
Lossy Kernelization

Parameterized Complexity Summer School 

ALGO 2017 

Vienna

M. S. Ramanujan 

TU WIEN

APPROXIMATION
ALGORITHMS KERNELIZATION

LOSSY Kernelization

APPROXIMATION
ALGORITHMS KERNELIZATION

LOSSY Kernelization

KERNELSLOSSY

Kernelization

Yes
instance

Yes
instance

Polynomial Kernel if |I’|+k’ < poly(k)

I,k I’,k’ polynomial  
time

Kernelization

Yes
instance

Yes
instance

 a 1.0001-
approximate

solution
?

I,k I’,k’ polynomial  
time

Kernelization

Yes
instance

Yes
instance

 an optimal
solutionpoly time

 an optimal
solution

I,k I’,k’ polynomial  
time

 a 1.0001-
approximate

solution

Kernelization

 a 1.0001-
approximate

solution
poly time

I,k I’,k’ polynomial  
time

approximate Kernelization

But if we are allowing a loss while solving I’, makes sense to
allow a slight loss while lifting a solution back to I

 a 1.0001-
approximate

solution

 a 1.0001-
approximate

solution
poly time

I,k I’,k’ polynomial  
time

𝛼-approximate Kernelization

Polynomial 𝛼-approximate Kernel if |I’|+k’ < poly(k)

 a c-approximate
solution

 an (𝛼c)-
approximate

solution
poly time

I,k I’,k’ polynomial  
time

[Lokshtanov, Panolan, R., Saurabh, 17]

A problem is FPT
if and only if

it has a kernel.

A problem has an FPT time 𝛼-approximation
if and only if

it has a 𝛼-approximate kernel

Previously

Now

A problem is in P
if and only if

it has a constant size kernel.

A problem has a poly time 𝛼-approximation
if and only if

it has a constant size 𝛼-approximate kernel

Previously

Now

(I,k) (I’,k’) an arbitrary instance
of constant size

 a c-approximate
solution

run poly time
𝛼-approximation on

(I,k)

 an (𝛼c)-approximate
solution

want to define this object
we are given a poly time

𝛼-approx algo

poly time 𝛼-approximation

I,k find a
1-approximate

solution

 an 𝛼-approximate
solution

we are given this object want to define

A problem has a poly time 𝛼-approximation
if and only if

it has a constant size 𝛼-approximate kernel

want to design 𝛼-approximate
kernel where

𝛼 beats best known
approx bound

size beats best
known kernel bound

𝛼-approximate Kernelization

Given a CNF formula, what is the maximum
number of clauses which can be satisfied?

APX-hard
[BGLR 93]

Max SAT

want to design 𝛼-approximate
kernel where

𝛼=(1-𝜖) size is polynomial

no kernel of size poly(n)

[Fortnow Santhanam, 08]

Set d=log (2/𝜖)

if at most 𝜖m/2 clauses have
size at most d

then a random assignment will leave
at most 𝜖m/2+m/2d = 𝜖m clauses

unsatisfied
at least (1-𝜖)m clauses

satisfied!

otherwise

𝜖m/2<= # small clauses <=nlog(2/𝜖)

m=O(nlog(2/𝜖))

APX-hard
[BGLR 93] Max SAT no kernel of size poly(n)

[FS 08]

at least (1-𝜖)m clauses
satisfied!

find a (1-𝜖)-approximation already have
an O(nc) kernel

Set d=log (2/𝜖)

m=O(nlog(2/𝜖))

OR

Max SATAPX-hard
[BGLR 93]

no kernel of size poly(n)

[FS 08]

at least (1-𝜖)m clauses
satisfied!

find a (1-𝜖)-approximation already have
an O(nc) kernel

Set d=log (2/𝜖)

m=O(nlog(2/𝜖))

OR

a (1-𝜖)-approximate kernel of
size O(nc)

Max SATAPX-hard
[BGLR 93]

For fr
ee!

no kernel of size poly(n)

[FS 08]

Problems parameterized by solution
value

What is k in this context? k is a threshold
on the size of solutions we want to output

Problems parameterized by solution
value

Connected Vertex Cover

Given a graph G, find a smallest vertex cover
which induces a connected subgraph?

no (2-𝜖) approximation under
UGC [KR 08]

no polynomial kernel [DLS 09]

2-approximable [AHH 93] 2k kernel

A subset of vertices
such that

EVERY edge of G is
incident on

some vertex in this
subset.

