
1

Overview

• This talk is about:

– The Boolean Satisfiability Problem (SAT)

– The Constraint Satisfaction Problem (CSP)

– Fixed-parameter tractability

• This talk is not about:

– Parameterizing by solution size

– Kernelization

– Model counting

2

SAT

• Input: a CNF formula F, for instance:
(𝑥 ∨ 𝑦) ∧ (¬𝑥 ∨ 𝑧 ∨ 𝑦) ∧ (¬𝑦 ∨ ¬𝑧)

• Terminology:

– variables (3 – 𝑥, 𝑦, 𝑧)

– clauses (3 – (𝑥 ∨ 𝑦), ¬𝑥 ∨ 𝑧 ∨ 𝑦 ,(¬𝑦 ∨ ¬𝑧))

– literals (7 – 𝑥, 𝑦, ¬𝑥...)

• Question: Is F satisfiable?

– Can you assign variables to 0/1 so that each clause is
satisfied?

3

SAT

• Input: a CNF formula F, for instance:
(𝑥 ∨ 𝑦) ∧ (¬𝑥 ∨ 𝑧 ∨ 𝑦) ∧ (¬𝑦 ∨ ¬𝑧)

• Terminology:

– variables (3 – 𝑥, 𝑦, 𝑧)

– clauses (3 – (𝑥 ∨ 𝑦), ¬𝑥 ∨ 𝑧 ∨ 𝑦 ,(¬𝑦 ∨ ¬𝑧))

– literals (7 – 𝑥, 𝑦, ¬𝑥)

• Question: Is F satisfiable?

– Can you assign variables to 0/1 so that each clause is
satisfied?
• Example: 𝑥, 𝑦 = 1, 𝑧 = 0

4

SAT

• Input: a CNF formula F, for instance:
(1 ∨ 1) ∧ (0 ∨ 0 ∨ 1) ∧ (0 ∨ 1)

• Terminology:

– variables (3 – 𝑥, 𝑦, 𝑧)

– clauses (3 – (𝑥 ∨ 𝑦), ¬𝑥 ∨ 𝑧 ∨ 𝑦 ,(¬𝑦 ∨ ¬𝑧))

– literals (7 – 𝑥, 𝑦, ¬𝑥)

• Question: Is F satisfiable?

– Can you assign variables to 0/1 so that each clause is
satisfied?
• Example: 𝑥, 𝑦 = 1, 𝑧 = 0

5

SAT

• Many applications

• One of the best known NP-complete problems

• Dedicated annual conference (SAT)

– Also includes a SAT competition

6

Solving SAT – Treewidth

• Several graph representations of CNF formulas exist

– Representations capture variable-clause interactions

• SAT is FPT when parameterized by the treewidth of
these graph representations

– Standard dynamic programming

tw=1

tw=2

Large tw

7

Graph Representations for SAT

• Example: C1 = (𝑢 ∨ ¬𝑣 ∨ 𝑦), C2 = (¬𝑢 ∨ 𝑧 ∨ ¬𝑦),
C3 = (𝑣 ∨ ¬𝑤), C4 = (𝑤 ∨ ¬𝑥), C5 = 𝑥 ∨ 𝑦 ∨ ¬𝑧

• Classical representations:

• Are there others?

8

Primal graph Dual graph Incidence graph

Graph Representations for SAT

• Example: C1 = (𝑢 ∨ ¬𝑣 ∨ 𝑦), C2 = (¬𝑢 ∨ 𝑧 ∨ ¬𝑦),
C3 = (𝑣 ∨ ¬𝑤), C4 = (𝑤 ∨ ¬𝑥), C5 = 𝑥 ∨ 𝑦 ∨ ¬𝑧

• Classical representations:

• New representation:

– Ganian, Szeider 2017

Edge no contradicting literals
9

Primal graph Dual graph Incidence graph

Consensus
graph

Solving SAT – Treewidth

– Single-exponential runtime

– Better to use incidence graph rather than primal or dual
• Can have much lower treewidth, opposite doesn’t hold

– Good dynamic programming exercise
• Consensus graph case is a bit more complicated

10

SAT is FPT parameterized by the treewidth of the
primal/dual/incidence/consensus graph.

Solving SAT without Treewidth

• Tractable classes for SAT were studied for decades

– Some are older than treewidth

• General idea: impose syntactic restrictions on clauses

– Incomparable to the restrictions on variable-clause
interactions imposed by treewidth

• Here, we focus on the two most prominent
polynomial-time tractable classes for SAT:

– Horn

– 2CNF (Krom)

11

Horn formulas

• Each clause contains at most 1 positive literal

• Example: C1 = ¬𝑧 ∨ ¬𝑦 , C2 = (𝑢 ∨ ¬𝑣 ∨ ¬𝑦),
C3 = (¬𝑢 ∨ 𝑧 ∨ ¬𝑦), C4 = (𝑏), C5 = (𝑣 ∨ ¬𝑏),

• Solving:

1. Unit propagation
• Unit clauses force a certain assignment apply it

12

Horn formulas

• Each clause contains at most 1 positive literal

• Example: C1 = ¬𝑧 ∨ ¬𝑦 , C2 = (𝑢 ∨ ¬𝑣 ∨ ¬𝑦),
C3 = (¬𝑢 ∨ 𝑧 ∨ ¬𝑦), C4 = (1), C5 = (𝑣 ∨ ¬1),

• Solving:

1. Unit propagation
• Unit clauses force a certain assignment apply it

13

Horn formulas

• Each clause contains at most 1 positive literal

• Example: C1 = ¬𝑧 ∨ ¬𝑦 , C2 = (𝑢 ∨ ¬𝑣 ∨ ¬𝑦),
C3 = (¬𝑢 ∨ 𝑧 ∨ ¬𝑦), C4 = (1), C5 = (𝑣),

• Solving:

1. Unit propagation
• Unit clauses force a certain assignment apply it

14

Horn formulas

• Each clause contains at most 1 positive literal

• Example: C1 = ¬𝑧 ∨ ¬𝑦 , C2 = (𝑢 ∨ ¬1 ∨ ¬𝑦),
C3 = (¬𝑢 ∨ 𝑧 ∨ ¬𝑦), C4 = (1), C5 = (1),

• Solving:

