LOSSY KERNELIZATION

PARAMETERIZED COMPLEXITY SUMMER SCHOOL
ALGO 2017

VIENNA

M. §. RAMANUJAN

TV WIEN

LOSSY Kernellzation

APPROXIMATION

ALGORITHMS KERNELIZATION

LOSSY Kernellzation

V

APPROXIMATION
ALGORITHMS KERNELIZATION
KERNELS

Kernellzation

polynomial |

I,k >
time j[
Yes i g Yes
iInstance iInstance

Polynomial Kernel if |I'|+k’ < poly(k)

Kernellzation

Lk

Yes
iInstance

?

polynomial |
time ;

>

g Yes

iInstance

a 1.0001-
approximate
solution

Kernellzation

Lk

Yes

polynomial |
time ;

>

g Yes

iInstance

an optimal
solution

poly time

iInstance

an optimal
solution

Kernellzation

N polynomial | »
Time Jj
da 10001- a 10001_
GPPI"OXimC(TZ ’ poly time appr'oxima’re

solution solution

approximate Kernellzation

polynomial |

= ; Tk
Time ;
a 1.0001- a 1.0001-
approximate - poly time approximate
solution solution

But if we are allowing a loss while solving T, makes sense to
allow a slight loss while lifting a solution back to I

a—approximate Kernellzatlon

[Lokshtanov, Panolan, R., Saurabh, 17]

S Ik polynomial | »
time ;
an (ac)- |
approximate : a c-approximate
g i poly time solution
solution

Polynomial a-approximate Kernel if |I'|+k’ < poly(k)

Previously

A

A problem is FPT
if and only if
it has a kernel.

A problem has an FPT time a-approximation
if and only if
it has a a-approximate kernel

Now

Previously

A

A problem is in P
if and only if
it has a constant size kernel.

A problem has a poly time a-approximation
if and only if
it has a constant size a-approximate kernel
V

Now

\ ~ polynomial K i . : :
@ P Zrlime ,—&b A problem has a poly time a-approximation
' if and only if
an (acy a c-approximate it has a constant size a-approximate kernel
apz:r:_;;:sm poly time solution \/
_ > v T -.l.

we are given a poly time

want to define this objec’r\j a-approx algo

(I k) (I' k') an arbitrary instance

of constant size

>

an (ac)-approximate > a c-approximate

. run poly time .
solution p.y . solution <<
a-approximation on

(I.k)

~

@ ~ polynomial
| time

A problem has a poly time a-approximation
if and only if

an (ac)- a c-approximate it has a constant size a-approximate kernel
approximate poly time solution J
solution \/
we are given this object j want to define
g poly time a-approximation R
[)
I / k S Ik polynomial Ik :
| @ ynomiel }____.{T 3 _ finda
1-approximate
an (qc)-T : a c-approximate ppl . "
ap‘;gﬁ.)lfrlinc::) poly time solution / solution

/

/

_

an a-approxi mate
solution

a—approximate Kernellzation

A

A problem has a poly time a-approximation
if and only if
it has a constant size a-approximate kernel

@ want to design a-approximate
= : kernel where

a beats best known size beats best
approx bound known kernel bound

Max SAT

Given a CNF formula, what is the maximum
number of clauses which can be satisfied?

APX-hard no kernel of size poly(n)
[BGLR 93] [Fortnow Santhanam, 08]
@ want to design a-approximate
A kernel where

\ %S ()

a=(1-€) size is polynomial

APX-hard
[BGLR 93]

>

if at most em/2 clauses have

no kernel of size poly(n)
Max SAT < FS 08]

Set d=log (2/€)

T

otherwise

size at most d

then a random assignment will leave

em/2<= # small clauses <=n'°9(2/¢)

at most em/2+m/29 = em clauses
unsatisfied

at least (1-€)m clauses
satisfied!

m:o(nlog(Z/G))

APX-hard | | no kernel of size poly(n)j
BeLR 93] MAXSAT < [FS 08]

Set d=log (2/€)

