

 We reduce the deletion problem to Vertex Cover

Example: (=zVxVY)A(xVaa)A(=zV -axVay)
ANzVyvVa)A(myV-aaVvVx)A(aV-xVy)

e Construct a graph G as follows:
— Variables are vertices...
— Add edge if both variables occur positively in some clause

Vertex cover in G

!

Deletion backdoor to Horn




Backdoor Detection: 2CNF

 We reduce the deletion problem to 3-Hitting Set
— Note: could also use bounded search trees

Example: (maveVvVcec)A(dVe)A(=bV acVad)
ANdVcecVv-aaVb)AN(bV=aeVa)

* Construct a 3-Hitting Set instance H as follows:
— Ground set is the set of variables
— Target sets are all triples which occur together in a clause

— For our example: {ace}, {fabc}, {abd}, {acd}, {bcd}, {abe}

Hitting Set 4= Deletion backdoor to Horn



Strong Backdoors: Summary

SAT can be solved in time O*(2k) parameterized
by the size of a strong backdoor to Horn.

— Runtime: 0%(1.3%) for finding and then O*(2¥) for using
* Uses Vertex Cover algorithm of Chen, Kanj and Xia [2010]

SAT can be solved in time 07(2.27%) parameterized
by the size of a strong backdoor to 2CNF.

— Runtime: 07(2.27%) for finding and then O*(2¥) for using
* Uses 3-Hitting Set algorithm of Niedermeier, Rossmanith [2003]
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Intermezzo: Weak BD Detection

 Why is weak backdoor detection harder?

e Recall:

A set X of variables is a weak backdoor to a tractable
class C if there exists an assignment of X which results
in a satisfiable formula in C



Intermezzo: Weak BD Detection

Why is weak backdoor detection harder?

Intuition: weak backdoors can “kill” large
obstructions with a single variable

4

Can’t reliably find small obstructions to branch on

Example: Weak BD detection to Horn is W[2]-hard
Proof: Reduction from Hitting Set

|Genera| template |




The Reduction

e Starting point: Hitting Set instance S, parameter k

R
@ [0/ > k=2
® /7T
s| @ \©

e Elements -> main variables

* For each set (R,S,T), we create k+1 clauses such that:
— they are not Horn
— they can be satisfied by any element (variable) in the set
— they contain auxiliary variables which shouldn’t be in a BD



The Reduction

e Starting point: Hitting Set instance S, parameter k

R
@ [0]/e> k=2
® )71
s| @ ©
 Clauses:

(ryVavbVvVc)AN(r,VaVbVc)A(rs;VaVvVbVrc)
A(s;vbvdve)A(s,VbVvdVve)A(s;VbVdVe)
A(t,VeveV[fIAN(t,VcVeV)A(t;VeVeV()

— Taking any variables other than a,b,c,d,e,f is suboptimal
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The Reduction

e Starting point: Hitting Set instance S, parameter k

R
Consider a
@ ® @ k=2 Hitting Set
® /)T solution
s| @ ©
 Clauses:

(ryVavbVvVc)AN(r,VaVbVc)A(rs;VaVvVbVrc)
A(s;vbvdve)A(s,VbVvdVve)A(s;VbVdVe)
A(t,VeveV[fIAN(t,VcVeV)A(t;VeVeV()
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The Reduction

e Starting point: Hitting Set instance S, parameter k

R
Consider a
@ ® @ k=2 Hitting Set
® /)T solution
s| @ ©
 Clauses:

(ryVavbVvVc)AN(r,VaVbVcec)A(rs;VaVvVbVo)
A(s;VbVdVe)A(s,VbVdVe)A(s;VbVdVe)
A(t,VeveV A, VeveVf)A(t;VeVveVf)
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The Reduction

e Starting point: Hitting Set instance S, parameter k

R
Consider a
@ ® @ k=2 Hitting Set
® /)T solution
s| @ ©
 Clauses:

