
Kernelization: The basics

Bart M. P. Jansen

Parameterized Complexity Summer School @ Vienna
September 2nd 2017, Vienna, Austria

Map of polynomial-time computation

2

Primality

testing Network flows

Sorting
Parsing

context-free
grammars

Islands of
minor-testing

Kernelization

The lost continent of
polynomial time

Map of the lost continent

3

The lost continent of polynomial time contains:

provably effective and efficient preprocessing algorithms
that reduce the sizes of NP-hard inputs

(without changing the answer)

Provable preprocessing

What does provably effective and provably efficient mean?

Efficient: preprocessing runs in polynomial time

Effective: shrinks the input without changing the answer

How to guarantee an effective preprocessing algorithm?

4 𝑛 ⋅ 𝑝𝑜𝑙𝑦(𝑛) time

𝑥

𝑛 bits

𝑥′

𝑛 − 1 bits
𝑝𝑜𝑙𝑦(𝑛) time

𝑥′ has same
answer as 𝑥

𝑥′′

𝑛 − 2 bits

𝑥∗

1 bit

⋯

Provable preprocessing

What does provably effective and provably efficient mean?

Efficient: preprocessing runs in polynomial time

Effective: shrinks the input without changing the answer

How to guarantee an effective preprocessing algorithm?

If 𝑃 ≠ 𝑁𝑃, no NP-hard problem has a poly-time
preprocessing algorithm that shrinks the input by 1 bit

The viewpoint of parameterized complexity helps

5

𝑥

𝑛 bits

𝑘

𝑝𝑜𝑙𝑦(𝑥 , 𝑘) time

𝑥′

𝑓(𝑘) bits

𝑘′

Kernelization: data reduction with a guarantee

• A kernelization for a parameterized problem 𝒫 is:

– an algorithm that transforms inputs (𝑥, 𝑘) into (𝑥′, 𝑘′)

– in 𝑝𝑜𝑙𝑦(𝑥 , 𝑘) time, such that

• (𝑥, 𝑘) has answer YES ⇔ (𝑥′, 𝑘′) has answer YES, and

• 𝑥′ ≤ 𝑓(𝑘) and 𝑘′ ≤ 𝑓(𝑘)

• The function 𝑓:ℕ → ℕ is the size of the kernel

Can be exponential or polynomial; smaller is better

6

𝑥

𝑛 bits

𝑘

𝑝𝑜𝑙𝑦(𝑥 , 𝑘) time

𝑥′

𝑓(𝑘) bits

𝑘′

A kernelization guarantees that instances that are large
with respect to their complexity parameter can be shrunk

Kernelization & parameterized algorithms

Using any algorithm on the kernel gives an FPT algorithm

7

𝑥

𝑛 bits

𝑘

𝑝𝑜𝑙𝑦(𝑥 , 𝑘) time

𝑥′

𝑓(𝑘) bits

𝑘′

For any decidable parameterized problem 𝒫:

𝒫 is fixed-parameter tractable ⇔ 𝒫 has a kernel

𝑔(𝑓 𝑘) time

A KERNEL FOR EDGE CLIQUE COVER

8

EDGE CLIQUE COVER

Input: An undirected graph 𝐺 and an integer 𝑘
Parameter: 𝑘
Question: Do there exist 𝑘 cliques 𝐶1, … , 𝐶𝑘 in 𝐺, such that
 for each 𝑢, 𝑣 ∈ 𝐸(𝐺) there is a clique 𝐶𝑖 ⊇ *𝑢, 𝑣+?

• Vertices are allowed to belong to more than one clique

• The edge set of 𝐺 can be covered by 𝑘 cliques (is their union)

– Notion of cover is different than for VERTEX COVER!