T

at least (1-e)m clauses m=0(nl°9@/))
satisfied!
. L already have
find a (1-€)-approximation OR

an O(n®) kernel

APX-hard

no kernel of size poly(n)
BelR 93] ¢ MAXSAT < S 08]
Set d=log (2/€)
at least (1-e)m clauses m=0(nl°9@/))
satisfied!
. L already have
d a (1-€)-
find a (1-€) ar;o><|mcn‘|on OR an O(ne) kernel
SR e
\% a (1-€)-approximate kernel of ¢ (@6\-
___size O(n°)) gof

Problemis pammeterizeol bg solution
value

Problemis parameterized log solution
value

What is k in this context? kis a threshold
on the size of solutions we want to output

A subset of vertices
such that
EVERY edge of G is
Co wwea’ced Vvertex Cover incident on

some vertex in this
subset.

Given a graph G, find a smallestivertex cover /
which induces a connected subgraph?

2-approximable [AHH 93] 2% kernel

no (2-¢) approximation under no polynomial kernel [DLS 09]
UGC [KR 08]

S Tk ~ polynomial : j:wk}
time -

Yes _ Yes
instance instance

Polynomial Kernel if |I'|+k’ < poly(k)

S

IN_/
WA
AN
H vertices of =k

degree > k
L \ f / / J

R O(k?)

Vertex Cover

H = vertices of degree
at least k+1

R = vertices with at
least one neighbor not in

H.

I = remaining vertices,
have all neighbors in H,
must be independent.

~ polynomial

P atian
T K
—_

o

Yes

time

instance

Polynomial Kernel if |I'|+k’ < poly(k)

~

\—

vertices of
degree > k

./

~

Yes
instance

<=k

O(k?)

Vertex Cover

H = vertices of degree
at least k+1

R = vertices with at
least one neighbor not in

H.

I = remaining vertices,
have all neighbors in H,
must be independent.

S Tk ~ polynomial : j:wk}
time -

Yes _ Yes
instance instance

Polynomial Kernel if |I'|+k’ < poly(k)

S

IN_/
WA
AN
H vertices of =k

degree > k
L \ f / / J

R O(k?)

CONNECTED Vertex Cover

H = vertices of degree
at least k+1

R = vertices with at
least one neighbor not in

H.

I = remaining vertices,
have all neighbors in H,
must be independent.

Gk

Conwnected Vvertex Cover

OPT(6) > k
OR
polynomial @
Time
(a) afeasible . every feasible
solution solution
(b) OPT(G) (1+€) >= OPT(G')
(C) |V(G')| <= kOU/®) Hint: Somehow store interesting

solutions within k°1€ vertices.

OPT(6) > k

e ¢ |+ Run the 2-approximation

Alg .
T algorithm.

(b) OPT(6) (1+€) >= OPT(G)

(c) V(&) <= kowe)

If output>2k, then say
OPT(G)>k and stop.

Otherwise, OPT(G)=2k

OPT(6) > k

(b) OPT(6) (1+€) >= OPT(G)

(c) V(&) <= kowe)

N
D YR
H vertices of

degree > 2k =2k

— _J

R O(k?)

H = vertices of degree
at least 2k+1

R = vertices incident on
at least one edge not
incident on H.

I = remaining vertices,
must be independent.

add a pendant to
vertices in H.

OPT(6) > k

S:=H,d=2/¢

OR

(a) afeasible every feasible
solution solution

(b) OPT(6) (1+€) >= OPT(G)

As long as there is a vertex vinI
seeing >=d components of G[S], set
5:=S v {v}, add pendant to v.

(c) V(&) <= kowe)

~) + Procedure stops after <=
S d }% =2k e/2 |H| <= € OPT(G) steps

/ -+ S0, OPT(G') <= OPT(6G) (1+€)

What about size of G'?

OPT(6) > k

OR

. (G k)
iﬁi {P Ao | Rl - if uand v have the same
(a) afeasible every feasible neighbour‘ing Componen'rs in G[S]

solution solution

() OPTE)(1ee) = OPTIE) just delete one.

