ADVANCED KERNELIZATION

PARAMETERIZED COMPLEXITY SUMMER SCHOOL

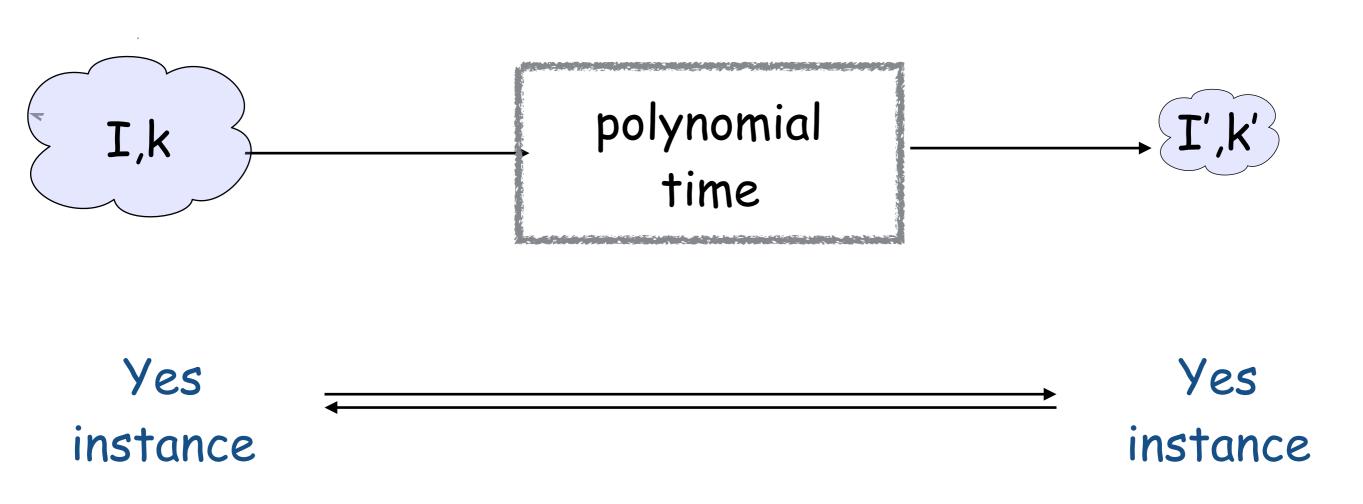
ALGO 2017

\bigvee IENNA

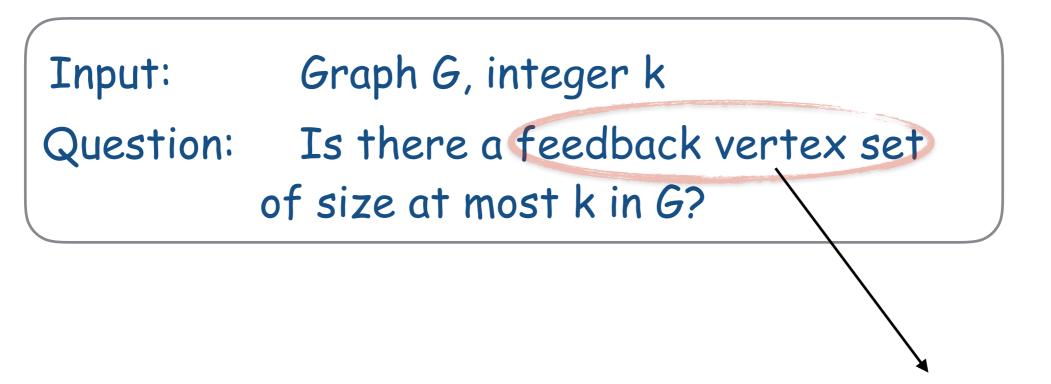
M. S. RAMANUJAN

TUWIEN

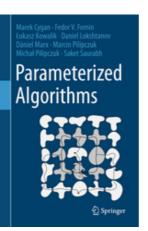
Kernelization



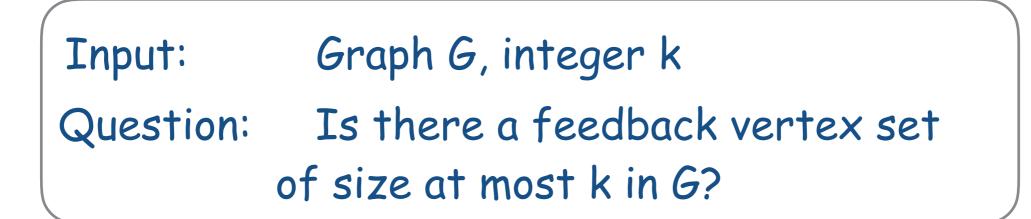
Polynomial Kernel if |I'|+k' < poly(k)