9

YES for 𝑘 = 6

Reduction rules for EDGE CLIQUE COVER

(R1) If 𝑣 is an isolated vertex, then remove 𝑣

(R2) If 𝐶 is a connected component that forms a clique,
 then remove 𝐶 and decrease 𝑘 by one

(R3) If 𝑁 𝑢 = 𝑁,𝑣-, then remove 𝑢 (𝑘 does not change)

10

Reduction rules for EDGE CLIQUE COVER

(R1) If 𝑣 is an isolated vertex, then remove 𝑣

(R2) If 𝐶 is a connected component that forms a clique,
 then remove 𝐶 and decrease 𝑘 by one

(R3) If 𝑁 𝑢 = 𝑁,𝑣-, then remove 𝑢 (𝑘 does not change)

11

Effectiveness of reduction rules

Proof. Fix a solution 𝐶1, … , 𝐶𝑘 and assign a bitvector to each vertex

𝑣𝑒𝑐 𝑣 ≔ (𝑣
?
∈𝐶1, 𝑣

?
∈𝐶2, … , 𝑣

?
∈𝐶𝑘)

12

Lemma. If (𝐺, 𝑘) is a YES-instance that cannot be reduced by (R1)-(R3), then:

𝑉 𝐺 < 2𝑘

𝑣

Effectiveness of reduction rules

Proof. Fix a solution 𝐶1, … , 𝐶𝑘 and assign a bitvector to each vertex

𝑣𝑒𝑐 𝑣 ≔ (1,1, 0,0,0)

13

Lemma. If (𝐺, 𝑘) is a YES-instance that cannot be reduced by (R1)-(R3), then:

𝑉 𝐺 < 2𝑘

𝑣

Effectiveness of reduction rules

Proof. If 𝑣𝑒𝑐 𝑣 = 000…000: then 𝑣 is isolated, (R1) applies

 If 𝑣𝑒𝑐 𝑣 = 𝑣𝑒𝑐(𝑢): then 𝑁 𝑢 = 𝑁,𝑣- and (R2/3) applies

 So 𝑉 𝐺 < |*bitvectors of length 𝑘+| = 2𝑘

14

Lemma. If (𝐺, 𝑘) is a YES-instance that cannot be reduced by (R1)-(R3), then:

𝑉 𝐺 < 2𝑘

High-level view of the proof:
If 𝐺 has a solution, it reveals structure in the graph

If the graph is large wrt. 𝑘, then its structured-ness points to an applicable rule

Complete kernelization for EDGE CLIQUE COVER

1. Consider input (𝐺, 𝑘)

2. Exhaustively apply (R1)-(R3) to obtain (𝐺′, 𝑘′)

3. if 𝑉 𝐺′ ≥ 2𝑘
′

 then output “𝐺 has no solution of size 𝑘”

 else output (𝐺′, 𝑘′) with less than 2𝑘
′
 vertices

• This kernelization is essentially the best known
[Gramm, Guo, Hüffner and Niedermeier, ACM Exper. Alg. 08]

• No kernel of bitsize 2𝑜 𝑘 unless P=NP
[Cygan, Pilipczuk, Pilipczuk, SICOMP’16]

15

A KERNEL FOR VERTEX COVER
Elementary reduction rules

16

The VERTEX COVER problem

Input: An undirected graph 𝐺 and an integer 𝑘
Parameter: 𝑘
Question: Is there a set 𝑆 of at most 𝑘 vertices in 𝐺, such
 that each edge of 𝐺 has an endpoint in 𝑆?

Such a set 𝑆 is a vertex cover of 𝐺

17

Reduction rules for VERTEX COVER – (R1)

(R1) If there is an isolated vertex 𝑣, delete 𝑣 from 𝐺

– Reduce to the instance 𝐺 − 𝑣, 𝑘

18

(𝐺 = , 𝑘 = 7)

(𝐺′ = , 𝑘′ = 7)

Reduction rules for VERTEX COVER – (R2)

19

(𝐺 = , 𝑘 = 7)

(𝐺′ = , 𝑘′ = 6)

(R2) If there is a vertex 𝑣 of degree more than 𝑘,
 then delete 𝑣 from 𝐺 and decrease the parameter by 1

– Reduce to the instance 𝐺 − 𝑣, 𝑘 − 1

Reduction rules for VERTEX COVER – (R3)

(R3) If the previous rules are not applicable and 𝐺 has
 more than 𝑘2 + 𝑘 vertices or more than 𝑘2 edges,
 then 𝐺 has no size-𝑘 vertex cover and we output answer NO

20

Correctness of the cutoff rule

Proof.