(c) |V(6)] «= kowe)

Finally, we are left with

|I‘ <= kO(d) - kO(l/G)

Size bound holds.

(1+e)-approximate kernel of size
kO1/€) for Conn. Vertex Cover.

Poly time

OPT(6) > k

OR
(6'K)

every feasible
solution solution

(b) OPT(G) (1+€) >= OPT(G')

(©) V@) = Ko

DAY

Open Problem:

Is there a (1+€)-approx.
kernel of size f(1/¢€) kOW

I Efficien’r PSA KS‘>
v o

(1+e)-approximate kernel of size
kO/€) for Conn. Vertex Cover.

Polynomial Size Appr'oxima’re

Kerneliza’rion Scheme

We just saw a PSAKS for connected vertex
cover.

Awnother examXLe: H-hitting set

Given a graph G, find a smallest H-hitting set
which induces a connected subgraph?

We want to hit every
copy of a graph in H,
which is in G.

H is a fixed finite family
of finite graphs.

When H={K2}, then we have the Connected
Vertex Cover problem.

Awn approximate Rernel for H-hitting set

The connected H-hitting set problem has a
(1+e)-approximate kernelization of polynomial size

for every O<ex<l.

[Eiben, Hermelin, R. 17]

Known Rernel for H-hitting set

OPT(G) > k
OR

ek

Every (not necessarily connected) H-hitting set of G’ of
size at most k is a (not necessarily connected)
H-hitting set of 6.

polynomial
time

Gk

|V(G)|=kO® where d=size of largest graph in H

Known Rernel for H-hitting set

polynomial
time

Gk

Like for connected vertex cover, vertices outside G’
are only needed for connectivity

Known Rernel for H-hitting set

polynomial
time

Gk

Like for connected vertex cover, vertices outside G
are only needed for connectivity

But again, which vertices? Hint: We only want to preserve
Even worse, G\G' is nhot so approximate connectivity
simple as for vertex cover! between solution vertices in V(G)).

Dlgression: Stelner tree app roxtmatLown

A

A Steiner tree for a set of terminals T is a connected
subgraph of G spanning the vertices in T.

Terminal set

Dlgression: Stelner tree app roxtmatLown

A

For every error parameter O<e<1, there is a p(1/¢€)
such that any set containing the optimal steiner tree
for EVERY p(1/€)-sized subset of T, also contains a

(1+€) approximate Steiner Tree for every RC T .
Borchers and Du, 95

Dlgression: Stelner tree app roxtmatLown

A

For every error parameter O<e<1, there is a p(1/¢€)
such that any set containing the optimal steiner tree
for EVERY p(1/€)-sized subset of T, also contains a

(1+€) approximate Steiner Tree for every RC T .
Borchers and Du, 95

Total number -
of vertices <= /\/
| T|+q.| T|Pw/ R

7;» fq. .

Stevner tree approximatiow LW our settiing

A

For every error parameter O<e<1, there is a p(1/¢€)
such that any set containing the optimal steiner tree
for EVERY p(1/€)-sized subset of T, also contains a

(1+€) approximate Steiner Tree for every RC T .
Borchers and Du, 95

Total number —
of vertices <= /\/
Fow
.

But for us, g= kand | T|=|V(6')|=k°?

Stevner tree approximatiow LW our settiing

A

For every error parameter O<e<1, there is a p(1/¢€)
such that any set containing the optimal steiner tree
for EVERY p(1/€)-sized subset of T, also contains a

(1+€) approximate Steiner Tree for every RC T .
Borchers and Du, 95

Total number

Total humber /\/ — /\ver’rices <=
of vertices <= KkO(d p(1/€))
-) -
' .-

But for us, g= kand | T|=|V(6')|=k°?