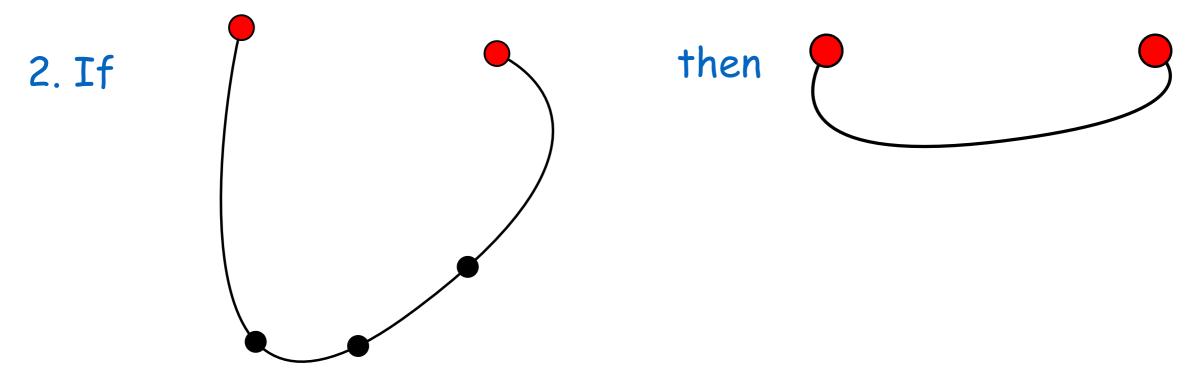
A subset of vertices S such that G-S is a forest (acyclic)

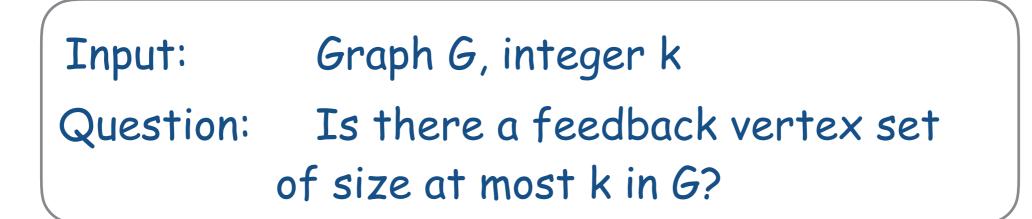


Free copy available online. Really!

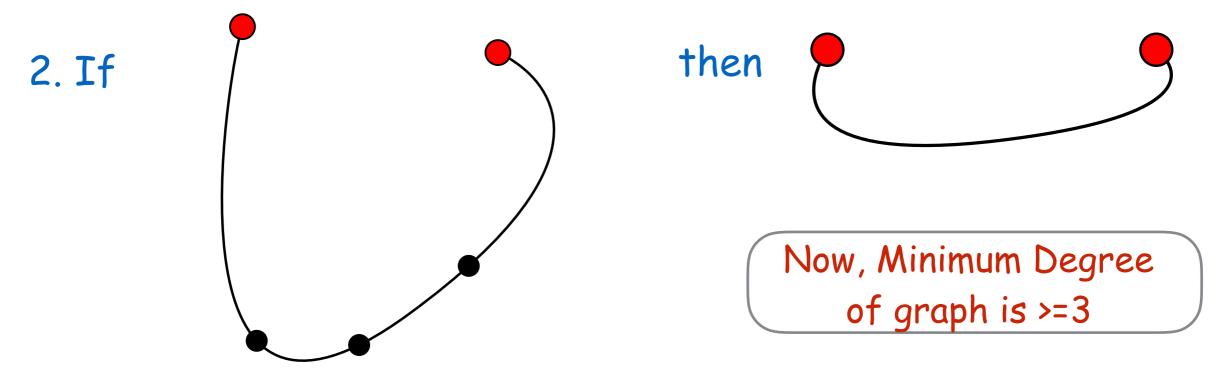


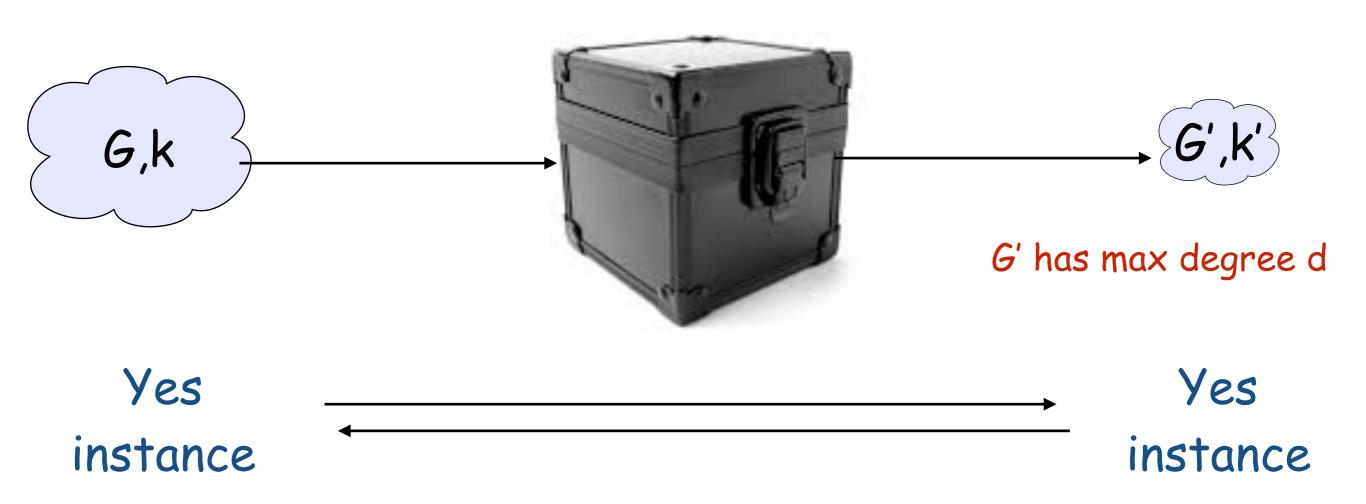
1. Delete a vertex of degree 1 because it is in no cycle