– Suppose 𝐺 has a vertex cover 𝑆

– Since (R1) does not apply, every vertex of 𝐺 − 𝑆 has at least one edge

– Since (R2) does not apply, every vertex has degree at most 𝑘:
𝐸 𝐺 ≤ 𝑘 ⋅ 𝑆

𝑉 𝐺 − 𝑆 ≤ 𝐸 𝐺 ≤ 𝑘 ⋅ |𝑆|

– So 𝑉 𝐺 ≤ 𝑘 + 1 ⋅ |𝑆|

– So if 𝐺 has a size-𝑘 vertex cover, 𝑉 𝐺 ≤ 𝑘2 + 𝑘 and 𝐸 𝐺 ≤ 𝑘2

21

S

Lemma. If 𝐺 is exhaustively reduced under (R1)-(R2) and has more than
𝑘2 + 𝑘 vertices or 𝑘2 edges, then there is no size-≤ 𝑘 vertex cover

Preprocessing for VERTEX COVER

• (R1)-(R3) can be exhaustively applied in polynomial time

• In polynomial time, we reduce (𝐺, 𝑘) to (𝐺′, 𝑘′) such that:

– the two instances are equivalent

– 𝑘′ ≤ 𝑘

– instance (𝐺′, 𝑘′) has at most 𝑘2 + 𝑘 vertices and 𝑘2 edges

22

VERTEX COVER parameterized by solution size 𝑘
has a kernel with 𝑘2 + 𝑘 vertices and 𝑘2 edges

BETTER KERNEL FOR VERTEX COVER
Crown reductions

23

Motivating examples

If 𝐺 has a degree-1 vertex 𝑢 with neighbor 𝑣:

– Exists optimal vertex cover using 𝑣 and not 𝑢

– Remove 𝑢 and 𝑣 from 𝐺 to obtain 𝐺′

– 𝐺 has vtx-cover of size 𝑘 ⇔ 𝐺′ has vtx-cover of size 𝑘 − 1

24

𝑘′ ≔ 𝑘 − 1

Motivating examples

If 𝐺 has non-adjacent vertices 𝑢, 𝑢′ with neighborhood *𝑣, 𝑣′+:

– Exists optimal vertex cover using *𝑣, 𝑣′+ and not *𝑢, 𝑢′+

– Remove *𝑢, 𝑢′, 𝑣, 𝑣′+ from 𝐺 to obtain 𝐺′

– 𝐺 has vtx-cover of size 𝑘 ⇔ 𝐺′ has vtx-cover of size 𝑘 − 2

25

𝑘′ ≔ 𝑘 − 2

Remainder 𝑅 not adjacent to 𝐶

Crown 𝐶 independent set

Crown decomposition

A crown decomposition of graph 𝐺 is a partition of 𝑉(𝐺) into

26

Head 𝐻 matched into 𝐶

(non-empty)

(may contain edges)

∃ OPT vertex cover containing all of 𝐻 and none of 𝐶

Crown reduction for VERTEX COVER

27

Off with his head! 𝐺 has a vertex cover of size 𝑘 if and only if
𝐺 − (𝐶 ∪ 𝐻) has a vertex cover of size 𝑘 − |𝐻|

Crown-based kernelization for VERTEX COVER

• Strategy to kernelize instance (𝐺, 𝑘):

1. find a crown decomposition (𝐶, 𝐻, 𝑅) of 𝑉(𝐺)