1. Unit propagation
• Unit clauses force a certain assignment apply it

15

Horn formulas

• Each clause contains at most 1 positive literal

• Example: C1 = ¬𝑧 ∨ ¬𝑦 , C2 = (𝑢 ∨ ¬𝑦),
C3 = (¬𝑢 ∨ 𝑧 ∨ ¬𝑦), C4 = (1), C5 = (1),

• Solving:

1. Unit propagation
• Unit clauses force a certain assignment apply it

16

Horn formulas

• Each clause contains at most 1 positive literal

• Example: C1 = ¬𝑧 ∨ ¬𝑦 , C2 = (𝑢 ∨ ¬𝑦),
C3 = (¬𝑢 ∨ 𝑧 ∨ ¬𝑦), C4 = (1), C5 = (1),

• Solving:

1. Unit propagation
• Unit clauses force a certain assignment apply it

• Afterwards, no unit clauses are left

2. Assign all remaining variables to 0

17

Horn formulas

• Each clause contains at most 1 positive literal

• Example: C1 = ¬0 ∨ ¬0 , C2 = (0 ∨ ¬0),
C3 = (¬0 ∨ 0 ∨ ¬0), C4 = (1), C5 = (1),

• Solving:

1. Unit propagation
• Unit clauses force a certain assignment apply it

• Afterwards, no unit clauses are left

2. Assign all remaining variables to 0

18

2CNF formulas

• Each clause contains at most 2 literals

• Example: ¬𝑧 ∨ 𝑥 ∧ 𝑦 ∨ 𝑎 ∧ ¬𝑧 ∨ ¬𝑦 ∧
𝑧 ∨ 𝑦 ∧ 𝑦 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥

• For solving, we‘ll need the implication graph

– 2 vertices per variable (positive / negative)

– Edges represent implications arising from clauses

19

Implication Graph

¬𝑧 ∨ 𝑥 ∧ 𝑦 ∨ 𝑎 ∧ ¬𝑧 ∨ ¬𝑦 ∧ 𝑧 ∨ 𝑦
∧ 𝑦 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥

20

z ¬z

¬y y

x

¬x

a

¬a

Implication Graph

¬𝑧 ∨ 𝑥 ∧ 𝑦 ∨ 𝑎 ∧ ¬𝑧 ∨ ¬𝑦 ∧ 𝑧 ∨ 𝑦
∧ 𝑦 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥

21

z ¬z

¬y y

x

¬x

a

¬a

z would imply x

¬x would imply ¬z

Implication Graph

¬𝑧 ∨ 𝑥 ∧ 𝑦 ∨ 𝑎 ∧ ¬𝑧 ∨ ¬𝑦 ∧ 𝑧 ∨ 𝑦
∧ 𝑦 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥

22

z ¬z

¬y y

x

¬x

a

¬a

Implication Graph

¬𝑧 ∨ 𝑥 ∧ 𝑦 ∨ 𝑎 ∧ ¬𝑧 ∨ ¬𝑦 ∧ 𝑧 ∨ 𝑦
∧ 𝑦 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥

23

z ¬z

¬y y

x

¬x

a

¬a

Implication Graph

¬𝑧 ∨ 𝑥 ∧ 𝑦 ∨ 𝑎 ∧ ¬𝑧 ∨ ¬𝑦 ∧ 𝑧 ∨ 𝑦
∧ 𝑦 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥

24

z ¬z

¬y y

x

¬x

a

¬a

Solving 2CNF Formulas

• Example: ¬𝑧 ∨ 𝑥 ∧ 𝑦 ∨ 𝑎 ∧ ¬𝑧 ∨ ¬𝑦 ∧
𝑧 ∨ 𝑦 ∧ 𝑦 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥

• Algorithm:

1. Construct implication graph

25

z ¬z

¬y y

x

¬x

a

¬a

Solving 2CNF Formulas

• Example: ¬𝑧 ∨ 𝑥 ∧ 𝑦 ∨ 𝑎 ∧ ¬𝑧 ∨ ¬𝑦 ∧
𝑧 ∨ 𝑦 ∧ 𝑦 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥

• Algorithm:

1. Construct implication graph

2. Find strongly connected
components (SCCs)

26

z ¬z

¬y y

x

¬x

a

¬a

Solving 2CNF Formulas

• Example: ¬𝑧 ∨ 𝑥 ∧ 𝑦 ∨ 𝑎 ∧ ¬𝑧 ∨ ¬𝑦 ∧
𝑧 ∨ 𝑦 ∧ 𝑦 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥

• Algorithm:

1. Construct implication graph

2. Find strongly connected
components (SCCs)
• If any SCC contains both

literals for a variable, reject

27

z ¬z

¬y y

x

¬x

a

¬a

Solving 2CNF Formulas

• Example: ¬𝑧 ∨ 𝑥 ∧ 𝑦 ∨ 𝑎 ∧ ¬𝑧 ∨ ¬𝑦 ∧
𝑧 ∨ 𝑦 ∧ 𝑦 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥

• Algorithm:

1. Construct implication graph

2. Find strongly connected
components (SCCs)
• If any SCC contains both

literals for a variable, reject

3. Start assigning literals to 1
from SCCs which are sinks

28

z ¬z

¬y y

x

¬x

a

¬a

Solving 2CNF Formulas

• Example: 1 ∨ 𝑥 ∧ 1 ∨ 𝑎 ∧ 1 ∨ 0 ∧ 0 ∨ 1 ∧
1 ∨ ¬𝑎 ∧ 1 ∨ ¬𝑥

• Algorithm:

1. Construct implication graph

2. Find strongly connected
components (SCCs)
• If any SCC contains both

literals for a variable, reject

3. Start assigning literals to 1
from SCCs which are sinks
• Continue until all

clauses satisfied

29

z ¬z

¬y y

x

¬x

a

¬a

Recap

• Result not covered by treewidth

– Can easily construct an incidence graph that is a grid

• More general polynomial-time tractable classes exist

– q-Horn, Renamable Horn, Hidden Extended Horn...

• But what does this have to do with PC and
backdoors?

– Backdoors allow us to measure distance to triviality

– Triviality here means one of our tractable classes for SAT

30

SAT is polynomial-time tractable on 2CNF and Horn formulas.