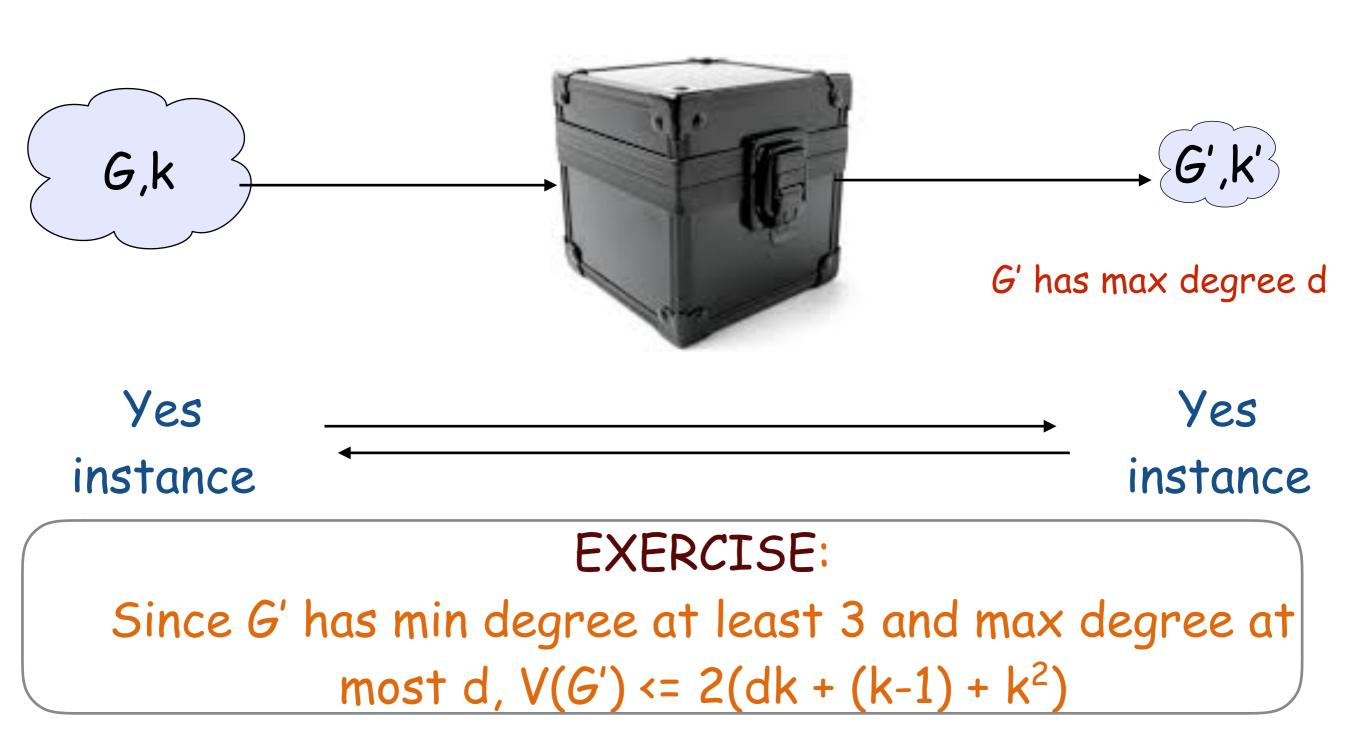




1. Delete a vertex of degree 1 because it is in no cycle





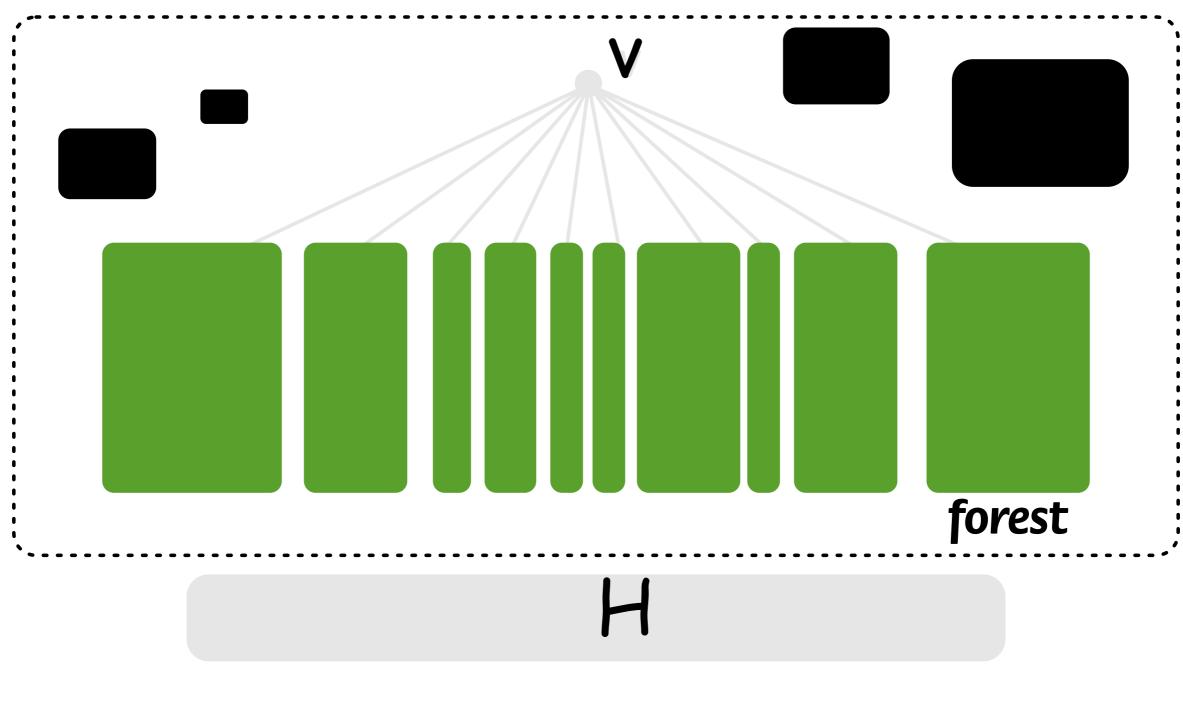