2. remove 𝐶 ∪ 𝐻 from 𝐺

3. decrease 𝑘 by |𝐻|

repeat as long as a crown decomposition can be found

28

1. How can we find a crown decomposition?

2. What can we guarantee when we can no longer find one?

Crown lemma

• If we fail to find a crown decomposition of 𝐺, then

– 𝐺 has at most 3𝑘 vertices and is kernelized, or

– 𝐺 has a matching of size 𝑘 + 1 ⇒ no size-𝑘 vertex cover

• To get a kernel with 3𝑘 vertices, suffices to prove the lemma

29

If graph 𝐺 has more than 3𝑘 vertices, then 𝐺 has
(a) a matching of size 𝑘 + 1, or
(b) a crown decomposition,
and one can be found in polynomial time.

Crown lemma

30

If graph 𝐺 has more than 3𝑘 vertices, then 𝐺 has
(a) a matching of size 𝑘 + 1, or
(b) a crown decomposition,
and one can be found in polynomial time.

• Greedily find maximal matching 𝑴

1. If 𝑴 > 𝑘, then (a) holds

2. If 𝑴 ≤ 𝑘, then 𝑉 𝑴 ≤ 2𝑘

– Unmatched vertices 𝐼 are independent

– Compute maximum matching 𝑀′
in bipartite graph 𝐺′ between 𝑉(𝑴) and 𝐼

i. If 𝑀′ > 𝑘, then (a) holds

ii. Else 𝑀′ leaves a vertex in 𝐼 unsaturated

 (If 𝑀′ saturates 𝐼, then 𝑉 𝐺 ≤ 3𝑘) 𝐼 𝑉(𝑴)

Crown lemma

31

If graph 𝐺 has more than 3𝑘 vertices, then 𝐺 has
(a) a matching of size 𝑘 + 1, or
(b) a crown decomposition,
and one can be found in polynomial time.

• Else 𝑀′ leaves a vertex in 𝐼 unsaturated

𝐷 ≔ vertices reachable in 𝐺′ from an unsat.
 𝐼-vertex by an 𝑀′-alternating path

• This gives a crown decomposition:

Crown: 𝐷 ∩ 𝐼 [non-empty, independent]

Head: 𝐷 ∩ 𝑉(𝑴) [matched into crown]

Remainder: 𝑉 𝐺 ∖ 𝐷 [not adjacent to crown]

𝐼 𝑉(𝑴) VERTEX COVER parameterized by solution size 𝑘
has a kernel with 3𝑘 vertices and 𝑂 𝑘2 edges

 reductions

32

Vertex Cover
Saving 𝑘
Colors

Max CNF-SAT
Longest

Cycle/Path

Disjoint
Cycles

Hitting Set
𝑘-Internal

spanning tree
Treewidth

Star packing
Triangle
packing

Set Packing 𝑃2-Packing

WG ‘04

Open problems for VERTEX COVER kernelization

Current-best kernel has 2𝑘 vertices [Nemhauser&Trotter’75]

Current-best runtime for a 𝑂(𝑘)-vertex kernel is Ω(𝑛 +𝑚 + 𝑘3)

33

Does VERTEX COVER have a kernel with 2 − 𝜀 𝑘 vertices,
for any 𝜀 > 0?

Does VERTEX COVER have a kernel with 𝑂(𝑘) vertices that
can be computed in 𝑂(𝑛 +𝑚) time?

A KERNELIZATION FOR HITTING SET
The sunflower lemma

34

The 𝑑-HITTING SET problem

Input: Set 𝑈, integer 𝑘, and a collection ℱ = 𝐹1, … , 𝐹𝑚
 of subsets of 𝑈 that have size exactly 𝑑

Question: ∃𝑆 ⊆ 𝑈 with 𝑆 ≤ 𝑘 and 𝑆 ∩ 𝐹𝑖 ≠ ∅ for all 𝑖 ∈ ,𝑚-?

