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The lost continent of polynomial time contains:
provably effective and efficient preprocessing algorithms

that reduce the sizes of NP-hard inputs
\ (without changing the answer) /
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Provable preprocessing

What does provably effective and provably efficient mean?
Efficient: preprocessing runs in polynomial time
Effective: shrinks the input without changing the answer

How to guarantee an effective preprocessing algorithm?

n bits n — 1 bits
< > poly(n) time < >
x' has same
answer as X
n — 2 bits 1 bit

ﬁ% v % ¢¢> B
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|

4 n - poly(n) time
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Provable preprocessing

What does provably effective and provably efficient mean?
Efficient: preprocessing runs in polynomial time
Effective: shrinks the input without changing the answer

How to guarantee an effective preprocessing algorithm?

If P+ NP, no NP-hard problem has a poly-time
preprocessing algorithm that shrinks the input by 1 bit

The viewpoint of parameterized complexity helps

n bits ‘ poly(|x|, k) time ~ f (k) bits

(:x @ jl% x' @
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Kernelization: data reduction with a guarantee

A kernelization for a parameterized problem P is:
— an algorithm that transforms inputs (x, k) into (x', k")
— inpoly(|x|, k) time, such that

e (x,k) has answer YES & (x', k') has answer YES, and

e |x'| < f(k)andk’ < f(k)

A kernelization guarantees that instances that are large
with respect to their complexity parameter can be shrunk

n bits ‘ poly(|x|, k) time ~ f (k) bits

(:x @ jl% x' @
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Kernelization & parameterized algorithms

Using any algorithm on the kernel gives an FPT algorithm

For any decidable parameterized problem P:

P is fixed-parameter tractable & 2P has a kernel

n bits X poly(|x|,&(ft(#p) time ) f (k) bits X

x @




A KERNEL FOR EDGE CLIQUE COVER
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EDGE CLIQUE COVER

Input: An undirected graph G and an integer k
Parameter: k
Question: Do there exist k cliques Cj, ..., Cy in G, such that

for each {u, v} € E(G) thereis a clique C; 2 {u, v}?

Vertices are allowed to belong to more than one clique

O (C&; @
YESfork = 6
. y @

The edge set of G can be covered by k cliques (is their union)
— Notion of cover is different than for VERTEX COVER!
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Reduction rules for EDGE CLIQUE COVER

(R1) If vis an isolated vertex, then remove v

(R2) If C is a connected component that forms a clique,
then remove C and decrease k by one

(R3) If N[u] = N][v], then remove u (k does not change)

10
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Reduction rules for EDGE CLIQUE COVER

(R1) If vis an isolated vertex, then remove v

(R2) If C is a connected component that forms a clique,
then remove C and decrease k by one

(R3) If N[u] = N][v], then remove u (k does not change)

7O %00
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Effectiveness of reduction rules

Lemma. If (G, k) is a YES-instance that cannot be reduced by (R1)-(R3), then:
V(G)| < 2%

Proof. Fix a solution Cj, ..., C}, and assign a bitvector to each vertex
? ? ?

vec(v) = (WeC, VEC,, ..., vEC )

12
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Effectiveness of reduction rules

Lemma. If (G, k) is a YES-instance that cannot be reduced by (R1)-(R3), then:
V(G)| < 2%

Proof. Fix a solution Cj, ..., C}, and assign a bitvector to each vertex

vec(v) = (1,1,0,0,0)

13
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Effectiveness of reduction rules

Lemma. If (G, k) is a YES-instance that cannot be reduced by (R1)-(R3), then:
V(6] < 2%

Proof. If vec(v) = 000 ...000: then v is isolated, (R1) applies
If vec(v) = vec(u): then N[u] = N[v] and (R2/3) applies
So |[V(G)| < |{bitvectors of length k}| = 2%
[ /™
High-level view of the proof:

If G has a solution, it reveals structure in the graph
If the graph is large wrt. k, then its structured-ness points to an applicable rule

- .

14
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Complete kernelization for EDGE CLIQUE COVER

1. Consider input (G, k)
2. Exhaustively apply (R1)-(R3) to obtain (G', k")

3. if|V(G)| = 2¢
then output “G has no solution of size k”

else output (G', k") with less than 2K vertices

e This kernelization is essentially the best known
[Gramm, Guo, Hiffner and Niedermeier, ACM Exper. Alg. 08]

e No kernel of bitsize 2°®) unless P=NP
[Cygan, Pilipczuk, Pilipczuk, SICOMP’16]
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Elementary reduction rules

A KERNEL FOR VERTEX COVER
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The VERTEX COVER problem

Input:
Parameter:
Question:

An undirected graph G and an integer k

k

Is there a set S of at most k vertices in G, such
that each edge of G has an endpointin §?