If d=O(k), then $V(G')=O(k^2)$

EXERCISE:

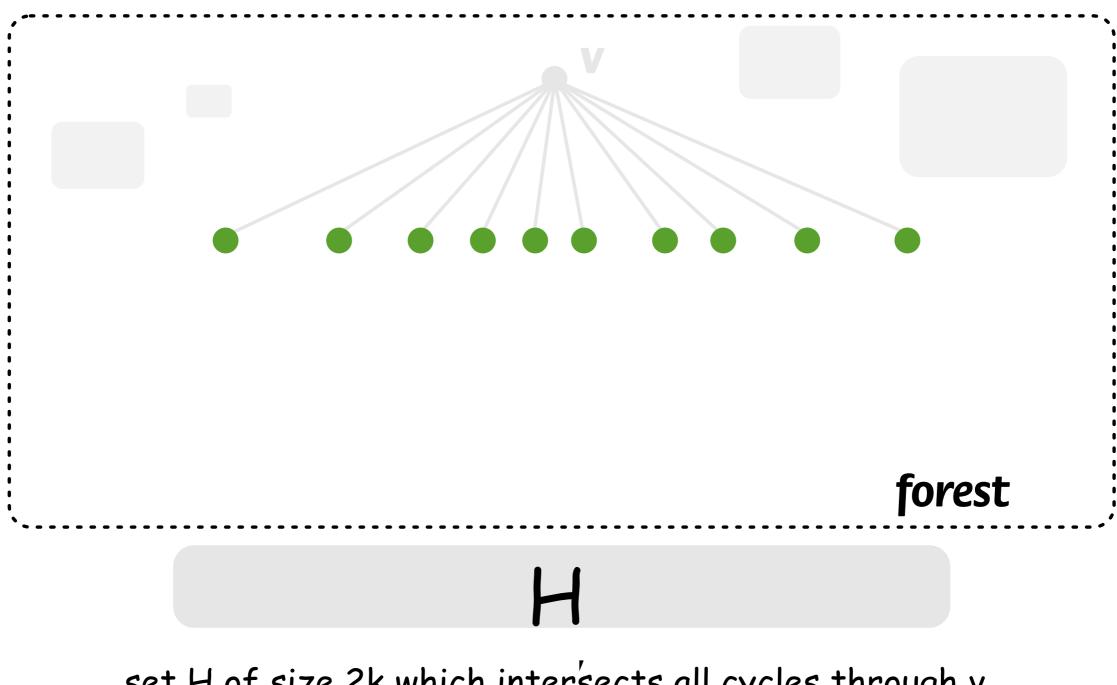
Since G' has min degree at least 3 and max degree at most d, V(G') <= 2(dk + (k-1) + k²)