Steuner Tree

2% kernel

Steiner Tree
(Terminals)

APX-hard

No poly
kernel

For every error parameter O<e<1, there is a p(1/€)
such that any set containing the optimal steiner tree
for EVERY p(1/€)-sized subset of T, also contains a

(1+€) approximate Steiner Tree for every Rc T.
Borchers and Du, 95

Partial vertex Cover

Partial Vertex

Cover
o J APX-hard

[Marx, 2008]

Partial vertex Cover

Partial Vertex
Cover

APX-hard

[Marx, 2008]

cycle Packing

kklogk kernel fi

no const approx
No poly kernel

[Lokshtanov, Panolan,
R., Saurabh, 17]

cycle Packing

kklogk kernel fi

no const approx
No poly kernel

[Lokshtanov, Panolan,
R., Saurabh, 17]

Movre approximate kernels

Problem Name Apx. Apx. Hardness Kernel Apx. Ker. Fact. Appx. Ker. Size
CONNECTED V.C. 2 [4,52] (2 —€) [41] no k9 [22] 1<a k£ (o)
CYCLE PACKING O(logn) [51] (log n)%_6 [33] no k) [g] 1< a ff (@)

DISJOINT FACTORS 2 no PTAS no | 2|9 [g] 1<a 3]/ (a)

LONGEST PATH O(logn) 2] g(logn) [39] no k€M) [6] any o no k€M

SET COVER/n Inn [55] (1 —¢)lnn [47] | no n®M) [22] any o no n@M@)
HITTING SET/n O(y/n) [48] 2(0gn)" "¢ [48] | no n®() [22] any o no n@®)
VERTEX COVER 2 [55] (2 —¢€) [21,41] 2k [15] l<a<?2 2(2 — a)k [30]

d-HITTING SET d [55] d — € [20,41] O(k4—1) [1] l<a<d O((k - £=2)4=1) [30]

STEINER TREE 1.39 [11] no PTAS [12] | no k90 [22] 1< a ff ()

OLA/v.c. O(v/lognloglogn) [28] no PTAS [3] f(k) [43] l<a<?2 f(a)2FE*

PARTIAL V.C. s —e) [27] no PTAS [49] | mo f(k) [35] 1< a f(a)k?

Lot of these problems have played a critical role in the

development of kernel lower bound theory

Longest Path

Longest Path

_

Given a graph G, what is
the length of a longest path in G?

Longest Path

no const approx

No c-approximate poly
kernel unless NP in
coNP/Poly

Longest Path

no const approx

No c-approximate poly
kernel unless NP in
coNP/Poly

Lower Bounds

Y
(_R

uling out c-approximate

polynomial kernels
__ R

(Ruling out polynomial kernels) (Ruling out c-approximations)

<)

CCross—composi‘rions} CGap—crea’ring r'educ‘rions)

/

(G'apj:rzafing Cross Compositions }

(x1,k) H

Lower Bounds

| Gap-creating Cross Compositions |

(k) || (xak)

e o o o |(x:k) !

- DA gl R . - e p
q
"

Poly(input)

real number r C__:)

(y.k)

MAXIMIZATION
PROBLEM

-

_

~
k'=poly(max (|xi|)+log 1)

If some (xi,k) is a yes-instance
then OPT(y, k") is LARGE

Otherwise OPT(y k') is SMALLJ

Lower Bounds

U a™ (6ap-creating Cross Compositions)

(X1,k) H

(x2.K) | (x3.K)

e o o o |(x:k !

o ST SR s i
]
d

Poly(input)

real number r C__:)

(y.k)

MAXIMIZATION
PROBLEM

~

_

~
k'=poly(max (|xi|)+log 1)

If some (xi,k) is a yes-instance
then OPT(y k') >=r

Otherwise OPT(y,k) < r/a y

Lower Bounds

T a™ (Gap-creating Cross Compositions)

Problem P reating Cross Composition + |
roblem a-Gap-creating Cross Composition +

\ a-approximate polynomial

compression

S— —— = ———

Lower Bounds

m—— S —

:r-gaTo Long Path cross composes into
Longest Path

————— — ——————

——

ILongesT Path has no a-approximate
polynomial kernel unless NP in coNP/poly.