Such aset S is a vertex cover of G

17
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Reduction rules for VERTEX COVER — (R1)

(R1) If there is an isolated vertex v, delete v from G
— Reduce to the instance (G — v, k)

(G=W,k=7)

(G’ k' =7)

18



Reduction rules for VERTEX COVER — (R2)

(R2) If there is a vertex v of degree more than k,
then delete v from G and decrease the parameter by 1

— Reduce to the instance (G — v,k — 1)

(G = k=7)

E =3y &K =6)

19




Reduction rules for VERTEX COVER — (R3)

(R3) If the previous rules are not applicable and G has
more than k? + k vertices or more than k? edges,
then G has no size-k vertex cover and we output answer NO

20
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Correctness of the cutoff rule

Lemma. If G is exhaustively reduced under (R1)-(R2) and has more than
k? + k vertices or k? edges, then there is no size-< k vertex cover

Proof.
— Suppose G has a vertex cover S
— Since (R1) does not apply, every vertex of G — S has at least one edge

— Since (R2) does not apply, every vertex has degree at most k:
|E(G)| < k-S|
V(G =9 <|E@G)| <k-|S]

- So|V(®)| < (k+1)-|S]
— Soif G has a size-k vertex cover, |V(G)| < k? + k and |E(G)]| < k?

O\O\}P\Q\}P}P\/@ 7
o0 000 0 O0s
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Preprocessing for VERTEX COVER

(R1)-(R3) can be exhaustively applied in polynomial time

In polynomial time, we reduce (G, k) to (G', k") such that:
— the two instances are equivalent
-k'<k

— instance (G', k") has at most k? + k vertices and k? edges

VERTEX COVER parameterized by solution size k
has a kernel with k% + k vertices and k* edges

22



Crown reductions

BETTER KERNEL FOR VERTEX COVER
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Motivating examples

If G has a degree-1 vertex u with neighbor v:
— Exists optimal vertex cover using v and not u
— Remove u and v from G to obtain G’
— G has vtx-cover of size k © G’ has vtx-cover of size k — 1

k' =k—1

24
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Motivating examples

If G has non-adjacent vertices u, u’ with neighborhood {v, v'}:
— Exists optimal vertex cover using {v, v’} and not {u, u'}
— Remove {u,u’,v,v'} from G to obtain G’
— G has vtx-cover of size k © G’ has vtx-cover of size k — 2

k' =k — 2

25



Crown decomposition

A crown decomposition of graph G is a partition of V(G) into

Crown C independent set
non-empty)
[Head H matched into CJ
(may contain edges)
4 I

Remainder R not adjacent to C

o /

3 OPT vertex cover containing all of H and none of C

26
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Crown reduction for VERTEX COVER

G has a vertex cover of size k if and only if
G — (C U H) has a vertex cover of size k — |H|

27
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Crown-based kernelization for VERTEX COVER

Strategy to kernelize instance (G, k):
1. find a crown decomposition (C, H,R) of V' (G)
2. remove C U H from G

3. decrease k by |H|
repeat as long as a crown decomposition can be found

1. How can we find a crown decomposition?

g

2. What can we guarantee when we can no longer find one?

o

28
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Crown lemma

If graph G has more than 3k vertices, then G has
(a) a matching of size k + 1, or

(b) a crown decomposition,

and one can be found in polynomial time.

e |f we fail to find a crown decomposition of G, then
— G has at most 3k vertices and is kernelized, or
— G has a matching of size k + 1 = no size-k vertex cover

e To get a kernel with 3k vertices, suffices to prove the lemma

29



If graph G has more than 3k vertices, then G has
(a) a matching of size k + 1, or

(b) a crown decomposition,

and one can be found in polynomial time.

e Greedily find maximal matching M
1. If |M| > k, then (a) holds
2. If | M| <k, then|[V(M)| < 2k
— Unmatched vertices I are independent

— Compute maximum matching M’
in bipartite graph G’ between V(M) and I
i. If|M'| >k, then (a) holds
ii. Else M'leaves a vertex in I unsaturated
(If M’ saturates I, then V(G) < 3k)

30

O
V(M)

I
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If graph G has more than 3k vertices, then G has
(a) a matching of size k + 1, or

(b) a crown decomposition,

and one can be found in polynomial time.

e Else M' |leaves a vertex in I unsaturated

D :=vertices reachable in G’ from an unsat.
I-vertex by an M'-alternating path

e This gives a crown decomposition:
Crown: DnNI [non-empty, independent] *

Head: DN V(M) [matched into crown] k = J( >.

Remainder: V(G) \ D [not adjacent to crown] O \%

VERTEX COVER parameterized by solution size k
has a kernel with 3k vertices and O(k?) edges

31
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Linear Kernels in Linear Time,

or How to Save k Colors in O(n?) Steps

Benny Chor', Mike Fellows?, and David Juedes®

Saving k Longest
Vertex Cover Colors Max CNF-SAT Cycle/Path
Disjoint Hitting Set k—In’FernaI Treewidth
Cycles spanning tree
Star packing UENE Set Packing P,-Packing

packing
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Open problems for VERTEX COVER kernelization

Current-best kernel has 2k vertices [Nemhauser&Trotter’75]

Does VERTEX COVER have a kernel with (2 — &)k vertices,
forany e > 0?