We can reach here using Gallai's theorem [see Chapter 9]

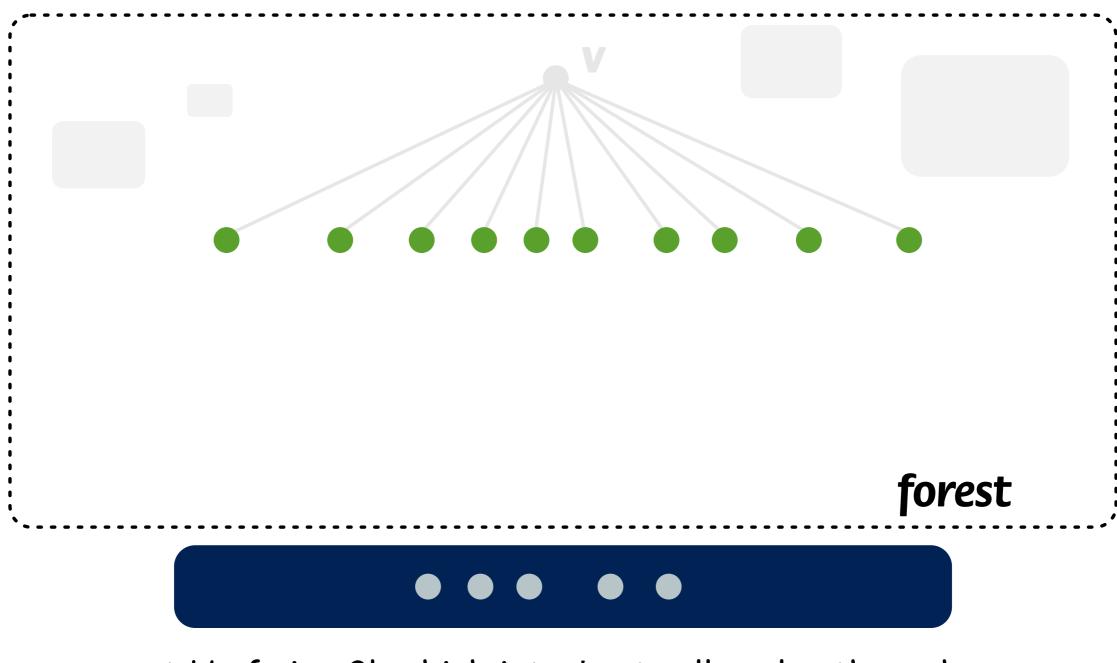


set H of size 2k which intersects all cycles through v

assuming v is not the centre of a k+1-flower

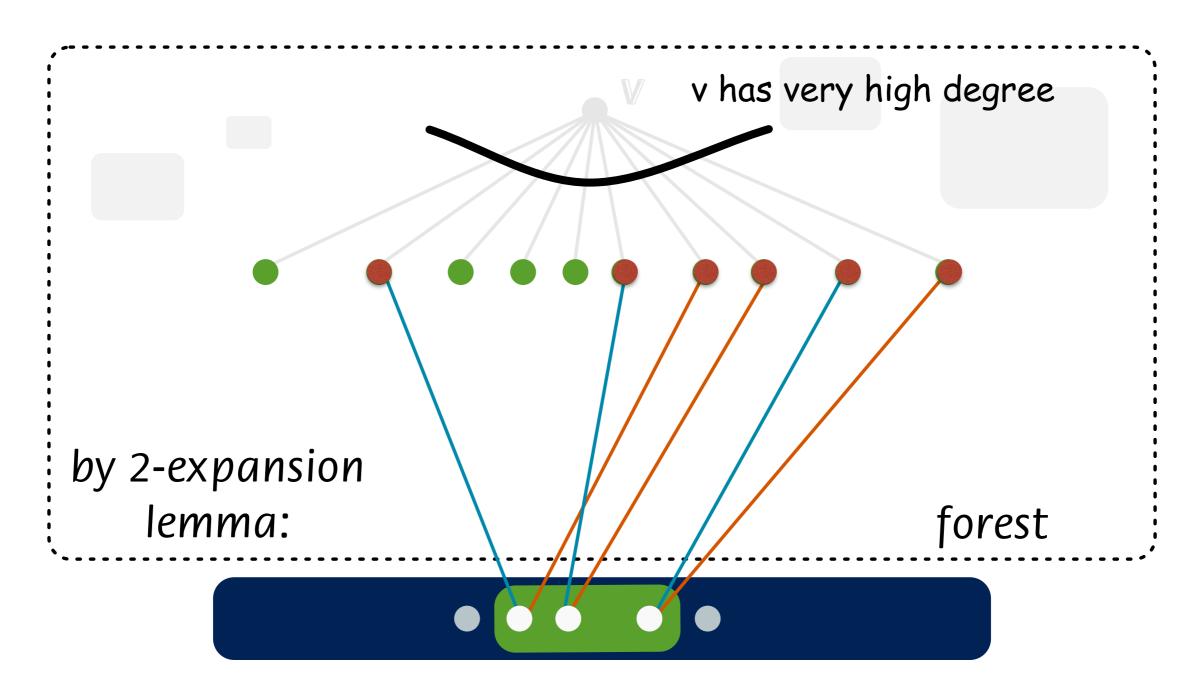


set H of size 2k which intersects all cycles through v



set H of size 2k which intersects all cycles through v