R ———— E— T ————— S —— ———— — ———

More Lower Bounds

h::-; e — S S ——————— e e —— — S — o~ ;ﬁ

Set Cover (universe size) has no a-approximate |
| polynomial kernel unless NP in coNP/poly.

—— e ———— ———— ——————

J

a-approximate Poly. Param. Transformations

—
Reductions to rule out
approximate polynomial
. kernels D

(Problem P

Problem Q)

(X—approximatc Poly. Param. Tra nsformations

—
Reductions to rule out
approximate polynomial
. kernels D

(Problem P (compress(Q))

N
(o”")
Problem Q @,QQQ &
*?\ (p‘(\Q

Qa —approximatc Poly. Param. Tra nsformations

(— Reductions to rule out
approximate polynomial
L kernels ;

b-approximate polynomial
compression

no P-approximate polynomial compression for P + a-APPT from P to Q —> |
no p/a-approx. poly compression for Q

_/

S — L ——— e s — e ————— I N—— e B ——— —

Other questions to attack using lossy
Rernels

Other questions to attack using lossy
Rernels

Other questions to attack using lossy
Rernels

No reason why the study of approximate kernels

should be restricted to problems without
polynomial kernels

approx factor vs Rernel size

Dominating Set'on'd-degenerate 'graphs

Y v
a vertex set S such that a graph where every
every vertex in V(G)\S is subgraph has a vertex of
adjacent to a vertex in S. degree at most d
There is a d°-approximation [Jones et al.]

There is a kernel of size k@2 [Philip et al.]
Cannot have a kernel of size k°"2) [Cygan et al.]

approx factor vs Rernel size

Dominating Set'on'd-degenerate 'graphs

Y v
a vertex set S such that a graph where every
every vertex in V(G)\S is subgraph has a vertex of
adjacent to a vertex in S. degree at most d

There is a d°-approximate kernel of size O(1)

There is a 1-approximate kernel of size k9@ 2

approx factor vs Rernel size

Dominating Set'on'd-degenerate 'graphs

Y v
a vertex set S such that a graph where every
every vertex in V(G)\S is subgraph has a vertex of
adjacent to a vertex in S. degree at most d

There is a d°-approximate kernel of size O(1)

There is a 1-approximate kernel of size k9@ 2

Is there a curve interpolating between these two extremes?

approx factor vs Rernel size

Dominating Set'on'd-degenerate 'graphs

N v
a vertex set S such that a graph where every
every vertex in V(G)\S is subgraph has a vertex of
adjacent to a vertex in S. degree at most d

[Eiben, Hermelin, R. 17]

For every p in{1,..d} there is a
(d/p)-approximate kernel of size kO®d

approx factor vs Rernel size

Open Problem:

What about d-hitting set?

There is a d-approximate kernel of size O(1)

There is a 1-approximate kernel of size k9@

Is there a curve interpolating between these two extremes?

Uniform vs non-uniform kernels

Treewidth-t deletion problem has a kernel of size k"

[Fomin, Misra, Lokshtanov, Saurabh, 12]

Treewidth-t deletion problem does not have a kernel
of size f(1) k°D unless NP in coNP/poly.

[Giannopolou, Jansen, Lokshtanov, Saurabh, 15]

Treewidth-1 deletion problem has a (1+€)-approximate
kernel of size f(1) k°

[Koutecky, Lokshtanov, Misra, Saurabh, Sharma, Zehavi 17]

Take home message

For many problems, allowing a small loss in accuracy,
gives a dramatic improvement in kernel size.

Interesting questions even for problems with poly
kernels!

Does not work for all problems! There is a lower bound
machinery.

If you like kernelization and/or approximation, you'll
probably like their ﬁ as welll

OP@W Problems

* Many many many open problems.

* Full version of main paper on arxiv has a list of
problems.

What about Directed Feedback Vertex Set?

Thank you for Your attention!

Thank you for Your attention!

Thank you for Your attention!

Thank you for Your attention!