(r;VvavbV1)A(r,vavVbV1)A(r;vavbvl)
A(s;VBVIVeE)A(s,VBVIVe)A(s;VhV1Ve)
A(t;VIVeVA(E,VIVeV)A(t;VIVeVf)

— We obtain a weak backdoor of size at most k

53



The Reduction

e Starting point: Hitting Set instance S, parameter k

R
Consider a
@ ® @ k=2 Weak Backdoor X
® /7 of size <k
s| @ ©
 Clauses:

(ryVavbVvVc)AN(r,VaVbVc)A(rs;VaVvVbVrc)
A(s;vbvdve)A(s,VbVvdVve)A(s;VbVdVe)
A(t,VeveV[fIAN(t,VcVeV)A(t;VeVeV()
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The Reduction

e Starting point: Hitting Set instance S, parameter k

R
Consider a
@ ® @ k=2 Weak Backdoor X
® /7 of size <k
s| @ ©
 Clauses:

(ryVavbVvVc)AN(r,VaVbVc)A(rs;VaVvVbVrc)

A(s;VbVdVe)A(s,VbVdVe)A(s,VvbVdVe)

/\(t1VCVer)/\(t2VCVer)/\(t3VCVer)
— Can assume X disjoint from red variables Xis 4

— X must intersect each of (R,S,T) ‘ Hitting Set
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Better Backdoors

e Consider the following example:

F=(navbVvVc)A(—avbVvd)A(—aVcVe)
AN(mavdve)A(aV-abVcV-adV-e)
ANlavbV-acV=ae)A(aV—=abV-acV-adVe)
A(aV-bV-acvd)

* F has no small strong backdoor to Horn or 2CNF
 But what happens if we try assigning a?



Better Backdoors

a=1

F=(bvo)AVdA) A(cVe)A(dVe)

a=0

4

F=(abVcV-adV-ae)A(bV-acV-e)A
(abV-acVvV-adVve)A(=bV-acVvd)



Better Backdoors

a=1

F=(bvo)AVdA) A(cVe)A(dVe)

!

F=(abVcV-adV-ae)A(bV-acV-e)A
(abV-acVvV-adVve)A(=bV-acVvd)
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Heterogeneous Backdoors

* A set X of variables is a heterogeneous backdoor to
tractable classes {C,,C,,...} if each assignment of X
results in a formula in some C,

— Gaspers, Misra, Ordyniak, Szeider, Zivny (2014)
e As easy to use as standard strong backdoors

 What about detection (finding)?



Finding Heterogeneous Backdoors

e Let’s set C = {2CNF,Horn}

— This means we’ll be searching for a set of variables X such
that each assignment to X results in a 2CNF or Horn
formula

— Main idea: Find an obstruction and branch on how to fix it



o

Obstruction over variables a,b,c

Branch
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o

Obstruction over variables a,b,c

Branch

62



Compute all assignments of X

O

Obstruction over variables d,e,c

Branch

63



Compute all assignments of X

64



Obstructions for {2CNF,Horn}

e Case 1: clause that is neither 2CNF nor Horn
— Example: (zVyVaV =b)

— Must contain at least 2 positive literals and have size at
least 3

— Obstruction: an arbitrary set of 3 variables occurring in the
clause, 2 of which occur positively



Obstructions for {2CNF,Horn}

e Case 1: clause that is neither 2CNF nor Horn
— Example: (zVyVaV =b)

— Must contain at least 2 positive literals and have size at
least 3

— Obstruction: an arbitrary set of 3 variables occurring in the
clause, 2 of which occur positively (here: y, a, b)

— Branching factor: 3



Obstructions for {2CNF,Horn}

e Case 2: the formula is neither “fully” Horn nor 2CNF
— Choose 1 clause that’s only Horn and one that’s only 2CNF
— Example: C,=(zV =y V —=aV =b),C=(y Vx)

— X must either transform C, to 2CNF or C, to Horn
* C, contains at most 2 literals
* C, can be large, but any 3 literals form an obstruction to 2CNF

