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Map of the lost continent 
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The lost continent of polynomial time contains: 

provably effective and efficient preprocessing algorithms 
that reduce the sizes of NP-hard inputs  

(without changing the answer) 



Provable preprocessing 

What does provably effective and provably efficient mean? 

Efficient: preprocessing runs in polynomial time 

Effective: shrinks the input without changing the answer 

How to guarantee an effective preprocessing algorithm? 
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Provable preprocessing 

What does provably effective and provably efficient mean? 

Efficient: preprocessing runs in polynomial time 

Effective: shrinks the input without changing the answer 

How to guarantee an effective preprocessing algorithm? 

If 𝑃 ≠ 𝑁𝑃, no NP-hard problem has a poly-time 
preprocessing algorithm that shrinks the input by 1 bit 

The viewpoint of parameterized complexity helps 
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Kernelization: data reduction with a guarantee 

•  A kernelization for a parameterized problem 𝒫 is: 

– an algorithm that transforms inputs (𝑥, 𝑘) into (𝑥′, 𝑘′) 

– in 𝑝𝑜𝑙𝑦( 𝑥 , 𝑘) time, such that  

• (𝑥, 𝑘) has answer YES ⇔ (𝑥′, 𝑘′) has answer YES, and 

• 𝑥′ ≤ 𝑓(𝑘) and 𝑘′ ≤ 𝑓(𝑘) 

•  The function 𝑓:ℕ → ℕ is the size of the kernel 

Can be exponential or polynomial; smaller is better 
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A kernelization guarantees that instances that are large 
with respect to their complexity parameter can be shrunk 



Kernelization & parameterized algorithms 

Using any algorithm on the kernel gives an FPT algorithm 

7 
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For any decidable parameterized problem 𝒫: 
 

𝒫 is fixed-parameter tractable  ⇔  𝒫 has a kernel 

𝑔(𝑓 𝑘 ) time 



A KERNEL FOR EDGE CLIQUE COVER 
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EDGE CLIQUE COVER 

Input:  An undirected graph 𝐺 and an integer 𝑘 
Parameter: 𝑘 
Question: Do there exist 𝑘 cliques 𝐶1, … , 𝐶𝑘  in 𝐺, such that  
  for each 𝑢, 𝑣 ∈ 𝐸(𝐺) there is a clique 𝐶𝑖 ⊇ *𝑢, 𝑣+? 

•  Vertices are allowed to belong to more than one clique 

 

 

 

•  The edge set of 𝐺 can be covered by 𝑘 cliques (is their union) 

– Notion of cover is different than for VERTEX COVER! 
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YES for 𝑘 = 6 



Reduction rules for EDGE CLIQUE COVER 

(R1) If 𝑣 is an isolated vertex, then remove 𝑣 

(R2) If 𝐶 is a connected component that forms a clique,  
 then remove 𝐶 and decrease 𝑘 by one 

(R3) If 𝑁 𝑢 = 𝑁,𝑣-, then remove 𝑢 (𝑘 does not change) 
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Reduction rules for EDGE CLIQUE COVER 

(R1) If 𝑣 is an isolated vertex, then remove 𝑣 

(R2) If 𝐶 is a connected component that forms a clique,  
 then remove 𝐶 and decrease 𝑘 by one 

(R3) If 𝑁 𝑢 = 𝑁,𝑣-, then remove 𝑢 (𝑘 does not change) 
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Effectiveness of reduction rules 

Proof. Fix a solution 𝐶1, … , 𝐶𝑘  and assign a bitvector to each vertex 

𝑣𝑒𝑐 𝑣 ≔ (𝑣
?
∈𝐶1, 𝑣

?
∈𝐶2, … , 𝑣

?
∈𝐶𝑘) 
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Lemma. If (𝐺, 𝑘) is a YES-instance that cannot be reduced by (R1)-(R3), then: 

𝑉 𝐺 < 2𝑘  

𝑣 



Effectiveness of reduction rules 

Proof. Fix a solution 𝐶1, … , 𝐶𝑘  and assign a bitvector to each vertex 

𝑣𝑒𝑐 𝑣 ≔ (1,1, 0,0,0)  
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Lemma. If (𝐺, 𝑘) is a YES-instance that cannot be reduced by (R1)-(R3), then: 

𝑉 𝐺 < 2𝑘  

𝑣 



Effectiveness of reduction rules 

Proof.  If 𝑣𝑒𝑐 𝑣 = 000…000: then 𝑣 is isolated, (R1) applies 

 If 𝑣𝑒𝑐 𝑣 = 𝑣𝑒𝑐(𝑢): then 𝑁 𝑢 = 𝑁,𝑣- and (R2/3) applies 

 So 𝑉 𝐺 < |*bitvectors of length 𝑘+| = 2𝑘 
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Lemma. If (𝐺, 𝑘) is a YES-instance that cannot be reduced by (R1)-(R3), then: 