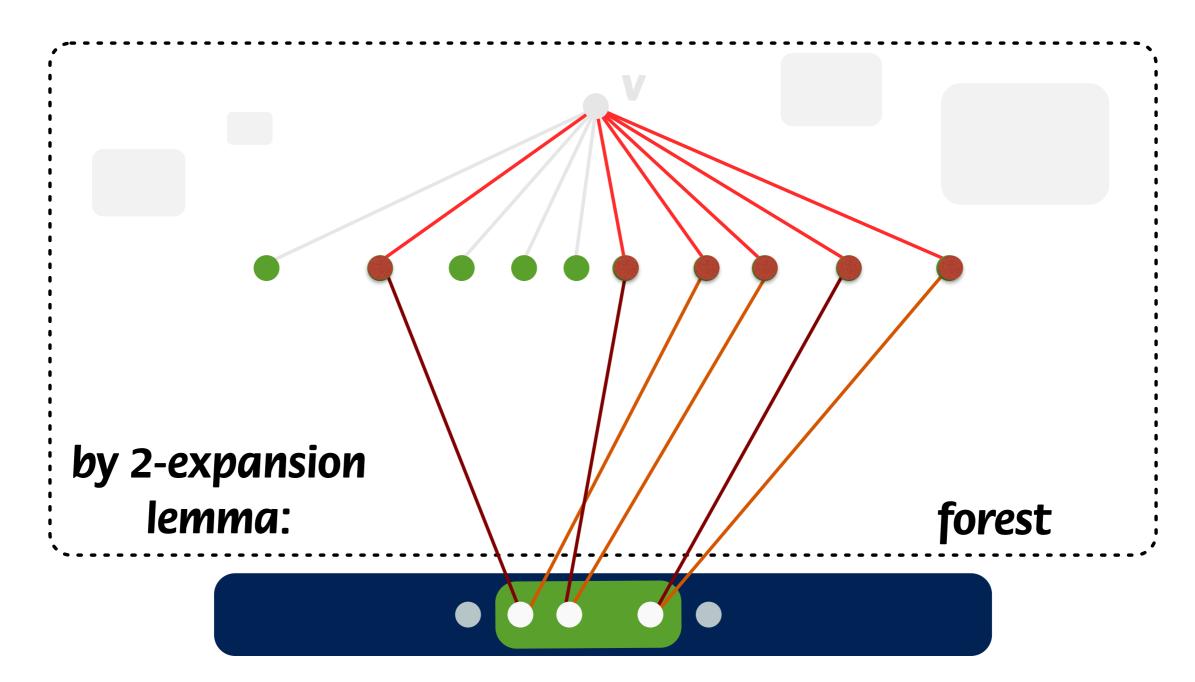
2-expansion lemma —> fancy crown decompositions



set H of size 2k which intersects all cycles through v

2-matching saturating the lower green vertices

the red vertices have ALL neighbors in the lower green vertices



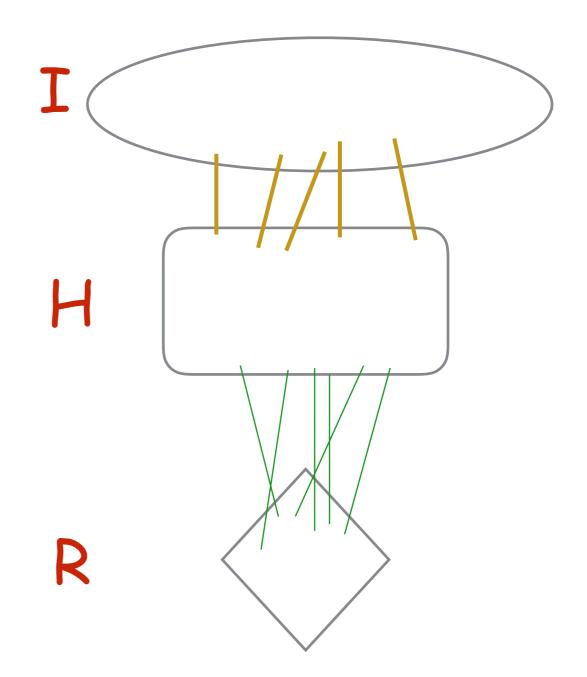
set H of size 2k which intersects all cycles through v