— Branching factor: at most 5

* here:z,vy, a, x



Obstructions for {2CNF,Horn}

e Case 3: the formula is either “fully” Horn or 2CNF

/_\\

— Means this branch is ok

* Runtime bound:
5:2n+5-2n+5-2n+:-))) =
50k = 20(kp

Complexity map for other islands of
tractability is known (FPT / W-hard).
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Constraint Satisfaction (CSP)

* |ntroduced by Montanariin 1974

* Focus of intensive research (Al, TCS, Combinatorics, Algebra...)

e Dedicated conference




Problem Definition

Instance: I1=(V,D,C) where
— Vs a set of variables
— Dis a set of values (the domain)
— Cis a set of constraints

Each constraint consists of a scope S and relation R

— Sis a tuple of variables (that the constraint applies to)
— R encodes admissible values of S

Constraint
encoding
XOR(x,y)

x|y

70



Problem Definition

An assignment is a mappingf: V> D

An assignment satisfies a CSP instance if for each constraint
(S=(xa,...xr),R) we have (f(x1),...,f(xr)) € R.

A CSP instance is satisfiable if it has at least one satisfying
assignment

The CSP problem asks whether the input instance is satisfiable

CSP directly generalizes many known NP-complete problems
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Example: 3-Coloring

Is it possible to color a,b,c,d by red, blue, green
so that neighbors always get different colors?

V={a,b,c,d}
D={red,blue,green}

Cz{cab' cac' Cbc' de' ccd}

Each c,, contains the relation

T

red blue
blue red
blue green
green blue
red green

green red
72



CSP vs SAT

SAT

* Each clause prevents
1 assignment

(x; VX, VX3V X, VXV X)

CSP

Each tuple in a constraint
enables 1 assignment

% | x| x| % | %
0 0 0 0 0 0

1 1 1 1 1 1
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Solving CSP

e Can define graph representations similarly as for SAT
— Primal graphs, dual graphs, incidence graphs...

e Can also define backdoors (to some tractable classes)

But do these actually help us solve CSP? ‘

e Two cases: bounded vs. unbounded domain

— Constant-size vs. part of input
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Unbounded Domain

* Can encode Multicolored Cligue using k variables
— One variable for each color
— Constraints encode edges

Domain: {1,2,3}
Variables: g, b

1 1
2 2
3 1
3 3



Unbounded Domain

* Can encode Multicolored Clique using k variables
— One variable for each color
— Constraints encode edges between colors (at most k?)

‘ W|[1]-hard parameterized by treewidth

— Holds for primal, dual, incidence graph representations
— XP algorithm known

‘ W[1]-hard parameterized by backdoors

— Holds regardless of selected island of tractability
— Brute-force XP algorithm
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Bounded Domain

* Can encode MCC using k? constraints
— One binary variable for each vertex
— Constraints ensure only one activated for each color
— Constraints ensure we get a clique

Domain: {0,1}
@ S l Variables: v, v,, Vs, S, S5, S3
v v, v s s | s
v Gy 1 0 0 1 0 0

0 1 0 0 1 0
0 0 1 1 0 0
0 0 1 0 0 1
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Bounded Domain

* Can encode MCC using k?+k constraints
— One binary variable for each vertex
— Constraints ensure only one activated for each color
— Constraints ensure we get a clique

‘ W|[1]-hard par. by incidence and dual treewidth

— FPT par. by primal treewidth (standard dyn. programming)



Bounded Domain

* If we are given a (strong) backdoor to any island C:
— FPT algorithm — runtime: |D|¥ - n®()
— Holds for each island of tractability C

* But what are the islands of tractability for CSP?

— Main direction: definition via languages
— Language = set of relations that can be used in constraints

— Example: Boolean language I 0 1 0 1
0 o0 0 o0 - Sl
11 11 | S
1 0 0 1

— CSP[I] is precisely 2CNF.



Schaefer’s Theorem

For every finite Boolean language I': either I satisfies one of Schaefer’s
polymorphisms and CSP[l] is in P, or CSP[l] is NP-complete.