𝑉 𝐺 < 2𝑘  

High-level view of the proof:  
If 𝐺 has a solution, it reveals structure in the graph 

If the graph is large wrt. 𝑘, then its structured-ness points to an applicable rule 



Complete kernelization for EDGE CLIQUE COVER 

1. Consider input (𝐺, 𝑘) 

2. Exhaustively apply (R1)-(R3) to obtain (𝐺′, 𝑘′) 

3.  if 𝑉 𝐺′ ≥ 2𝑘
′
 

 then output “𝐺 has no solution of size 𝑘” 

 else output (𝐺′, 𝑘′) with less than 2𝑘
′
 vertices 

 

• This kernelization is essentially the best known 
[Gramm, Guo, Hüffner and Niedermeier, ACM Exper. Alg. 08] 

• No kernel of bitsize 2𝑜 𝑘  unless P=NP  
[Cygan, Pilipczuk, Pilipczuk, SICOMP’16] 
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A KERNEL FOR VERTEX COVER 
Elementary reduction rules 
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The VERTEX COVER problem 

Input:  An undirected graph 𝐺 and an integer 𝑘 
Parameter: 𝑘 
Question: Is there a set 𝑆 of at most 𝑘 vertices in 𝐺, such 
  that each edge of 𝐺 has an endpoint in 𝑆? 

Such a set 𝑆 is a vertex cover of 𝐺 
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Reduction rules for VERTEX COVER – (R1) 

(R1) If there is an isolated vertex 𝑣, delete 𝑣 from 𝐺 

– Reduce to the instance 𝐺 − 𝑣, 𝑘  
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(𝐺 =                       , 𝑘 = 7) 

(𝐺′ =                       , 𝑘′ = 7) 



Reduction rules for VERTEX COVER – (R2) 
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(𝐺 =                       , 𝑘 = 7) 

(𝐺′ =                       , 𝑘′ = 6) 

(R2) If there is a vertex 𝑣 of degree more than 𝑘,  
        then delete 𝑣 from 𝐺 and decrease the parameter by 1 

– Reduce to the instance 𝐺 − 𝑣, 𝑘 − 1  



Reduction rules for VERTEX COVER – (R3) 

(R3) If the previous rules are not applicable and 𝐺 has  
        more than 𝑘2 + 𝑘 vertices or more than 𝑘2 edges,  
        then 𝐺 has no size-𝑘 vertex cover and we output answer NO 
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Correctness of the cutoff rule 

Proof.  

– Suppose 𝐺 has a vertex cover 𝑆 

– Since (R1) does not apply, every vertex of 𝐺 − 𝑆 has at least one edge 

– Since (R2) does not apply, every vertex has degree at most 𝑘: 
𝐸 𝐺 ≤ 𝑘 ⋅ 𝑆  

𝑉 𝐺 − 𝑆 ≤ 𝐸 𝐺 ≤ 𝑘 ⋅ |𝑆| 

– So 𝑉 𝐺 ≤ 𝑘 + 1 ⋅ |𝑆| 

– So if 𝐺 has a size-𝑘 vertex cover, 𝑉 𝐺 ≤ 𝑘2 + 𝑘 and 𝐸 𝐺 ≤ 𝑘2 
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S 

Lemma. If 𝐺 is exhaustively reduced under (R1)-(R2) and has more than 
𝑘2 + 𝑘 vertices or 𝑘2 edges, then there is no size-≤ 𝑘 vertex cover 



Preprocessing for VERTEX COVER 

•  (R1)-(R3) can be exhaustively applied in polynomial time 

•  In polynomial time, we reduce (𝐺, 𝑘) to (𝐺′, 𝑘′) such that: 

– the two instances are equivalent 

– 𝑘′ ≤ 𝑘 

– instance (𝐺′, 𝑘′) has at most 𝑘2 + 𝑘 vertices and 𝑘2 edges  
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VERTEX COVER parameterized by solution size 𝑘  
has a kernel with 𝑘2 + 𝑘 vertices and 𝑘2 edges 



BETTER KERNEL FOR VERTEX COVER 
Crown reductions 
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Motivating examples 

If 𝐺 has a degree-1 vertex 𝑢 with neighbor 𝑣: 