2-matching saturating the lower green vertices

the red vertices have ALL neighbors in the lower green vertices

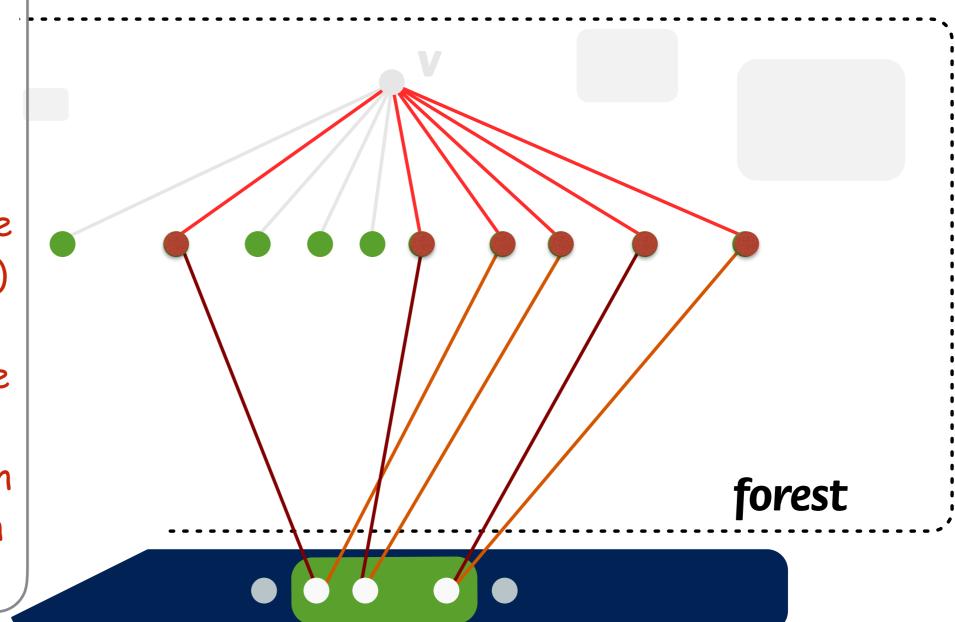
Recap: crown reductions

Here is a local part of the graph which must contribute at least 5 vertices to the solution and exactly these 5 vertices in the head suffice to cover ALL edges incident on I



Message of Crown Reduction for vertex cover

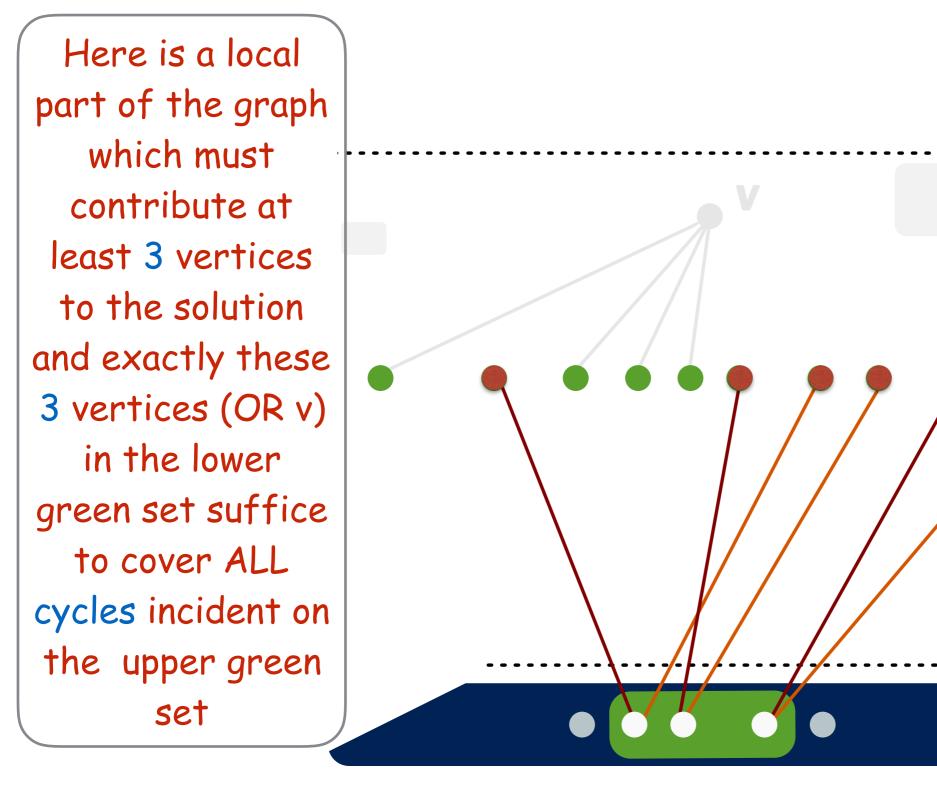
Here is a local part of the graph which must contribute at least 3 vertices to the solution and exactly these 3 vertices (OR v) in the lower green set suffice to cover ALL cycles incident on the upper green set