Also called islands of tractability

Backdoor Motivation

• Consider the following formula F:
¬𝑧 ∨ 𝑥 ∨ 𝑦 ∧ 𝑥 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥 ∨ ¬𝑦

∧ 𝑧 ∨ 𝑦 ∨ 𝑎 ∧ ¬𝑦 ∨ ¬𝑎 ∨ 𝑥 ∧ 𝑎 ∨ ¬𝑥 ∨ 𝑦

• Claim: F is almost a 2CNF formula

– Just need to branch on assigning a single variable (y)

– y 0:

¬𝑧 ∨ 𝑥 ∧ 𝑥 ∨ ¬𝑎 ∧ 1 ∧ 𝑧 ∨ 𝑎 ∧ 1 ∧ 𝑎 ∨ ¬𝑥

– y 1:

1 ∧ 𝑥 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥 ∧ 1 ∧ ¬𝑎 ∨ 𝑥 ∧ 1

31

Strong Backdoors

• A set X of variables is a strong backdoor to a
tractable class C if each assignment of X results in a
formula in C

• Parameter: size of a smallest strong backdoor to C

• General approach for fixed-parameter SAT solving:

1. Find a size-k strong backdoor to a selected tractable class
C (or identify that it doesn’t exist)

2. Use the strong backdoor to solve the instance

• Q: Why strong?
32

Weak Backdoors

• A set X of variables is a weak backdoor to a tractable
class C if there exists an assignment of X which
results in a satisfiable formula in C

– Can be arbitrarily smaller than a strong backdoor
• Example: backdoors to 2CNF, many large clauses that can all be

satisfied by setting a single variable to 0

– Doesn’t exist for NO-instances

– Detection usually W[2]-hard

– In this talk we focus mostly on strong backdoors
33

Using Strong Backdoors

• Simple branching over at most 2k many assignments

 Main difficulty: finding a strong backdoor to C

– Algorithms and techniques depend on C

– XP algorithm is trivial (assuming C is polynomial-time
recognizable)

34

SAT can be solved in time O*(2k) if a strong backdoor
of size k to a tractable class C is provided on the input

Backdoor Detection

• For Horn and 2CNF, we show equivalence to the
simpler notion of variable deletion

– Sometimes called a deletion backdoor

– For many classes, these are larger than strong backdoors

Example: ¬𝑧 ∨ 𝑥 ∨ 𝑦 ∧ 𝑥 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥 ∨ ¬𝑦

 ∧ 𝑧 ∨ 𝑦 ∨ 𝑎 ∧ ¬𝑦 ∨ ¬𝑎 ∨ 𝑥 ∧ 𝑎 ∨ ¬𝑥 ∨ 𝑦

35

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

Backdoor Detection

• For Horn and 2CNF, we show equivalence to the
simpler notion of variable deletion

– Sometimes called a deletion backdoor

– For many classes, these are larger than strong backdoors

Example: ¬𝑧 ∨ 𝑥 ∨ 𝑦 ∧ 𝑥 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥 ∨ ¬𝑦

 ∧ 𝑧 ∨ 𝑦 ∨ 𝑎 ∧ ¬𝑦 ∨ ¬𝑎 ∨ 𝑥 ∧ 𝑎 ∨ ¬𝑥 ∨ 𝑦

– Let’s try deleting x

 36

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

Backdoor Detection

• For Horn and 2CNF, we show equivalence to the
simpler notion of variable deletion

– Sometimes called a deletion backdoor

– For many classes, these are larger than strong backdoors

Example: ¬𝑧 ∨ 𝑦 ∧ 𝑥 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥 ∨ ¬𝑦

 ∧ 𝑧 ∨ 𝑦 ∨ 𝑎 ∧ ¬𝑦 ∨ ¬𝑎 ∨ 𝑥 ∧ 𝑎 ∨ ¬𝑥 ∨ 𝑦

– Let’s try deleting x

 37

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

Backdoor Detection

• For Horn and 2CNF, we show equivalence to the
simpler notion of variable deletion

– Sometimes called a deletion backdoor

– For many classes, these are larger than strong backdoors

Example: ¬𝑧 ∨ 𝑦 ∧ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥 ∨ ¬𝑦

 ∧ 𝑧 ∨ 𝑦 ∨ 𝑎 ∧ ¬𝑦 ∨ ¬𝑎 ∨ 𝑥 ∧ 𝑎 ∨ ¬𝑥 ∨ 𝑦

– Let’s try deleting x

 38

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

Backdoor Detection

• For Horn and 2CNF, we show equivalence to the
simpler notion of variable deletion

– Sometimes called a deletion backdoor

– For many classes, these are larger than strong backdoors

Example: ¬𝑧 ∨ 𝑦 ∧ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑦

 ∧ 𝑧 ∨ 𝑦 ∨ 𝑎 ∧ ¬𝑦 ∨ ¬𝑎 ∨ 𝑥 ∧ 𝑎 ∨ ¬𝑥 ∨ 𝑦

– Let’s try deleting x

 39

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

Backdoor Detection

• For Horn and 2CNF, we show equivalence to the
simpler notion of variable deletion

– Sometimes called a deletion backdoor

– For many classes, these are larger than strong backdoors

Example: ¬𝑧 ∨ 𝑦 ∧ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑦

 ∧ 𝑧 ∨ 𝑦 ∨ 𝑎 ∧ ¬𝑦 ∨ ¬𝑎 ∧ 𝑎 ∨ ¬𝑥 ∨ 𝑦

– Let’s try deleting x

 40

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

Backdoor Detection

• For Horn and 2CNF, we show equivalence to the
simpler notion of variable deletion

– Sometimes called a deletion backdoor

– For many classes, these are larger than strong backdoors

Example: ¬𝑧 ∨ 𝑦 ∧ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑦

 ∧ 𝑧 ∨ 𝑦 ∨ 𝑎 ∧ ¬𝑦 ∨ ¬𝑎 ∧ 𝑎 ∨ 𝑦

– Let’s try deleting x

 41

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

Deletion = Strong Backdoors

– X is strong: For each clause d, there is an assignment to X
which doesn’t satisfy d, hence d-X must be Horn/2CNF

– X is a deletion set: For each clause d, we know that d-X is
Horn/2CNF. Each assignment to X will either delete d or
result in d-X for this clause.

42

X is a strong backdoor for Horn/2CNF iff deleting
all occurrences of X results in a Horn/2CNF formula.

Backdoor Detection: Horn

• We reduce the deletion problem to Vertex Cover

Example: ¬𝑧 ∨ 𝑥 ∨ 𝑦 ∧ 𝑥 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥 ∨ ¬𝑦
∧ 𝑧 ∨ 𝑦 ∨ 𝑎 ∧ ¬𝑦 ∨ ¬𝑎 ∨ 𝑥 ∧ 𝑎 ∨ ¬𝑥 ∨ 𝑦

• Construct a graph G as follows:

– Variables are vertices...