• H = vertices of degree
at least k+1

• R = vertices with at
least one neighbor not in
H.

• I = remaining vertices,
have all neighbors in H,
must be independent.

I

H

R

<=k

O(k2)

vertices of
degree > k

Vertex Cover

• H = vertices of degree
at least k+1

• R = vertices with at
least one neighbor not in
H.

• I = remaining vertices,
have all neighbors in H,
must be independent.

H

R

<=k

O(k2)

vertices of
degree > k

Vertex Cover

• H = vertices of degree
at least k+1

• R = vertices with at
least one neighbor not in
H.

• I = remaining vertices,
have all neighbors in H,
must be independent.

I

H

R

<=k

O(k2)

vertices of
degree > k

CONNECTED Vertex Cover

Connected Vertex Cover

(a) every feasible
solution

OPT(G) (1+𝜖) >= OPT(G’)

a feasible
solution

|V(G’)| <= kO(1/𝜖)

(b)

(c) Hint: Somehow store interesting
solutions within kO(1/𝜖) vertices.

G,k polynomial  
time

G’,k

OPT(G) > k
OR

• Run the 2-approximation
algorithm. 
 
 

• If output>2k, then say
OPT(G)>k and stop.  
 

• Otherwise, OPT(G)<=2k

• H = vertices of degree
at least 2k+1

• R = vertices incident on
at least one edge not
incident on H.

• I = remaining vertices,
must be independent.

• add a pendant to
vertices in H.

I

H

R

<=2k

O(k2)

vertices of
degree > 2k

• S:= H, d=2/𝜖  
 

• As long as there is a vertex v in I
seeing >=d components of G[S], set
S:=S ∪ {v}, add pendant to v. 
 

• Procedure stops after <=  
 𝜖/2 |H| <= 𝜖 OPT(G) steps  

• So, OPT(G’) <= OPT(G) (1+𝜖)  

• What about size of G’? 

I

S

R

<=2k

O(k2)

v

• if u and v have the same
neighbouring components in G[S],
just delete one.

• Finally, we are left with  
  
 |I| <= kO(d) = kO(1/𝜖)  

• Size bound holds.

• (1+𝜖)-approximate kernel of size
kO(1/𝜖) for Conn. Vertex Cover.  

I

S

R

<=2k

O(k2)

v u

• if u and v have the same
neighbouring components in G[S],
just delete one.

• Finally, we are left with  
  
 |I| <= kO(d) = kO(1/𝜖)  

• Size bound holds.

• (1+𝜖)-approximate kernel of size
kO(1/𝜖) for Conn. Vertex Cover.  

I

S

R

<=2k

O(k2)

v u

Open Problem:
Is there a (1+𝜖)-approx.
kernel of size f(1/𝜖) kO(1)

Polynomial Size Approximate

Kernelization Scheme

Efficient PSAKS?

We just saw a PSAKS for connected vertex
cover.

Another example: H-hitting set

Given a graph G, find a smallest H-hitting set
which induces a connected subgraph?

H is a fixed finite family
of finite graphs.

When H={K2}, then we have the Connected
Vertex Cover problem.

We want to hit every
copy of a graph in H,

which is in G.

The connected H-hitting set problem has a
(1+𝜖)-approximate kernelization of polynomial size

for every 0<𝜖<1.

An approximate kernel for H-hitting set

[Eiben, Hermelin, R. 17]

Known kernel for H-hitting set

G,k polynomial  
time

G’,k

Every (not necessarily connected) H-hitting set of G’ of
size at most k is a (not necessarily connected)

H-hitting set of G.

|V(G’)|=kO(d)

OPT(G) > k
OR

where d=size of largest graph in H

Known kernel for H-hitting set

G,k polynomial  
time

G’,k

Like for connected vertex cover, vertices outside G’
are only needed for connectivity

Known kernel for H-hitting set

G,k polynomial  
time

G’,k

But again, which vertices?
Even worse, G\G’ is not so
simple as for vertex cover!

Hint: We only want to preserve
approximate connectivity

between solution vertices in V(G’).

Like for connected vertex cover, vertices outside G’
are only needed for connectivity

Digression: Steiner tree approximation

Terminal set

V(G)\ T

A Steiner tree for a set of terminals T is a connected
subgraph of G spanning the vertices in T.