– Exists optimal vertex cover using 𝑣 and not 𝑢 

– Remove 𝑢 and 𝑣 from 𝐺 to obtain 𝐺′ 

– 𝐺 has vtx-cover of size 𝑘 ⇔ 𝐺′ has vtx-cover of size 𝑘 − 1 
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𝑘′ ≔ 𝑘 − 1 



Motivating examples 

If 𝐺 has non-adjacent vertices 𝑢, 𝑢′ with neighborhood *𝑣, 𝑣′+: 

– Exists optimal vertex cover using *𝑣, 𝑣′+ and not *𝑢, 𝑢′+ 

– Remove *𝑢, 𝑢′, 𝑣, 𝑣′+ from 𝐺 to obtain 𝐺′ 

– 𝐺 has vtx-cover of size 𝑘 ⇔ 𝐺′ has vtx-cover of size 𝑘 − 2 
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𝑘′ ≔ 𝑘 − 2 



Remainder 𝑅 not adjacent to 𝐶 

Crown 𝐶 independent set 

Crown decomposition 

A crown decomposition of graph 𝐺 is a partition of 𝑉(𝐺) into 
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Head 𝐻 matched into 𝐶 

(non-empty) 

(may contain edges) 

∃ OPT vertex cover containing all of 𝐻 and none of 𝐶 



Crown reduction for VERTEX COVER 
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Off with his head! 𝐺 has a vertex cover of size 𝑘 if and only if 
𝐺 − (𝐶 ∪ 𝐻) has a vertex cover of size 𝑘 − |𝐻| 



Crown-based kernelization for VERTEX COVER 

•  Strategy to kernelize instance (𝐺, 𝑘): 

1. find a crown decomposition (𝐶, 𝐻, 𝑅) of 𝑉(𝐺) 

2. remove 𝐶 ∪ 𝐻 from 𝐺 

3. decrease 𝑘 by |𝐻| 

repeat as long as a crown decomposition can be found 
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1. How can we find a crown decomposition? 

2. What can we guarantee when we can no longer find one? 



Crown lemma 

• If we fail to find a crown decomposition of 𝐺, then 

– 𝐺 has at most 3𝑘 vertices and is kernelized, or 

– 𝐺 has a matching of size 𝑘 + 1 ⇒ no size-𝑘 vertex cover 

 

• To get a kernel with 3𝑘 vertices, suffices to prove the lemma 
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If graph 𝐺 has more than 3𝑘 vertices, then 𝐺 has 
(a) a matching of size 𝑘 + 1, or 
(b) a crown decomposition, 
and one can be found in polynomial time. 



Crown lemma 
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If graph 𝐺 has more than 3𝑘 vertices, then 𝐺 has 
(a) a matching of size 𝑘 + 1, or 
(b) a crown decomposition, 
and one can be found in polynomial time. 

• Greedily find maximal matching 𝑴 

1. If 𝑴 > 𝑘, then (a) holds 

2. If 𝑴 ≤ 𝑘, then 𝑉 𝑴 ≤ 2𝑘 

– Unmatched vertices 𝐼 are independent 

– Compute maximum matching 𝑀′  
in bipartite graph 𝐺′ between 𝑉(𝑴) and 𝐼 

i. If 𝑀′ > 𝑘, then (a) holds 

ii. Else 𝑀′ leaves a vertex in 𝐼 unsaturated 

 (If 𝑀′ saturates 𝐼, then 𝑉 𝐺 ≤ 3𝑘) 𝐼 𝑉(𝑴) 



Crown lemma 
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If graph 𝐺 has more than 3𝑘 vertices, then 𝐺 has 
(a) a matching of size 𝑘 + 1, or 
(b) a crown decomposition, 
and one can be found in polynomial time. 

• Else 𝑀′ leaves a vertex in 𝐼 unsaturated 

𝐷 ≔ vertices reachable in 𝐺′ from an unsat. 
     𝐼-vertex by an 𝑀′-alternating path 

• This gives a crown decomposition: 

Crown:    𝐷 ∩ 𝐼  [non-empty, independent] 

Head:    𝐷 ∩ 𝑉(𝑴) [matched into crown] 

Remainder: 𝑉 𝐺 ∖ 𝐷 [not adjacent to crown] 

𝐼 𝑉(𝑴) VERTEX COVER parameterized by solution size 𝑘  
has a kernel with 3𝑘 vertices and 𝑂 𝑘2  edges 



              reductions 
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Vertex Cover 
Saving 𝑘 
Colors 

Max CNF-SAT 
Longest 

Cycle/Path 

Disjoint 
Cycles 

Hitting Set 
𝑘-Internal 

spanning tree 
Treewidth 

Star packing 
Triangle 
packing 

Set Packing 𝑃2-Packing 

WG ‘04 



Open problems for VERTEX COVER kernelization 

Current-best kernel has 2𝑘 vertices [Nemhauser&Trotter’75] 

 

 

 

 

Current-best runtime for a 𝑂(𝑘)-vertex kernel is Ω(𝑛 +𝑚 + 𝑘3) 

33 

Does VERTEX COVER have a kernel with 2 − 𝜀 𝑘 vertices, 
for any 𝜀 > 0? 