43

x y

z

a

Backdoor Detection: Horn

• We reduce the deletion problem to Vertex Cover

Example: ¬𝑧 ∨ 𝑥 ∨ 𝑦 ∧ 𝑥 ∨ ¬𝑎 ∧ ¬𝑧 ∨ ¬𝑥 ∨ ¬𝑦
∧ 𝑧 ∨ 𝑦 ∨ 𝑎 ∧ ¬𝑦 ∨ ¬𝑎 ∨ 𝑥 ∧ 𝑎 ∨ ¬𝑥 ∨ 𝑦

• Construct a graph G as follows:

– Variables are vertices...

– Add edge if both variables occur positively in some clause

Vertex cover in G

Deletion backdoor to Horn

 44

x y

z

a

Backdoor Detection: 2CNF

• We reduce the deletion problem to 3-Hitting Set

– Note: could also use bounded search trees

Example: ¬𝑎 ∨ 𝑒 ∨ 𝑐 ∧ 𝑑 ∨ 𝑒 ∧ ¬𝑏 ∨ ¬𝑐 ∨ ¬𝑑
∧ 𝑑 ∨ 𝑐 ∨ ¬𝑎 ∨ 𝑏 ∧ 𝑏 ∨ ¬𝑒 ∨ 𝑎

• Construct a 3-Hitting Set instance H as follows:

– Ground set is the set of variables

– Target sets are all triples which occur together in a clause

– For our example: {ace}, {abc}, {abd}, {acd}, {bcd}, {abe}

Hitting Set Deletion backdoor to Horn

45

Strong Backdoors: Summary

– Runtime: O*(1.3k) for finding and then O*(2k) for using
• Uses Vertex Cover algorithm of Chen, Kanj and Xia [2010]

– Runtime: O*(2.27k) for finding and then O*(2k) for using
• Uses 3-Hitting Set algorithm of Niedermeier, Rossmanith [2003]

46

SAT can be solved in time O*(2k) parameterized
by the size of a strong backdoor to Horn.

SAT can be solved in time O*(2.27k) parameterized
by the size of a strong backdoor to 2CNF.

Intermezzo: Weak BD Detection

• Why is weak backdoor detection harder?

• Recall:

A set X of variables is a weak backdoor to a tractable
class C if there exists an assignment of X which results
in a satisfiable formula in C

47

Intermezzo: Weak BD Detection

• Why is weak backdoor detection harder?

• Intuition: weak backdoors can “kill” large
obstructions with a single variable

• Can’t reliably find small obstructions to branch on

• Example: Weak BD detection to Horn is W[2]-hard

• Proof: Reduction from Hitting Set

48

General template

The Reduction

• Starting point: Hitting Set instance S, parameter k

 k=2

• Elements -> main variables

• For each set (R,S,T), we create k+1 clauses such that:

– they are not Horn

– they can be satisfied by any element (variable) in the set

– they contain auxiliary variables which shouldn’t be in a BD

49

a b c

d e
f

R

S
T

The Reduction

• Starting point: Hitting Set instance S, parameter k

 k=2

• Clauses:
(𝑟1 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑟2 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑟3 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐)

∧ (𝑠1 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (𝑠2 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (𝑠3 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒)
∧ (𝑡1 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡2 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡3 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓)

– Taking any variables other than a,b,c,d,e,f is suboptimal

50

a b c

d e
f

R

S
T

The Reduction

• Starting point: Hitting Set instance S, parameter k

 k=2

• Clauses:
(𝑟1 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑟2 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑟3 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐)

∧ (𝑠1 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (𝑠2 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (𝑠3 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒)
∧ (𝑡1 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡2 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡3 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓)

51

a b c

d e
f

R

S
T

Consider a
Hitting Set
solution

The Reduction

• Starting point: Hitting Set instance S, parameter k

 k=2

• Clauses:
(𝑟1 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑟2 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑟3 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐)

∧ (𝑠1 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (𝑠2 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (𝑠3 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒)
∧ (𝑡1 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡2 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡3 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓)

52

a b c

d e
f

R

S
T

Consider a
Hitting Set
solution

The Reduction

• Starting point: Hitting Set instance S, parameter k

 k=2

• Clauses:
(𝑟1 ∨ 𝑎 ∨ 𝑏 ∨ 1) ∧ (𝑟2 ∨ 𝑎 ∨ 𝑏 ∨ 1) ∧ (𝑟3 ∨ 𝑎 ∨ 𝑏 ∨ 1)

∧ (𝑠1 ∨ 𝑏 ∨ 1 ∨ 𝑒) ∧ (𝑠2 ∨ 𝑏 ∨ 1 ∨ 𝑒) ∧ (𝑠3 ∨ 𝑏 ∨ 1 ∨ 𝑒)
∧ (𝑡1 ∨ 1 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡2 ∨ 1 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡3 ∨ 1 ∨ 𝑒 ∨ 𝑓)

– We obtain a weak backdoor of size at most k

53

a b c

d e
f

R

S
T

Consider a
Hitting Set
solution

The Reduction

• Starting point: Hitting Set instance S, parameter k

 k=2

• Clauses:
(𝑟1 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑟2 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑟3 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐)

∧ (𝑠1 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (𝑠2 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (𝑠3 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒)
∧ (𝑡1 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡2 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡3 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓)

54

a b c

d e
f

R

S
T

Consider a
Weak Backdoor X
of size ≤k

The Reduction

• Starting point: Hitting Set instance S, parameter k

 k=2

• Clauses:
(𝑟1 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑟2 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑟3 ∨ 𝑎 ∨ 𝑏 ∨ 𝑐)

∧ (𝑠1 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (𝑠2 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (𝑠3 ∨ 𝑏 ∨ 𝑑 ∨ 𝑒)
∧ (𝑡1 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡2 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓) ∧ (𝑡3 ∨ 𝑐 ∨ 𝑒 ∨ 𝑓)

– Can assume X disjoint from red variables

– X must intersect each of (R,S,T)

55

a b c

d e
f

R

S
T

Consider a
Weak Backdoor X
of size ≤k

X is a
Hitting Set

Better Backdoors

• Consider the following example:

 F = ¬𝑎 ∨ 𝑏 ∨ 𝑐 ∧ ¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑎 ∨ 𝑐 ∨ 𝑒
 ∧ ¬𝑎 ∨ 𝑑 ∨ 𝑒 ∧ 𝑎 ∨ ¬𝑏 ∨ 𝑐 ∨ ¬𝑑 ∨ ¬𝑒

∧ 𝑎 ∨ 𝑏 ∨ ¬𝑐 ∨ ¬𝑒 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∨ 𝑒
∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑐 ∨ 𝑑

• F has no small strong backdoor to Horn or 2CNF

• But what happens if we try assigning a?