35

𝑥 𝑔

𝑐
𝑓

𝑏 𝑎 𝑑

𝑖
𝑒

𝑗

𝑦

𝑧
𝑈

𝑆 = 𝑏, 𝑐, 𝑦 is a hitting set

The 𝑑-HITTING SET problem

• The case 𝑑 = 2 corresponds to VERTEX COVER

• Can express DOMINATING SET in graphs of max degree 𝑑 − 1

– W[2]-complete without the restriction to size-𝑑 sets

36

𝑥 𝑔

𝑐
𝑓

𝑏 𝑎 𝑑

𝑖
𝑒

𝑗

𝑦

𝑧
𝑈

𝑆 = 𝑏, 𝑐, 𝑦 is a hitting set

Sunflowers

A sunflower with core 𝐶 is a collection of sets 𝐹1, … , 𝐹ℓ with:

𝐹𝑖 ∩ 𝐹𝑗 = 𝐶 for all distinct 𝑖, 𝑗 ∈ ,𝑚-

𝐹𝑖 ∖ 𝐶 ≠ ∅ for all 𝑖 ∈ ,𝑚-

The sets 𝐹𝑖 ∖ 𝐶 are the petals, they are pairwise disjoint

𝐶 is allowed to be empty

37

𝑎

𝑔

𝑤
𝑠

𝑡

𝑥

𝑧

𝑝
𝑟

𝑞
𝐶 = *𝑝, 𝑞, 𝑟+

Sunflower reduction rule for 𝑑-HITTING SET

• If 𝑆 is a hitting set of size at most 𝑘 for ℱ′:

– The petals 𝐹1 ∖ 𝐶,… , 𝐹𝑘+1 ∖ 𝐶 are disjoint

– Since 𝑆 hits 𝐹1, … , 𝐹𝑘+1 with 𝑘 vertices: 𝑆 ∩ 𝐶 ≠ ∅

– Hence 𝑆 ∩ 𝐹𝑘+2 ≠ ∅

38

If ℱ has a sunflower 𝐹1, … , 𝐹𝑘+2 with core 𝐶 and 𝑘 + 2 petals:

Reduce to ℱ′ ≔ ℱ ∖ *𝐹𝑘+2+

𝐹1
𝐹2

𝐹3

𝐹4

𝐹5

𝐹6
𝐹7

𝐹8

…

𝐹𝑘

𝐹𝑘+1

𝐹𝑘+2

𝐶

Sunflower reduction rule for 𝑑-HITTING SET

• If 𝑆 is a hitting set of size at most 𝑘 for ℱ′, then it also hits ℱ

• If 𝑆 is a hitting set of size at most 𝑘 for ℱ, then it also hits ℱ′

39

If ℱ has a sunflower 𝐹1, … , 𝐹𝑘+2 with core 𝐶 and 𝑘 + 2 petals:

Reduce to ℱ′ ≔ ℱ ∖ *𝐹𝑘+2+

𝐹1
𝐹2

𝐹3

𝐹4

𝐹5

𝐹6
𝐹7

𝐹8

…

𝐹𝑘

𝐹𝑘+1

𝐹𝑘+2

𝐶

Kernelization strategy for 𝑑-HITTING SET

• While there is a sunflower 𝐹1, … , 𝐹𝑘+2 with 𝑘 + 2 petals:

– Remove 𝐹𝑘+2 from the collection of sets that must be hit

40

1. How can we find a sunflower with 𝑘 + 2 petals?

2. What can we guarantee when we can no longer find one?

Finding sunflowers

Let ℱ be a collection of sets of size exactly 𝑑

If the reduction rule cannot be applied, we have:

|ℱ| ≤ 𝑑! 𝑘 + 1 𝑑 = 𝑂 𝑘𝑑

Threshold is independent of the universe size

41

Sunflower lemma. If ℱ > 𝑑! 𝑘 + 1 𝑑,
then ℱ contains a sunflower with 𝑘 + 2 petals.