Does VERTEX COVER have a kernel with 𝑂(𝑘) vertices that 
can be computed in 𝑂(𝑛 +𝑚) time? 



A KERNELIZATION FOR HITTING SET 
The sunflower lemma 
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The 𝑑-HITTING SET problem 

Input:  Set 𝑈, integer 𝑘, and a collection ℱ = 𝐹1, … , 𝐹𝑚 
  of subsets of 𝑈 that have size exactly 𝑑 

Question: ∃𝑆 ⊆ 𝑈 with 𝑆 ≤ 𝑘 and 𝑆 ∩ 𝐹𝑖 ≠ ∅ for all 𝑖 ∈ ,𝑚-? 
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𝑥 𝑔 

𝑐 
𝑓 

𝑏 𝑎 𝑑 

𝑖 
𝑒 

𝑗 

 

𝑦 

𝑧 
𝑈 

𝑆 = 𝑏, 𝑐, 𝑦  is a hitting set 



The 𝑑-HITTING SET problem 

• The case 𝑑 = 2 corresponds to VERTEX COVER 

• Can express DOMINATING SET in graphs of max degree 𝑑 − 1 

– W[2]-complete without the restriction to size-𝑑 sets 
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𝑥 𝑔 

𝑐 
𝑓 

𝑏 𝑎 𝑑 

𝑖 
𝑒 

𝑗 

 

𝑦 

𝑧 
𝑈 

𝑆 = 𝑏, 𝑐, 𝑦  is a hitting set 



Sunflowers 

A sunflower with core 𝐶 is a collection of sets 𝐹1, … , 𝐹ℓ with: 

𝐹𝑖 ∩ 𝐹𝑗 = 𝐶  for all distinct 𝑖, 𝑗 ∈ ,𝑚- 

𝐹𝑖 ∖ 𝐶 ≠ ∅  for all 𝑖 ∈ ,𝑚- 

The sets 𝐹𝑖 ∖ 𝐶 are the petals, they are pairwise disjoint 

 

 

 

 

𝐶 is allowed to be empty 
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𝑎 
 

𝑔 

𝑤 
𝑠 

𝑡 

𝑥 

𝑧 

𝑝 
𝑟 

𝑞 
𝐶 = *𝑝, 𝑞, 𝑟+ 



Sunflower reduction rule for 𝑑-HITTING SET 

• If 𝑆 is a hitting set of size at most 𝑘 for ℱ′: 

– The petals 𝐹1 ∖ 𝐶,… , 𝐹𝑘+1 ∖ 𝐶 are disjoint 

– Since 𝑆 hits 𝐹1, … , 𝐹𝑘+1 with 𝑘 vertices: 𝑆 ∩ 𝐶 ≠ ∅ 

– Hence 𝑆 ∩ 𝐹𝑘+2 ≠ ∅ 
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If ℱ has a sunflower 𝐹1, … , 𝐹𝑘+2 with core 𝐶 and 𝑘 + 2 petals: 

Reduce to ℱ′ ≔ ℱ ∖ *𝐹𝑘+2+ 

𝐹1 
𝐹2 

𝐹3 

𝐹4 

𝐹5 

𝐹6 
𝐹7 

𝐹8 

… 

𝐹𝑘 

𝐹𝑘+1 

𝐹𝑘+2 

𝐶 



Sunflower reduction rule for 𝑑-HITTING SET 

• If 𝑆 is a hitting set of size at most 𝑘 for ℱ′, then it also hits ℱ 

• If 𝑆 is a hitting set of size at most 𝑘 for ℱ, then it also hits ℱ′ 
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If ℱ has a sunflower 𝐹1, … , 𝐹𝑘+2 with core 𝐶 and 𝑘 + 2 petals: 

Reduce to ℱ′ ≔ ℱ ∖ *𝐹𝑘+2+ 

𝐹1 
𝐹2 

𝐹3 

𝐹4 

𝐹5 

𝐹6 
𝐹7 

𝐹8 

… 

𝐹𝑘 

𝐹𝑘+1 

𝐹𝑘+2 

𝐶 



Kernelization strategy for 𝑑-HITTING SET 

•  While there is a sunflower 𝐹1, … , 𝐹𝑘+2 with 𝑘 + 2 petals: 

– Remove 𝐹𝑘+2 from the collection of sets that must be hit 
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1. How can we find a sunflower with 𝑘 + 2 petals? 