56

Better Backdoors

a = 1

F = 𝑏 ∨ 𝑐 ∧ 𝑏 ∨ 𝑑 ∧ 𝑐 ∨ 𝑒 ∧ 𝑑 ∨ 𝑒

a = 0

 F = ¬𝑏 ∨ 𝑐 ∨ ¬𝑑 ∨ ¬𝑒 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑒 ∧
¬𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∨ 𝑒 ∧ ¬𝑏 ∨ ¬𝑐 ∨ 𝑑

57

Better Backdoors

a = 1

F = 𝑏 ∨ 𝑐 ∧ 𝑏 ∨ 𝑑 ∧ 𝑐 ∨ 𝑒 ∧ 𝑑 ∨ 𝑒

a = 0

 F = ¬𝑏 ∨ 𝑐 ∨ ¬𝑑 ∨ ¬𝑒 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑒 ∧
¬𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∨ 𝑒 ∧ ¬𝑏 ∨ ¬𝑐 ∨ 𝑑

58

2CNF

Horn

Heterogeneous Backdoors

• A set X of variables is a heterogeneous backdoor to
tractable classes {C1,C2,...} if each assignment of X
results in a formula in some Ci

– Gaspers, Misra, Ordyniak, Szeider, Zivny (2014)

• As easy to use as standard strong backdoors

• What about detection (finding)?

59

Finding Heterogeneous Backdoors

• Let’s set C = {2CNF,Horn}

– This means we’ll be searching for a set of variables X such
that each assignment to X results in a 2CNF or Horn
formula

– Main idea: Find an obstruction and branch on how to fix it

60

61

X = ∅ Obstruction over variables a,b,c

Branch X:=X U a X:=X U b X:=X U c

62

X = ∅ Obstruction over variables a,b,c

Branch X:=X U a X:=X U b X:=X U c

63

X = {a} Compute all assignments of X

X[a=1] X[a=0]

Obstruction over variables d,e,c

Branch

X:=X U d X:=X U e X:=X U c

64

X = {a,d} Compute all assignments of X

X[a,d=1] X[a=1,d=0] ...

Obstructions for {2CNF,Horn}

• Case 1: clause that is neither 2CNF nor Horn

– Example: 𝑧 ∨ 𝑦 ∨ 𝑎 ∨ ¬𝑏

– Must contain at least 2 positive literals and have size at
least 3

– Obstruction: an arbitrary set of 3 variables occurring in the
clause, 2 of which occur positively

65

Obstructions for {2CNF,Horn}

• Case 1: clause that is neither 2CNF nor Horn

– Example: 𝑧 ∨ 𝑦 ∨ 𝑎 ∨ ¬𝑏

– Must contain at least 2 positive literals and have size at
least 3

– Obstruction: an arbitrary set of 3 variables occurring in the
clause, 2 of which occur positively (here: y, a, b)

– Branching factor: 3

66

Obstructions for {2CNF,Horn}

• Case 2: the formula is neither “fully” Horn nor 2CNF

– Choose 1 clause that’s only Horn and one that’s only 2CNF

– Example: C1= 𝑧 ∨ ¬𝑦 ∨ ¬𝑎 ∨ ¬𝑏 , C2= (𝑦 ∨ 𝑥)

– X must either transform C1 to 2CNF or C2 to Horn
• C2 contains at most 2 literals

• C1 can be large, but any 3 literals form an obstruction to 2CNF

– Branching factor: at most 5
• here: z, y, a, x

67

Obstructions for {2CNF,Horn}

• Case 3: the formula is either “fully” Horn or 2CNF

– Means this branch is ok

• Runtime bound:

 5 ∙ 21𝑛 + 5 ∙ 22𝑛 + 5 ∙ 23𝑛 + ⋯ =

 5O(k)𝑛 = 2O(k)𝑛

 Complexity map for other islands of
 tractability is known (FPT / W-hard).

68

Constraint Satisfaction (CSP)

• Introduced by Montanari in 1974

• Focus of intensive research (AI, TCS, Combinatorics, Algebra…)

• Dedicated conference

69

• Instance: I=(V,D,C) where
– V is a set of variables

– D is a set of values (the domain)

– C is a set of constraints

• Each constraint consists of a scope S and relation R
– S is a tuple of variables (that the constraint applies to)

– R encodes admissible values of S

x y

0 1

1 0

Constraint
encoding
XOR(x,y)

Problem Definition

70

Problem Definition

• An assignment is a mapping f: V → D

• An assignment satisfies a CSP instance if for each constraint
(S=(x1,…xr),R) we have (f(x1),…,f(xr)) ∈ R.

• A CSP instance is satisfiable if it has at least one satisfying
assignment

• The CSP problem asks whether the input instance is satisfiable

• CSP directly generalizes many known NP-complete problems

71

Example: 3-Coloring

a

c

b

d

Is it possible to color a,b,c,d by red, blue, green
so that neighbors always get different colors?

V={a,b,c,d}
D={red,blue,green}

C={cab, cac, cbc, cbd, ccd}

Each cxy contains the relation

x y

red blue

blue red

blue green

green blue

red green

green red
72

CSP vs SAT

73

x1 x2 x3 x4 x5 x6

0 0 0 0 0 0

1 1 1 1 1 1

𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∨ 𝑥4 ∨ 𝑥5 ∨ 𝑥6

SAT

• Each clause prevents
1 assignment

CSP

• Each tuple in a constraint
enables 1 assignment

Solving CSP

• Can define graph representations similarly as for SAT

– Primal graphs, dual graphs, incidence graphs...

• Can also define backdoors (to some tractable classes)

• Two cases: bounded vs. unbounded domain

– Constant-size vs. part of input

75

But do these actually help us solve CSP?