* Polymorphism: a procedure for constructing a new
tuple from a fixed number of tuples in a relation

— New tuple is built “column-by-column” by the same rule
e [ satisfies a polymorphism ¢ iff [ is closed under 6
 Example: Majority polymorphism

— Take 3 tuples, rule for new columns: take what occurs most
frequently in that column

0 0 1

1 1 1 WP 1[0 1

1 0 0

82




Schaefer’s Theorem: Exercise

For every finite Boolean language I': either I satisfies one of Schaefer’s
polymorphisms and CSP[l] is in P, or CSP[l] is NP-complete.

* Schaefer’s Theorem implies tractability of 2CNF
— Recall the ternary Majority polymorphism
— Each 2CNF formula is equivalent to an instance of CSP[[l]

0 0 0 0 0 1 0 1
1 1 1 1 1 0 1 0
1 0 0 1 1 1 0 0

— Each of the above relations is closed under Majority
‘ [ satisfies Majority and CSP[l] isin P
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Schaefer’s Theorem: Islands

For every finite Boolean language I': either I satisfies one of Schaefer’s
polymorphisms and CSP[l] is in P, or CSP[l] is NP-complete.

* Schaefer’s Theorem leads to 6 islands of tractability
1. O-valid

1-valid

Horn

Anti-Horn

Affine

Bijunctive (2CNF)

o vk W N
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Beyond Schaefer

* Feder-Vardi Conjecture: extension of Schaefer’s

Theorem to all finite languages
* Remark: finite language ‘ bounded domain and arity

‘ For every finite language I': either CSP[I] is in P or NP-complete.

— Recently settled (Bulatov; Zhuk 2017)

* Bulatov’s Conservative Dichotomy:

For every finite conservative language I': either I satisfies certain
polymorphisms and CSP[I] is in P, or CSP[l'] is NP-complete.

— Conservative = includes all unary relations 0
= allows domain restrictions 2
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Languages and Backdoors

For every finite language I, strong backdoor detection
to CSP[I] is FPT parameterized by backdoor size.

— Recall: variable set X is a strong backdoor if each
assignment of X results in an instance of CSP[[l]

— Observation: assume I has maximum arity of ¢ and we’re
searching for a backdoor of size k in instance |

v v | v | v v e
1 0 0 1 0 2

2 0
0 1
0 1

0 1 0 0
2 0 2 0
0 2 1 0
|k=3,c=2

Constraint of arity > k+c | 86




Languages and Backdoors

For every finite language I, strong backdoor detection
to CSP[I] is FPT parameterized by backdoor size.

— Recall: variable set X is a strong backdoor if each
assignment of X results in an instance of CSP[[l]

— Observation: assume I has maximum arity of ¢ and we’re
searching for a backdoor of size k in instance |
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2 0
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Languages and Backdoors

For every finite language I, strong backdoor detection
to CSP[I] is FPT parameterized by backdoor size.

— Recall: variable set X is a strong backdoor if each
assignment of X results in an instance of CSP[[l]

— Observation: assume I has maximum arity of ¢ and we’re
searching for a backdoor of size k in instance |
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Languages and Backdoors

For every finite language I, strong backdoor detection
to CSP[I] is FPT parameterized by backdoor size.

— Recall: variable set X is a strong backdoor if each
assignment of X results in an instance of CSP[[l]

— Observation: assume I has maximum arity of ¢ and we’re
searching for a backdoor of size k in instance |

v v v, v v v [ e
1 0 0 1 0 2 4

R R O

2
0
0

0 1 0 0
2 0 2 0
0 2 1 0

89



Languages and Backdoors

For every finite language I, strong backdoor detection
to CSP[I] is FPT parameterized by backdoor size.

— Recall: variable set X is a strong backdoor if each
assignment of X results in an instance of CSP[[l]

— Observation: assume I has maximum arity of ¢ and we’re
searching for a backdoor of size k in instance |

v, =0
ve =0
v.=1
2 0 2 6
0 2 1
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Languages and Backdoors

For every finite language I, strong backdoor detection
to CSP[I] is FPT parameterized by backdoor size.