2. What can we guarantee when we can no longer find one? 



Finding sunflowers 

Let ℱ be a collection of sets of size exactly 𝑑 

 

 

 

 
If the reduction rule cannot be applied, we have:  

|ℱ| ≤ 𝑑! 𝑘 + 1 𝑑 = 𝑂 𝑘𝑑  

Threshold is independent of the universe size 
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Sunflower lemma. If ℱ > 𝑑! 𝑘 + 1 𝑑, 
then ℱ contains a sunflower with 𝑘 + 2 petals.  

It can be found in polynomial time. 



Kernel for 𝑑-HITTING SET 

1. Sunflower rule ensures |ℱ| ≤ 𝑂(𝑘𝑑) 

2. Remove elements from 𝑈 that do not occur in any set in ℱ 

– Ensures 𝑈 ≤ 𝑑 ⋅ ℱ = 𝑂 𝑘𝑑  

 

 

• Extends to a kernel for setting where 

each set in ℱ has size at most 𝑑 instead of exactly 𝑑 
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𝑑-HITTING SET has a kernel with 𝑂 𝑘𝑑  sets and elements 



Open problem for HITTING SET kernelization 

Current-best kernel has 𝑂(𝑘𝑑−1) elements and 𝑂 𝑘𝑑  sets  
[Abu-Khzam, JCSS’10] 
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Does 𝑑-HITTING SET have a kernel with 𝑓(𝑑)𝑘 elements? 



WRAP-UP 
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Mindsets when developing kernels 

Reduction-rule first 

• Try to come up with provably safe reduction rules 

• Analyze what a large irreducible instance looks like 

Structure first 

• Investigate what a large instance looks like to which the answer is 
not obviously YES or obviously NO 

• Develop reduction rules to attack the `large parts’ 

Extremal structure of minimal obstructions 

• For graph problems that become easier for subgraphs 

• How large can a graph 𝐺 be in terms of 𝑘, when 
(𝐺, 𝑘) is NO but all subgraphs (𝐺′ ⊆ 𝐺, 𝑘) yield YES? 
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One more open problem 

Consider a linear ordering of the vertex set of a graph 𝐺 

 

 

 
The imbalance 𝜎(𝑣) of a vertex 𝑣 is the absolute value of: 

 |𝑁 𝑣 ∩ *vtces before 𝑣+|-|𝑁 𝑣 ∩ *vertices after 𝑣+| 

 
The imbalance of the linear ordering is  𝜎(𝑣)𝑣∈𝑉 𝐺  

IMBALANCE asks: does 𝐺 have an ordering of imbalance ≤ 𝑘? 
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Does IMBALANCE have a polynomial kernel? 

http://fptschool.mimuw.edu.pl/opl.pdf  

http://fptschool.mimuw.edu.pl/opl.pdf
http://fptschool.mimuw.edu.pl/opl.pdf


Exercises 

• Build an elementary kernel for CLUSTER EDITING [Ex. 2.5] 

• Build an exponential kernel for CONNECTED VERTEX COVER [Ex. 2.14] 

• Build a kernel for DUAL COLORING using crowns [Ex. 2.22]  

• Build a kernel for 𝑑-SET PACKING using sunflowers [Ex. 2.29] 

• Prove the sunflower lemma using induction on 𝑑 
Hint: Use a greedy packing of disjoint sets [Thm. 2.25] 
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References to Parameterized Algorithms by Cygan et al. 
http://link.springer.com/book/10.1007%2F978-3-319-21275-3 

http://link.springer.com/book/10.1007/978-3-319-21275-3
http://link.springer.com/book/10.1007/978-3-319-21275-3
http://link.springer.com/book/10.1007/978-3-319-21275-3
http://link.springer.com/book/10.1007/978-3-319-21275-3
http://link.springer.com/book/10.1007/978-3-319-21275-3
http://link.springer.com/book/10.1007/978-3-319-21275-3
http://link.springer.com/book/10.1007/978-3-319-21275-3
http://link.springer.com/book/10.1007/978-3-319-21275-3
http://link.springer.com/book/10.1007/978-3-319-21275-3
http://link.springer.com/book/10.1007/978-3-319-21275-3


Summary 

Several kernelizations using interesting combinatorial insights: 

 

 

 

 

 

Kernelization enables a rigorous scientific study of preprocessing 
& 

forms a route to fixed-parameter tractable algorithms 
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EDGE CLIQUE 
COVER 

VERTEX COVER 𝑑-HITTING SET 

 