Unbounded Domain

• Can encode Multicolored Clique using k variables

– One variable for each color

– Constraints encode edges

76

v1

v2

v3

s1

s2

s3

Domain: {1,2,3}
Variables: g, b

g b

1 1

2 2

3 1

3 3

Unbounded Domain

• Can encode Multicolored Clique using k variables

– One variable for each color

– Constraints encode edges between colors (at most k2)

 W[1]-hard parameterized by treewidth
– Holds for primal, dual, incidence graph representations

– XP algorithm known

 W[1]-hard parameterized by backdoors
– Holds regardless of selected island of tractability

– Brute-force XP algorithm

77

Bounded Domain

• Can encode MCC using k2 constraints

– One binary variable for each vertex

– Constraints ensure only one activated for each color

– Constraints ensure we get a clique

79

v1

v2

v3

s1

s2

s3

Domain: {0,1}
Variables: v1, v2, v3, s1, s2, s3

v1 v2 v3 s1 s2 s3

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 1 0 0

0 0 1 0 0 1

Bounded Domain

• Can encode MCC using k2+k constraints

– One binary variable for each vertex

– Constraints ensure only one activated for each color

– Constraints ensure we get a clique

 W[1]-hard par. by incidence and dual treewidth

– FPT par. by primal treewidth (standard dyn. programming)

80

Bounded Domain

• If we are given a (strong) backdoor to any island C:

– FPT algorithm – runtime: |D|k ∙ nO(1)

– Holds for each island of tractability C

• But what are the islands of tractability for CSP?

– Main direction: definition via languages

– Language = set of relations that can be used in constraints

– Example: Boolean language Γ:

– CSP[Γ] is precisely 2CNF.

81

0 1

1 0

1 1

0 1

1 0

0 0
0 0

1 1

1 0

0 0

1 1

0 1

Schaefer’s Theorem

• Polymorphism: a procedure for constructing a new
tuple from a fixed number of tuples in a relation

– New tuple is built “column-by-column” by the same rule

• Γ satisfies a polymorphism 𝛿 iff Γ is closed under 𝛿

• Example: Majority polymorphism

– Take 3 tuples, rule for new columns: take what occurs most
frequently in that column

82

For every finite Boolean language Γ: either Γ satisfies one of Schaefer’s
polymorphisms and CSP[Γ] is in P, or CSP[Γ] is NP-complete.

0 0 1

1 1 1

1 0 0

1 0 1

Schaefer’s Theorem: Exercise

• Schaefer’s Theorem implies tractability of 2CNF

– Recall the ternary Majority polymorphism

– Each 2CNF formula is equivalent to an instance of CSP[Γ]

– Each of the above relations is closed under Majority

– Γ satisfies Majority and CSP[Γ] is in P

83

For every finite Boolean language Γ: either Γ satisfies one of Schaefer’s
polymorphisms and CSP[Γ] is in P, or CSP[Γ] is NP-complete.

0 1

1 0

1 1

0 1

1 0

0 0

0 0

1 1

1 0

0 0

1 1

0 1

Schaefer’s Theorem: Islands

• Schaefer’s Theorem leads to 6 islands of tractability

1. 0-valid

2. 1-valid

3. Horn

4. Anti-Horn

5. Affine

6. Bijunctive (2CNF)

84

For every finite Boolean language Γ: either Γ satisfies one of Schaefer’s
polymorphisms and CSP[Γ] is in P, or CSP[Γ] is NP-complete.

Beyond Schaefer

• Feder-Vardi Conjecture: extension of Schaefer’s
Theorem to all finite languages

• Remark: finite language bounded domain and arity

– Recently settled (Bulatov; Zhuk 2017)

• Bulatov’s Conservative Dichotomy:

– Conservative = includes all unary relations

 = allows domain restrictions

85

For every finite language Γ: either CSP[Γ] is in P or NP-complete.

For every finite conservative language Γ: either Γ satisfies certain
polymorphisms and CSP[Γ] is in P, or CSP[Γ] is NP-complete.

0

2

Languages and Backdoors

– Recall: variable set X is a strong backdoor if each
assignment of X results in an instance of CSP[Γ]

– Observation: assume Γ has maximum arity of c and we’re
searching for a backdoor of size k in instance I

86

For every finite language Γ, strong backdoor detection
to CSP[Γ] is FPT parameterized by backdoor size.

v1 v2 v3 v4 v5 v6

1 0 0 1 0 2

0 1 0 0 2 0

2 0 2 0 0 1

0 2 1 0 0 1
k = 3, c = 2

Constraint of arity > k+c

Languages and Backdoors

– Recall: variable set X is a strong backdoor if each
assignment of X results in an instance of CSP[Γ]

– Observation: assume Γ has maximum arity of c and we’re
searching for a backdoor of size k in instance I

87

For every finite language Γ, strong backdoor detection
to CSP[Γ] is FPT parameterized by backdoor size.

v1 v2 v3 v4 v5 v6

1 0 0 1 0 2

0 1 0 0 2 0

2 0 2 0 0 1

0 2 1 0 0 1
k = 3, c = 2

v4 = 0
v5 = 0
v6 = 0

Constraint of arity > k+c

Languages and Backdoors

– Recall: variable set X is a strong backdoor if each
assignment of X results in an instance of CSP[Γ]

– Observation: assume Γ has maximum arity of c and we’re
searching for a backdoor of size k in instance I

88

For every finite language Γ, strong backdoor detection
to CSP[Γ] is FPT parameterized by backdoor size.

v1 v2 v3

k = 3, c = 2

v4 = 0
v5 = 0
v6 = 0

Languages and Backdoors

– Recall: variable set X is a strong backdoor if each
assignment of X results in an instance of CSP[Γ]

– Observation: assume Γ has maximum arity of c and we’re
searching for a backdoor of size k in instance I

89

For every finite language Γ, strong backdoor detection
to CSP[Γ] is FPT parameterized by backdoor size.

v1 v2 v3 v4 v5 v6

1 0 0 1 0 2

0 1 0 0 2 0

2 0 2 0 0 1

0 2 1 0 0 1
k = 3, c = 2

v4 = 0
v5 = 0
v6 = 1

Languages and Backdoors

– Recall: variable set X is a strong backdoor if each
assignment of X results in an instance of CSP[Γ]

– Observation: assume Γ has maximum arity of c and we’re
searching for a backdoor of size k in instance I

90

For every finite language Γ, strong backdoor detection
to CSP[Γ] is FPT parameterized by backdoor size.