— Recall: variable set X is a strong backdoor if each
assignment of X results in an instance of CSP[[l]

— Observation: assume I has maximum arity of ¢ and we’re
searching for a backdoor of size k in instance |

v vy v v | v | v | |
1 0 0 1 0 5 Arity too big;
‘ no backdoor of size k

to CSP[l] can exist

R R O

2
0
0

0 1 0 0
2 0 2 0
0 2 1 0
| k=3,c=2 |

Constraint of arity > k+c | o1




Languages and Backdoors

For every finite language I, strong backdoor detection
to CSP[I] is FPT parameterized by backdoor size.

1. Check that each constraint has arity at most c+k
« k=backdoor size, c = maximum arity in I
2. Proceed similarly as for Heterogeneous Backdoors for SAT

« StartwithX=0 Py
 Try all assignments of X, if we’re always in CSP[[] then y

* If not, then branch over which of the at most
k+c variables from a bad constraint goes to X

. Restart
— Total runtime: kCk) . nO1)

— Once we have such a backdoor, solving CSP is easily FPT.
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Advanced Backdoors

* Backdoors can do much more...

— Example (Boolean CSP):

Nz
T~
— 1y /
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Advanced Backdoors

e Backdoors can do much more...
— Example (Boolean CSP):

Bijunctive \
z=0

A ~

— y=0 \

Horn
—— x=0 /

Affine




Advanced Backdoors

e Backdoors can do much more...
— Example (Boolean CSP):

Bijunctive

Affine
Horn



Advanced Backdoors

Backdoors can do much more...
— Example (Boolean CSP):

Bijunctive

Affine
Horn

Each connected component could belong to a different island

If we had such a backdoor, we could solve CSP in FPT time
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Advanced Backdoors

Backdoors can do much more...
— Example (Boolean CSP):

AN
—1Y=1 ~_
— x=1 /

Each connected component could belong to a different island

If we had such a backdoor, we could solve CSP in FPT time

98



Advanced Backdoors

e Backdoors can do much more...
— Example (Boolean CSP):

Affine \ —
\ <

—_— y=1 \
Horn
—1y=1 /

* Each connected component could belong to a different island

Horn

If we had such a backdoor, we could solve CSP in FPT time




Advanced Backdoors

e Backdoors can do much more...
— Example (Boolean CSP):

Affine

Horn
Horn

* Each connected component could belong to a different island

If we had such a backdoor, we could solve CSP in FPT time

100



Advanced Backdoors

e Backdoors can do much more...
— Example (Boolean CSP):

Affine

Horn
Horn

* Each connected component could belong to a different island
* |slands can change (like with heterogeneous backdoors)

If we had such a backdoor, we could solve CSP in FPT time |
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Formalizing

Definition: The scattered class CSP(I' ) CSP(I,)®... O CSP(T))
contains all instances where each component belongs to at least
one of CSP(I,),CSP(r,),...,CSP(T;).

Bijunctive

Horn

@ The good: backdoors to scattered classes
J are as easy to evaluate as standard backdoors

— try all instantiations

Affine

— for each, we can process every component separately
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Formalizing

Definition: The scattered class CSP(I' ) CSP(I,)®... O CSP(T))
contains all instances where each component belongs to at least
one of CSP(I,),CSP(r,),...,CSP(T;).

Bijunctive

Horn

@ The good: backdoors to scattered classes

w7 are as easy to evaluate as standard backdoors Af
ine
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Formalizing

Definition: The scattered class CSP(I' ) CSP(I,)®... O CSP(T))
contains all instances where each component belongs to at least
one of CSP(I,),CSP(r,),...,CSP(T;).

Bijunctive
‘ ; The good: backdoors to scattered classes

' Horn
J are as easy to evaluate as standard backdoors

Affine
e The bad: backdoors to scattered classes
4

| . .
are much more challenging to find than standard backdoors
— Previously: each variable is used to kill some “bad constraints”

— Now: variables may also be used to disconnect instance;
“bad constraints” no longer defined
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Formalizing

Definition: The scattered class CSP(I' ) CSP(I,)®... O CSP(T))
contains all instances where each component belongs to at least
one of CSP(I,),CSP(r,),...,CSP(T;).