T

Digression: Steiner tree approximation

T

For every error parameter 0<𝜖<1, there is a p(1/𝜖)
such that any set containing the optimal steiner tree
for EVERY p(1/𝜖)-sized subset of T, also contains a

(1+𝜖) approximate Steiner Tree for every R⊆ T .
Borchers and Du, 95

Digression: Steiner tree approximation

Total number
of vertices <=
|T|+q.|T|p(1/𝜖)

Borchers and Du, 95

T

For every error parameter 0<𝜖<1, there is a p(1/𝜖)
such that any set containing the optimal steiner tree
for EVERY p(1/𝜖)-sized subset of T, also contains a

(1+𝜖) approximate Steiner Tree for every R⊆ T .

Steiner tree approximation in our setting

Total number
of vertices <=
|T|+q.|T|p(1/𝜖)

But for us, q= k and |T|=|V(G’)|=kO(d)

Borchers and Du, 95

T

For every error parameter 0<𝜖<1, there is a p(1/𝜖)
such that any set containing the optimal steiner tree
for EVERY p(1/𝜖)-sized subset of T, also contains a

(1+𝜖) approximate Steiner Tree for every R⊆ T .

Total number
of vertices <=
|T|+q.|T|p(1/𝜖)

But for us, q= k and |T|=|V(G’)|=kO(d)

Total number
of vertices <=

kO(d p(1/𝜖))

Steiner tree approximation in our setting

Borchers and Du, 95

T

For every error parameter 0<𝜖<1, there is a p(1/𝜖)
such that any set containing the optimal steiner tree
for EVERY p(1/𝜖)-sized subset of T, also contains a

(1+𝜖) approximate Steiner Tree for every R⊆ T .

Steiner Tree

1.39-Appx

APX-hard
No poly
kernel

Steiner Tree
(Terminals)

2k kernel

Partial Vertex Cover

(4/3-𝜖)—Appx

APX-hardNo kernel unless
FPT=W[1]

Partial Vertex
Cover

[Marx, 2008]

Partial Vertex Cover

(4/3-𝜖)—Appx

APX-hardNo kernel unless
FPT=W[1]

Partial Vertex
Cover

[Marx, 2008]

Cycle Packing

log n—Appx

no const approx
No poly kernel

Cycle Packing

kk log k kernel

[Lokshtanov, Panolan,
R., Saurabh, 17]

Cycle Packing

log n—Appx

no const approx
No poly kernel

Cycle Packing

kk log k kernel

[Lokshtanov, Panolan,
R., Saurabh, 17]

More approximate kernels

Problem Name Apx. Apx. Hardness Kernel Apx. Ker. Fact. Appx. Ker. Size
Connected V.C. 2 [4, 52] (2 ≠ ‘) [41] no kO(1) [22] 1 < – kf(–)

Cycle Packing O(log n) [51] (log n)
1
2 ≠‘ [33] no kO(1) [8] 1 < – kf(–)

Disjoint Factors 2 no PTAS no |�|O(1) [8] 1 < – |�|f(–)

Longest Path O(n
log n

) [2] 2(log n)

1≠‘ [39] no kO(1) [6] any – no kO(1)

Set Cover/n ln n [55] (1 ≠ ‘) ln n [47] no nO(1) [22] any – no nO(1)

Hitting Set/n O(
Ô

n) [48] 2(log n)

1≠‘ [48] no nO(1) [22] any – no nO(1)

Vertex Cover 2 [55] (2 ≠ ‘) [21,41] 2k [15] 1 < – < 2 2(2 ≠ –)k [30]
d-Hitting Set d [55] d ≠ ‘ [20, 41] O(kd≠1) [1] 1 < – < d O((k · d≠–

–≠1

)d≠1) [30]
Steiner Tree 1.39 [11] no PTAS [12] no kO(1) [22] 1 < – kf(–)

OLA/v.c. O(
Ô

log n log log n) [28] no PTAS [3] f(k) [43] 1 < – < 2 f(–)2kk4

Partial V.C. (4

3

≠ ‘) [27] no PTAS [49] no f(k) [35] 1 < – f(–)k5

Figure 1: Summary of known and new results for the problems considered in this paper. The columns show respec-
tively: the best factor of a known approximation algorithm, the best known lower bound on the approximation ratio of
polynomial time approximation algorithms, the best known kernel (or kernel lower bound), the approximation factor of
the relevant approximate kernel, and the size of that approximate kernel. In the problem name column, V.C. abbrevi-
ates vertex cover. For Set Cover and Hitting Set, n denotes the size of the universe. The approximate kernelization
results for the top block of problems constitute our main technical contribution. The middle block re-states the results
of Fellows et al. [30] in our terminology. For the bottom block, the stated approximate kernelization results follow eas-
ily by re-interpreting in our terminology a pre-processing step within known approximation algorithms (see Section 6).