v1 v2 v3

2 0 2

0 2 1
k = 3, c = 2

v4 = 0
v5 = 0
v6 = 1

Languages and Backdoors

– Recall: variable set X is a strong backdoor if each
assignment of X results in an instance of CSP[Γ]

– Observation: assume Γ has maximum arity of c and we’re
searching for a backdoor of size k in instance I

 Arity too big;

 no backdoor of size k

 to CSP[Γ] can exist

91

For every finite language Γ, strong backdoor detection
to CSP[Γ] is FPT parameterized by backdoor size.

v1 v2 v3 v4 v5 v6

1 0 0 1 0 2

0 1 0 0 2 0

2 0 2 0 0 1

0 2 1 0 0 1
k = 3, c = 2

Constraint of arity > k+c

Languages and Backdoors

1. Check that each constraint has arity at most c+k
• k = backdoor size, c = maximum arity in Γ

2. Proceed similarly as for Heterogeneous Backdoors for SAT

• Start with X = ∅

• Try all assignments of X, if we’re always in CSP[Γ] then

• If not, then branch over which of the at most
k+c variables from a bad constraint goes to X

• Restart

– Total runtime: kO(k) ⋅ nO(1)

– Once we have such a backdoor, solving CSP is easily FPT.

 92

For every finite language Γ, strong backdoor detection
to CSP[Γ] is FPT parameterized by backdoor size.

Advanced Backdoors

• Backdoors can do much more…
– Example (Boolean CSP):

x

y

z

93

Advanced Backdoors

• Backdoors can do much more…
– Example (Boolean CSP):

x=0

y=0

z=0

94

Advanced Backdoors

• Backdoors can do much more…
– Example (Boolean CSP):

Horn
Affine

Bijunctive

x=0

y=0

z=0

95

Advanced Backdoors

• Backdoors can do much more…
– Example (Boolean CSP):

Horn
Affine

Bijunctive

96

Advanced Backdoors

• Backdoors can do much more…
– Example (Boolean CSP):

• Each connected component could belong to a different island

Horn
Affine

Bijunctive

If we had such a backdoor, we could solve CSP in FPT time
97

Advanced Backdoors

• Backdoors can do much more…
– Example (Boolean CSP):

• Each connected component could belong to a different island

If we had such a backdoor, we could solve CSP in FPT time

x=1

y=1

z=0

98

Advanced Backdoors

• Backdoors can do much more…
– Example (Boolean CSP):

• Each connected component could belong to a different island

If we had such a backdoor, we could solve CSP in FPT time

Horn
Horn

Affine

x=1

y=1

z=0

99

Advanced Backdoors

• Backdoors can do much more…
– Example (Boolean CSP):

• Each connected component could belong to a different island

If we had such a backdoor, we could solve CSP in FPT time

Horn
Horn

Affine

100

Advanced Backdoors

• Backdoors can do much more…
– Example (Boolean CSP):

• Each connected component could belong to a different island

• Islands can change (like with heterogeneous backdoors)

If we had such a backdoor, we could solve CSP in FPT time

Horn
Horn

Affine

101

Formalizing

Definition: The scattered class CSP(Γ1)⊕CSP(Γ2)⊕…⊕CSP(Γj)
contains all instances where each component belongs to at least
one of CSP(Γ1),CSP(Γ2),…,CSP(Γj).

• The good: backdoors to scattered classes
are as easy to evaluate as standard backdoors
– try all instantiations

– for each, we can process every component separately

Horn

Affine

Bijunctive

102

Formalizing

Definition: The scattered class CSP(Γ1)⊕CSP(Γ2)⊕…⊕CSP(Γj)
contains all instances where each component belongs to at least
one of CSP(Γ1),CSP(Γ2),…,CSP(Γj).

• The good: backdoors to scattered classes
are as easy to evaluate as standard backdoors

Horn

Affine

Bijunctive

103

Formalizing

Definition: The scattered class CSP(Γ1)⊕CSP(Γ2)⊕…⊕CSP(Γj)
contains all instances where each component belongs to at least
one of CSP(Γ1),CSP(Γ2),…,CSP(Γj).

• The good: backdoors to scattered classes
are as easy to evaluate as standard backdoors

• The bad: backdoors to scattered classes
are much more challenging to find than standard backdoors
– Previously: each variable is used to kill some “bad constraints”

– Now: variables may also be used to disconnect instance;
 “bad constraints” no longer defined

Horn

Affine

Bijunctive

104

Formalizing

Definition: The scattered class CSP(Γ1)⊕CSP(Γ2)⊕…⊕CSP(Γj)
contains all instances where each component belongs to at least
one of CSP(Γ1),CSP(Γ2),…,CSP(Γj).

• The good: backdoors to scattered classes
are as easy to evaluate as standard backdoors

• The bad: backdoors to scattered classes
are much more challenging to find than standard backdoors

Horn

Affine

Bijunctive

105

Formalizing

Definition: The scattered class CSP(Γ1)⊕CSP(Γ2)⊕…⊕CSP(Γj)
contains all instances where each component belongs to at least
one of CSP(Γ1),CSP(Γ2),…,CSP(Γj).

• The good: backdoors to scattered classes
are as easy to evaluate as standard backdoors

• The bad: backdoors to scattered classes
are much more challenging to find than standard backdoors

• The pretty: backdoors to scattered classes
can be arbitrarily smaller than standard backdoors

Horn

Affine

Bijunctive

106

Backdoors to Scattered Classes

– Ganian, Ramanujan, Szeider 2016

– Classification result

 Can we get efficient algorithms for specific languages

108

CSP is FPT parameterized by the size of a minimum
backdoor into CSP(Γ1)⊕CSP(Γ2)⊕…⊕CSP(Γj)
for any finite, tractable and conservative Γ1,Γ2,…,Γj.