Bijunctive
Horn

‘ ; The good: backdoors to scattered classes

J are as easy to evaluate as standard backdoors AfF
ine

- The bad:  backdoors to scattered classes
@J are much more challenging to find than standard backdoors
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Formalizing

Definition: The scattered class CSP(I' ) CSP(I,)®... O CSP(T))
contains all instances where each component belongs to at least
one of CSP(I,),CSP(r,),...,CSP(T;).

Bijunctive

Horn

@ The good: backdoors to scattered classes

&Y are as easy to evaluate as standard backdoors AfF
ine

- The bad:  backdoors to scattered classes
@ are much more challenging to find than standard backdoors

{# The pretty: backdoors to scattered classes
can be arbitrarily smaller than standard backdoors

V‘/z
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Backdoors to Scattered Classes

CSP is FPT parameterized by the size of a minimum

backdoor into CSP(T,)DCSP(I,)D...cDCSP(T;)
for any finite, tractable and conservative Y DY

— Ganian, Ramanujan, Szeider 2016

— Classification result

? Can we get efficient algorithms for specific languages ?
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Large Backdoors

* Assume we have a backdoor X to a tractable CSP(I') which:

— islarge, but
— has “simple” interactions with the rest of |

 Can we use X to solve |
efficiently?
— cannot try all instantiations
— cannot use incidence treewidth

— can use dynamic programming
* Process backdoor variables in sequence
* Only keep track of feasible

instantiations for current pair

* see if any satisfying instantiation
survives till the end
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— islarge, but
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 Can we use X to solve |
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— cannot try all instantiations

— cannot use incidence treewidth

— can use dynamic programming
* Process backdoor variables in sequence
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instantiations for current pair

* see if any satisfying instantiation
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* Assume we have a backdoor X to a tractable CSP(I') which:

Large Backdoors

— islarge, but

— has “simple” interactions with the rest of |

Can we use X to solve |
efficiently?

— cannot try all instantiations

— cannot use incidence treewidth

— can use dynamic programming
* Process backdoor variables in sequence
* Only keep track of feasible
instantiations for current pair

* see if any satisfying instantiation
survives till the end

x=0

Irrelevant
for future
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Large Backdoors

* Assume we have a backdoor X to a tractable CSP(I') which:
— islarge, but
— has “simple” interactions with the rest of |

e Can we use X to solvel
efficiently?

— cannot try all instantiations

— cannot use incidence treewidth - = o o @ X
— can use dynamic programming o

* Process backdoor variables in sequence _

* Only keep track of feasible e

instantiations for current pair

* see if any satisfying instantiation
survives till the end
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Large Backdoors

* Assume we have a backdoor X to a tractable CSP(I') which:
— islarge, but
— has “simple” interactions with the rest of |

e Can we use X tosolvel
efficiently? gl

— cannot try all instantiations Zé}@‘

— cannot use incidence treewidth o o @ X

— can use dynamic programming

* Process backdoor variables in sequence

* Only keep track of feasible
instantiations for current pair

* see if any satisfying instantiation
survives till the end
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Large Backdoors

* Assume we have a backdoor X to a tractable CSP(I') which:
— islarge, but
— has “simple” interactions with the rest of |

e Can we use Xtosolvel
efficiently? =0T

— cannot try all instantiations Z%}/
— cannot use incidence treewidth — o o @ X
— can use dynamic programming i

* Process backdoor variables in sequence

* Only keep track of feasible e

instantiations for current pair

* see if any satisfying instantiation
survives till the end
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Large Backdoors

* Assume we have a backdoor X to a tractable CSP(I') which:
— islarge, but
— has “simple” interactions with the rest of |

e Can we use Xtosolvel
efficiently? =0T

— cannot try all instantiations z%;/

— cannot use incidence treewidth N @y X

— can use dynamic programming
* Process backdoor variables in sequence
* Only keep track of feasible
instantiations for current pair

* see if any satisfying instantiation
survives till the end

115



Formalizing the idea

Definition: The backdoor treewidth w.r.t. I is the minimum
treewidth of the torso of a backdoor to CSP(T).