It can be found in polynomial time.

Kernel for 𝑑-HITTING SET

1. Sunflower rule ensures |ℱ| ≤ 𝑂(𝑘𝑑)

2. Remove elements from 𝑈 that do not occur in any set in ℱ

– Ensures 𝑈 ≤ 𝑑 ⋅ ℱ = 𝑂 𝑘𝑑

• Extends to a kernel for setting where

each set in ℱ has size at most 𝑑 instead of exactly 𝑑

42

𝑑-HITTING SET has a kernel with 𝑂 𝑘𝑑 sets and elements

Open problem for HITTING SET kernelization

Current-best kernel has 𝑂(𝑘𝑑−1) elements and 𝑂 𝑘𝑑 sets
[Abu-Khzam, JCSS’10]

43

Does 𝑑-HITTING SET have a kernel with 𝑓(𝑑)𝑘 elements?

WRAP-UP

44

Mindsets when developing kernels

Reduction-rule first

• Try to come up with provably safe reduction rules

• Analyze what a large irreducible instance looks like

Structure first

• Investigate what a large instance looks like to which the answer is
not obviously YES or obviously NO

• Develop reduction rules to attack the `large parts’

Extremal structure of minimal obstructions

• For graph problems that become easier for subgraphs

• How large can a graph 𝐺 be in terms of 𝑘, when
(𝐺, 𝑘) is NO but all subgraphs (𝐺′ ⊆ 𝐺, 𝑘) yield YES?

45

One more open problem

Consider a linear ordering of the vertex set of a graph 𝐺

The imbalance 𝜎(𝑣) of a vertex 𝑣 is the absolute value of:

 |𝑁 𝑣 ∩ *vtces before 𝑣+|-|𝑁 𝑣 ∩ *vertices after 𝑣+|

The imbalance of the linear ordering is 𝜎(𝑣)𝑣∈𝑉 𝐺

IMBALANCE asks: does 𝐺 have an ordering of imbalance ≤ 𝑘?

46

Does IMBALANCE have a polynomial kernel?

http://fptschool.mimuw.edu.pl/opl.pdf

http://fptschool.mimuw.edu.pl/opl.pdf
http://fptschool.mimuw.edu.pl/opl.pdf

Exercises

• Build an elementary kernel for CLUSTER EDITING [Ex. 2.5]

• Build an exponential kernel for CONNECTED VERTEX COVER [Ex. 2.14]

• Build a kernel for DUAL COLORING using crowns [Ex. 2.22]

• Build a kernel for 𝑑-SET PACKING using sunflowers [Ex. 2.29]

• Prove the sunflower lemma using induction on 𝑑
Hint: Use a greedy packing of disjoint sets [Thm. 2.25]

47

References to Parameterized Algorithms by Cygan et al.
http://link.springer.com/book/10.1007%2F978-3-319-21275-3

http://link.springer.com/book/10.1007/978-3-319-21275-3
http://link.springer.com/book/10.1007/978-3-319-21275-3
http://link.springer.com/book/10.1007/978-3-319-21275-3
http://link.springer.com/book/10.1007/978-3-319-21275-3
http://link.springer.com/book/10.1007/978-3-319-21275-3
http://link.springer.com/book/10.1007/978-3-319-21275-3
http://link.springer.com/book/10.1007/978-3-319-21275-3
http://link.springer.com/book/10.1007/978-3-319-21275-3
http://link.springer.com/book/10.1007/978-3-319-21275-3
http://link.springer.com/book/10.1007/978-3-319-21275-3

Summary

Several kernelizations using interesting combinatorial insights:

Kernelization enables a rigorous scientific study of preprocessing
&

forms a route to fixed-parameter tractable algorithms

48

EDGE CLIQUE
COVER

VERTEX COVER 𝑑-HITTING SET