Large Backdoors

• Assume we have a backdoor X to a tractable CSP(Γ) which:
– is large, but

– has “simple” interactions with the rest of I

• Can we use X to solve I
efficiently?
– cannot try all instantiations

– cannot use incidence treewidth

– can use dynamic programming
• Process backdoor variables in sequence

• Only keep track of feasible

 instantiations for current pair

• see if any satisfying instantiation
survives till the end

109

Large Backdoors

• Assume we have a backdoor X to a tractable CSP(Γ) which:
– is large, but

– has “simple” interactions with the rest of I

• Can we use X to solve I
efficiently?
– cannot try all instantiations

– cannot use incidence treewidth

– can use dynamic programming
• Process backdoor variables in sequence

• Only keep track of feasible

 instantiations for current pair

• see if any satisfying instantiation
survives till the end

x=0

x=1

110

Large Backdoors

• Assume we have a backdoor X to a tractable CSP(Γ) which:
– is large, but

– has “simple” interactions with the rest of I

• Can we use X to solve I
efficiently?
– cannot try all instantiations

– cannot use incidence treewidth

– can use dynamic programming
• Process backdoor variables in sequence

• Only keep track of feasible

 instantiations for current pair

• see if any satisfying instantiation
survives till the end

y=0

y=1

x=0

Irrelevant
for future

111

Large Backdoors

• Assume we have a backdoor X to a tractable CSP(Γ) which:
– is large, but

– has “simple” interactions with the rest of I

• Can we use X to solve I
efficiently?
– cannot try all instantiations

– cannot use incidence treewidth

– can use dynamic programming
• Process backdoor variables in sequence

• Only keep track of feasible

 instantiations for current pair

• see if any satisfying instantiation
survives till the end

y=0

y=1

112

Large Backdoors

• Assume we have a backdoor X to a tractable CSP(Γ) which:
– is large, but

– has “simple” interactions with the rest of I

• Can we use X to solve I
efficiently?
– cannot try all instantiations

– cannot use incidence treewidth

– can use dynamic programming
• Process backdoor variables in sequence

• Only keep track of feasible

 instantiations for current pair

• see if any satisfying instantiation
survives till the end

y=0

y=1

z=0

z=1

113

Large Backdoors

• Assume we have a backdoor X to a tractable CSP(Γ) which:
– is large, but

– has “simple” interactions with the rest of I

• Can we use X to solve I
efficiently?
– cannot try all instantiations

– cannot use incidence treewidth

– can use dynamic programming
• Process backdoor variables in sequence

• Only keep track of feasible

 instantiations for current pair

• see if any satisfying instantiation
survives till the end

y=0

y=1

z=0

z=1

114

Large Backdoors

• Assume we have a backdoor X to a tractable CSP(Γ) which:
– is large, but

– has “simple” interactions with the rest of I

• Can we use X to solve I
efficiently?
– cannot try all instantiations

– cannot use incidence treewidth

– can use dynamic programming
• Process backdoor variables in sequence

• Only keep track of feasible

 instantiations for current pair

• see if any satisfying instantiation
survives till the end

z=0

z=1

115

Formalizing the idea

Definition: The backdoor treewidth w.r.t. Γ is the minimum
treewidth of the torso of a backdoor to CSP(Γ).

Torso of a backdoor:
– collapses everything into the backdoor

– fully captures interactions between backdoor variables

Torso

Treewidth?
116

Backdoor Treewidth

• Evaluation:
A backdoor of treewidth k into tractable Γ
can be used to solve CSP in FPT time
– Dynamic programming (example)

– Requires bounded domain (like backdoors and treewidth)

• Finding:
Much more challenging than finding backdoors of size k
– Backdoors of small treewidth need not be minimum backdoors into Γ

– Instances could have large treewidth and only large backdoors

– Even membership in XP is not obvious

117

– Ganian, Ramanujan, Szeider (2017)

– Also works for SAT (e.g., backdoors to Horn)
without arity restrictions

118

Finding a backdoor to CSP(Γ) of width at most k is
FPT for every finite language Γ.

Backdoor Treewidth

Thank you for

your attention

Questions?

a

c

b

d

119

a b c

d e
f

R

S
T

Finding small-treewidth backdoors

• First task: dealing with nice instances

– an instance I is nice if at least one of these hold:
• I has small incidence treewidth, or

• I has a small-treewidth backdoor X with precisely one connected
component C such that I-C is small

120

huge C

small

≤ 𝑓(𝑘)

Why “nice”?

Nice instances are easy to solve

• If incidence treewidth is small…

– we can use, e.g., Courcelle’s Theorem to find a small-
treewidth backdoor

– (we could also solve the instance directly if we wanted to)

• If everything outside of C is small…

– then everything outside of C is actually a small backdoor

Nice instances will also be important later on

121

Dealing with ugly instances

• ugly instances have a good separation
(assuming they have a small-treewidth backdoor X)

122

small
separator

. . .
. . .

big parts

Dealing with ugly instances

• ugly instances have a good separation
(assuming they have a small-treewidth backdoor X)

Why?

• Find biggest component
C in G-X

• If C or G-N[C] is small
then the instance is nice

• Otherwise we have
a good separation

 123
C

G-N[C]

Finding good separations

• Using standard techniques, we find a “left-most”
good separation in FPT time

124 124

small
separator

. . .
. . .

big parts

no good separation

Finite State machinery

• Our next goal will be to replace the left side with a
small representative

– Requires development of finite state machinery for CSPs
capturing contribution to a small-treewidth backdoor

– End result: small set Q of small representatives for all
possible parts on one side of a separator

125 125

Finite State machinery

• Our next goal will be to replace the left side with a
small representative

126 126

. . .
. . .

Finite State machinery

• Our next goal will be to replace the left side with a
small representative

• New instance strictly smaller but equivalent

– We now restart with new smaller instance

127 127

. . .
small

Choosing the right representative

• How to choose the correct representative from Q?

– Test the left side against all possible representatives

128

. . .
. . .

no good separation

Choosing the right representative

• How to choose the correct representative from Q?

– Test the left side against all possible representatives

– Can prove that resulting instances contain no good
separation (w.r.t. slightly bigger constants)

– they are nice can determine how left side interacts
with all possible representatives

129

. . .

no good separation

Q1, Q2…

Choosing the right representative

• How to choose the correct representative from Q?

– Pick representative for left side which interacts the same
way with all representatives in Q

130

. . .

Has small-tw backdoor with Q1, Q4, Q6…

Q1, Q2…

Final Recap

• If I is nice, directly find a small-treewidth backdoor

• Otherwise, try to find a left-most good separation

– if it doesn’t exist then there’s no small-treewidth backdoor

• Determine which representative fits for the left side

• Use it to obtain an equivalent but smaller instance

– Restart on new instance

131

Finding a backdoor to CSP(Γ) of width at most k is
FPT for every finite language Γ.

Thank you for

your attention

Questions?

a

c

b

d

132

a b c

d e
f

R

S
T