Torso of a backdoor:
— collapses everything into the backdoor
— fully captures interactions between backdoor variables

|Treewidth? |
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Backdoor Treewidth

e Evaluation:
A backdoor of treewidth k into tractable I
can be used to solve CSP in FPT time

— Dynamic programming (example)

— Requires bounded domain (like backdoors and treewidth)

* Finding:
Much more challenging than finding backdoors of size k
— Backdoors of small treewidth need not be minimum backdoors into T
— Instances could have large treewidth and only large backdoors
— Even membership in XP is not obvious
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Backdoor Treewidth

Finding a backdoor to CSP(I') of width at most k is
FPT for every finite language I.

— Ganian, Ramanujan, Szeider (2017)

— Also works for SAT (e.g., backdoors to Horn)
without arity restrictions
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Finding small-treewidth backdoors

* First task: dealing with nice instances
— an instance |l is nice if at least one of these hold:

* | has small incidence treewidth, or

I —5
‘ S f(k) | ¢ Ihasasmall-treewidth backdoor X with precisely one connected
component C such that I-C is small

huge C
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Why “nice”?

Nice instances are easy to solve
* If incidence treewidth is small...

— we can use, e.g., Courcelle’s Theorem to find a small-
treewidth backdoor

— (we could also solve the instance directly if we wanted to)

* If everything outside of Cis small...
— then everything outside of Cis actually a small backdoor

Nice instances will also be important later on



Dealing with ugly instances

* ugly instances have a good separation
(assuming they have a small-treewidth backdoor X)

small
separator

| big parts |
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Dealing with ugly instances

* ugly instances have a good separation
(assuming they have a small-treewidth backdoor X)

Why? lG-N[c] |

* Find biggest component
Cin G-X

* If Cor G-N[C] is small
then the instance is nice

* Otherwise we have
a good separation




Finding good separations

e Using standard techniques, we find a “left-most”

good separation in FPT time

no good separation |

small

separator

| big parts |
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Finite State machinery

* Our next goal will be to replace the left side with a
small representative

— Requires development of finite state machinery for CSPs
capturing contribution to a small-treewidth backdoor

— End result: small set Q of small representatives for all
possible parts on one side of a separator
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Finite State machinery

* Our next goal will be to replace the left side with a
small representative

/4 —
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Finite State machinery

* Our next goal will be to replace the left side with a
small representative

Q\
small ——
N —O -

* New instance strictly smaller but equivalent

— We now restart with new smaller instance
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Choosing the right representative

s
i

no good separation |

* How to choose the correct representative from Q?
— Test the left side against all possible representatives
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Choosing the right representative

Q1l, Q2...

A

no good separation |

* How to choose the correct representative from Q?
— Test the left side against all possible representatives

— Can prove that resulting instances contain no good
separation (w.r.t. slightly bigger constants)

mmm) they are nice ssmp can determine how left side interacts
with all possible representatives
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Choosing the right representative

o B ai, Q2..

Has small-tw backdoor with Q1, Q4, Q6... |
* How to choose the correct representative from Q?

A

— Pick representative for left side which interacts the same
way with all representatives in Q
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Final Recap

Finding a backdoor to CSP(I') of width at most k is
FPT for every finite language I.

If 1 is nice, directly find a small-treewidth backdoor
Otherwise, try to find a left-most good separation

— if it doesn’t exist then there’s no small-treewidth backdoor

Determine which representative fits for the left side

Use it to obtain an equivalent but smaller instance

— Restart on new instance

131



ﬁ”g
ﬁﬁ} Thank you for 9‘ >@
2L

your attention

USE
IBACKDOOR : p)
| > Questions:

i NO EXCEPTIONS

y

®
@

fo

132