Current-best runtime for a O (k)-vertex kernel is Q(n + m + k3)

Does VERTEX COVER have a kernel with O (k) vertices that
can be computed in O(n + m) time?

33



The sunflower lemma

A KERNELIZATION FOR HITTING SET
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The d-HITTING SET problem

Input:

Question:

35

Set U, integer k, and a collection ¥ = F;, ..., E,
of subsets of U that have size exactly d

IS C U with|S| < kandSNF; #@foralli € [m]?

S =1{b,c, v} is a hitting set
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The d-HITTING SET problem

e The case d = 2 corresponds to VERTEX COVER

e Can express DOMINATING SET in graphs of max degree d — 1
— W][2]-complete without the restriction to size-d sets

S =1{b,c, v} is a hitting set

36
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Sunflowers

A sunflower with core C is a collection of sets F, ..., F, with:
FFnE=C for all distinct i,j € [m]
EE\NC=+0Q foralli € [m]

The sets F; \ C are the petals, they are pairwise disjoint

, @
h

C={pqr} = ‘ g

t
S

C is allowed to be empty

37
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Sunflower reduction rule for d-HITTING SET

If F has a sunflower F;, ..., Fy .5 with core C and k + 2 petals:

Reduceto F' := F \ {Fyr42}

e |f Sis a hitting set of size at most k for F":

— The petals F; \ C, ..., F;+1 \ C are disjoint
— Since S hits Fy, ..., Fj, .1 with k vertices: SNC # 0

— HenceSNFp, , # 0

38
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Sunflower reduction rule for d-HITTING SET

If F has a sunflower F;, ..., Fy .5 with core C and k + 2 petals:

Reduceto F' := F \ {Fyr42}

e |f Sis a hitting set of size at most k for F’, then it also hits F

e If S is a hitting set of size at most k for F, then it also hits F'

39
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Kernelization strategy for d-HITTING SET

While there is a sunflower F;, ..., Fj, ., with k + 2 petals:
— Remove Fj, ., from the collection of sets that must be hit

1. How can we find a sunflower with k + 2 petals?

N

2. What can we guarantee when we can no longer find one?

o

40
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Finding sunflowers

Let F be a collection of sets of size exactly d

Sunflower lemma. If |F| > d! (k + 1)¢,
then F contains a sunflower with k + 2 petals.
It can be found in polynomial time.

If the reduction rule cannot be applied, we have:
|F| <d!(k+ 1D =0(k?)

Threshold is independent of the universe size

41
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Kernel for d-HITTING SET

1. Sunflower rule ensures |F| < 0(k%)

2. Remove elements from U that do not occur in any setin F
— Ensures |U| <d - |F| = O(kd)

d-HITTING SET has a kernel with O(kd) sets and elements

e Extends to a kernel for setting where
each set in F has size at most d instead of exactly d

42
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Open problem for HITTING SET kernelization

Current-best kernel has 0 (k%~1) elements and 0(k%) sets
[Abu-Khzam, JCSS’10]

Does d-HITTING SET have a kernel with f(d)k elements?

43
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Mindsets when developing kernels

(Reduction-rule first

e Try to come up with provably safe reduction rules
e Analyze what a large irreducible instance looks like

(Structure first

e |[nvestigate what a large instance looks like to which the answer is
not obviously YES or obviously NO

e Develop reduction rules to attack the ‘large parts’

Extremal structure of minimal obstructions

e For graph problems that become easier for subgraphs

e How large can a graph G be in terms of k, when
(G, k) is No but all subgraphs (G’ € G, k) yield YES?

45



One more open problem

Consider a linear ordering of the vertex set of a graph G

The imbalance o(v) of a vertex v is the absolute value of:

|N(v) n {vtces before v}|-|N(v) N {vertices after v}|

The imbalance of the linear ordering is 2. ey (5) (V)

IMBALANCE asks: does (G have an ordering of imbalance < k?

Does IMBALANCE have a polynomial kernel?

http://fptschool.mimuw.edu.pl/opl.pdf

46
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Exercises

e Build an elementary kernel for CLUSTER EDITING [Ex. 2.5]

e Build an exponential kernel for CONNECTED VERTEX COVER [Ex. 2.14]
e Build a kernel for DuAL COLORING using crowns [Ex. 2.22]

e Build a kernel for d-SET PACKING using sunflowers [Ex. 2.29]

e Prove the sunflower lemma using induction on d
Hint: Use a greedy packing of disjoint sets [Thm. 2.25]

Parameterized
Algorithms

References to Parameterized Algorithms by Cygan et al.
http://link.springer.com/book/10.1007%2F978-3-319-21275-3

47
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Summary

Several kernelizations using interesting combinatorial insights:

(— . W
E\ Fye (! . J
— AN
EDGE CLIQUE VERTEX COVER d-HITTING SET
COVER

Kernelization enables a rigorous scientific study of preprocessing
&
forms a route to fixed-parameter tractable algorithms

. THANK YOU!