di�ers from the definition of –-fidelity kernels [30], it seems that most of the pre-processing
algorithms that establish the existence of –-approximate kernels can be used to establish the
existence of –-fidelity kernels and vice versa. In particular, all of the –-fidelity kernel results of
Fellows et al. [30] can be translated to –-approximate kernels.

Our Results. Our main technical contribution is an investigation of the lossy kerneliza-
tion complexity of several parameterized optimization problems, namely Connected Vertex
Cover, Disjoint Cycle Packing, Disjoint Factors, Longest Path, Set Cover and
Hitting Set. For all of these problems there are known lower bounds [6,8,22] precluding them
from admitting polynomial kernels under widely believed complexity theoretic assumtions. In-
deed, all of these six problems have played a central role in the development of the tools and
techniques for showing kernelization lower bounds.

For Connected Vertex Cover, Disjoint Cycle Packing and Disjoint Factors we
give approximate kernels that beat both the known lower bounds on kernel size and the lower
bounds on approximation ratios of approximation algorithms. On the other hand, for Longest
Path and Set Cover we show that even a constant factor approximate kernel of polynomial
size would imply NP ™ coNP/Poly, collapsing the polynomial hierarchy. For Hitting Set we
show that a constant factor approximate kernel of polynomial size would violate the Exponen-
tial Time Hypothesis (ETH) of Impagliazzo, Paturi and Zane [38]. Next we discuss our results
for each of the six problems in more detail. An overview of the state of the art, as well as the
results of this paper can be found in Table 1.

Approximate Kernels. In the Connected Vertex Cover problem we are given as input a
graph G, and the task is to find a smallest possible connected vertex cover S ™ V (G). A vertex
set S is a connected vertex cover if G[S] is connected and every edge has at least one endpoint
in S. This problem is NP-complete [4], admits a factor 2 approximation algorithm [4, 52], and
is known not to admit a factor (2 ≠ ‘) approximation algorithm assuming the Unique Games
conjecture [41]. Further, an approximation algorithm with ratio below 1.36 would imply that P

= NP [21]. From the perspective of kernelization, it is easy to show that Connected Vertex
Cover admits a kernel with at most 2k vertices [15], where k is the solution size. On the other
hand, Dom et al. [22] showed that Connected Vertex Cover does not admit a kernel of
polynomial size, unless NP ™ coNP/Poly. In this work we show that Connected Vertex
Cover admits a Polynomial Size Approximate Kernelization Scheme, or PSAKS, the approxi-

3

Lot of these problems have played a critical role in the
development of kernel lower bound theory

Longest Path

Given a graph G, what is
the length of a longest path in G?

Longest Path

Longest Path

Longest Path

No poly
kernel

no const approx

No c-approximate poly
kernel unless NP in

coNP/Poly

Longest Path

Longest Path

No poly
kernel

no const approx

No c-approximate poly
kernel unless NP in

coNP/Poly

Lower Bounds

Ruling out c-approximate
polynomial kernels

Ruling out polynomial kernels

Cross-compositions Gap-creating reductions

Gap-creating Cross Compositions

Ruling out c-approximations

Lower Bounds

Gap-creating Cross Compositions

Poly(input)

(y,k’)

If some (xi,k) is a yes-instance
then OPT(y,k’) is LARGE

Otherwise OPT(y,k’) is SMALL

(x1,k) (x2,k) (xt,k)

(y,k’)

k’=poly(max (|xi|)+log t)

real number r

(x3,k)
MAXIMIZATION

PROBLEM

Lower Bounds

Gap-creating Cross Compositions

Poly(input)

(x1,k) (x2,k) (xt,k)

(y,k’)

k’=poly(max (|xi|)+log t)

If some (xi,k) is a yes-instance
then OPT(y,k’) >= r

Otherwise OPT(y,k’) < r/𝛼

````𝛼’’’’

real number r

MAXIMIZATION 
PROBLEM

(x3,k)



Lower Bounds

Gap-creating Cross Compositions````𝛼’’’’

Problem P 𝛼-Gap-creating Cross Composition +  
𝛼-approximate polynomial 

compression



Lower Bounds

𝛼-gap Long Path cross composes into 
Longest Path

Longest Path has no 𝛼-approximate 
polynomial kernel unless NP in coNP/poly.



More Lower Bounds

Set Cover (universe size) has no 𝛼-approximate 
polynomial kernel unless NP in coNP/poly.



Reductions to rule out 
approximate polynomial 

kernels

Problem P

Problem Q

Poly time reduction

𝛼c-approx for P <— c-approx for Q

𝛼-APPT

𝛼-approximate Poly. Param. Transformations



Problem P

Problem Q

Poly time reduction

𝛼c-approx for P <— c-approx for Q

𝛼-APPT

compress(Q)

β/𝛼
-ap

pro
x. po

ly 

com
pre

ssi
on

𝛼-approximate Poly. Param. Transformations

Reductions to rule out 
approximate polynomial 

kernels



Problem P compress(Q)
 β-approximate polynomial 

compression

no β-approximate polynomial compression for P + 𝛼-APPT from P to Q —>  
no β/𝛼-approx. poly compression for Q

𝛼-approximate Poly. Param. Transformations

Reductions to rule out 
approximate polynomial 

kernels



Other questions to attack using lossy 
kernels



Other questions to attack using lossy 
kernels



No reason why the study of approximate kernels  
should be restricted to problems without  

polynomial kernels

Other questions to attack using lossy 
kernels



approx factor vs kernel size

Dominating Set on d-degenerate graphs

a vertex set S such that 
every vertex in V(G)\S is 
adjacent to a vertex in S.

a graph where every 
subgraph has a vertex of 

degree at most d

There is a kernel of size kO(d^2)

Cannot have a kernel of size ko(d^2)

[Philip et al.]
There is a d2-approximation [Jones et al.]

[Cygan et al.]



Dominating Set on d-degenerate graphs

a vertex set S such that 
every vertex in V(G)\S is 
adjacent to a vertex in S.

a graph where every 
subgraph has a vertex of 

degree at most d

There is a 1-approximate kernel of size kO(d^2)

There is a d2-approximate kernel of size O(1)

approx factor vs kernel size



Dominating Set on d-degenerate graphs

a vertex set S such that 
every vertex in V(G)\S is 
adjacent to a vertex in S.

a graph where every 
subgraph has a vertex of 

degree at most d

There is a 1-approximate kernel of size kO(d^2)

There is a d2-approximate kernel of size O(1)

Is there a curve interpolating between these two extremes?

approx factor vs kernel size



Dominating Set on d-degenerate graphs

a vertex set S such that 
every vertex in V(G)\S is 
adjacent to a vertex in S.

a graph where every 
subgraph has a vertex of 

degree at most d

For every 𝜌 in {1,..,d} there is a  
(d/𝜌)-approximate kernel of size kO(𝜌d)

[Eiben, Hermelin, R. 17]

approx factor vs kernel size



What about d-hitting set?

approx factor vs kernel size

Open Problem:

There is a 1-approximate kernel of size kO(d)

There is a d-approximate kernel of size O(1)

Is there a curve interpolating between these two extremes?



Uniform vs non-uniform kernels

Treewidth-t deletion problem has a kernel of size kf(t)

[Fomin, Misra, Lokshtanov, Saurabh, 12]

Treewidth-t deletion problem does not have a kernel  
of size f(t) kO(1) unless NP in coNP/poly.

[Giannopolou, Jansen, Lokshtanov, Saurabh, 15]

Treewidth-t deletion problem has a (1+𝜖)-approximate   
kernel of size f(t) k3

[Koutecký, Lokshtanov, Misra, Saurabh, Sharma, Zehavi 17]



Take home message

• For many problems, allowing a small loss in accuracy, 
gives a dramatic improvement in kernel size. 

• Interesting questions even for problems with poly 
kernels! 

• Does not work for all problems! There is a lower bound 
machinery. 

• If you like kernelization and/or approximation, you’ll 
probably like their            as well!



Open Problems

Many many many open problems. 

Full version of main paper on arxiv has a list of 
problems.  

What about Directed Feedback Vertex Set?



Thank you for your attention!



Thank you for your attention!



Thank you for your attention!



Thank you for your attention!