set H of size 2k which intersects all cycles through v

2-matching saturating the lower green vertices

the red vertices have ALL neighbors in the lower green vertices



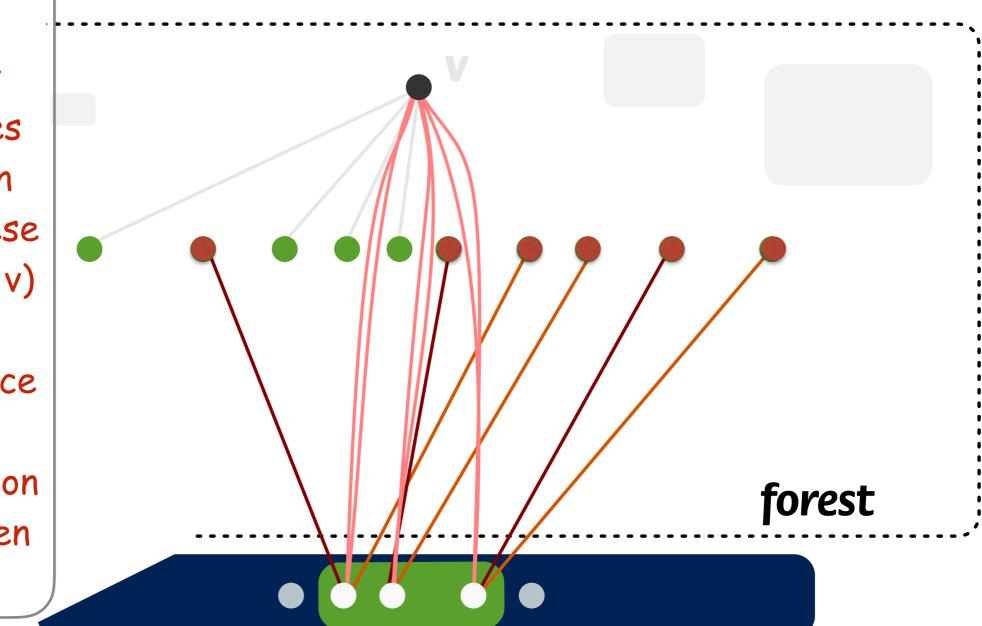
set H of size 2k which intersects all cycles through v

2-matching saturating the lower green vertices

the red vertices have ALL neighbors in the lower green vertices

forest

Here is a local part of the graph which must contribute at least 3 vertices to the solution and exactly these 3 vertices (OR v) in the lower green set suffice to cover ALL cycles incident on the upper green set



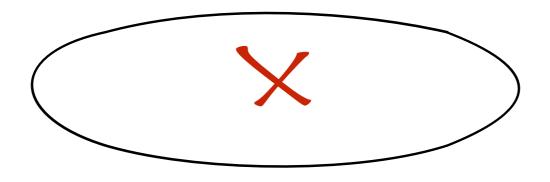
set H of size 2k which intersects all cycles through v

2-matching saturating the lower green vertices

the red vertices have ALL neighbors in the lower green vertices

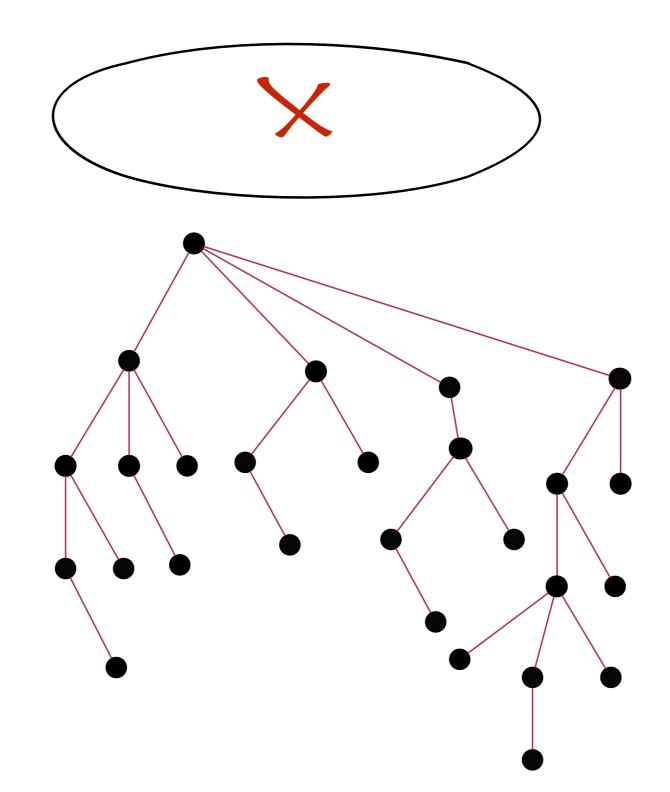
We just took a quick peek at the black box which guarantees that the reduced instance has max degree d=O(k)

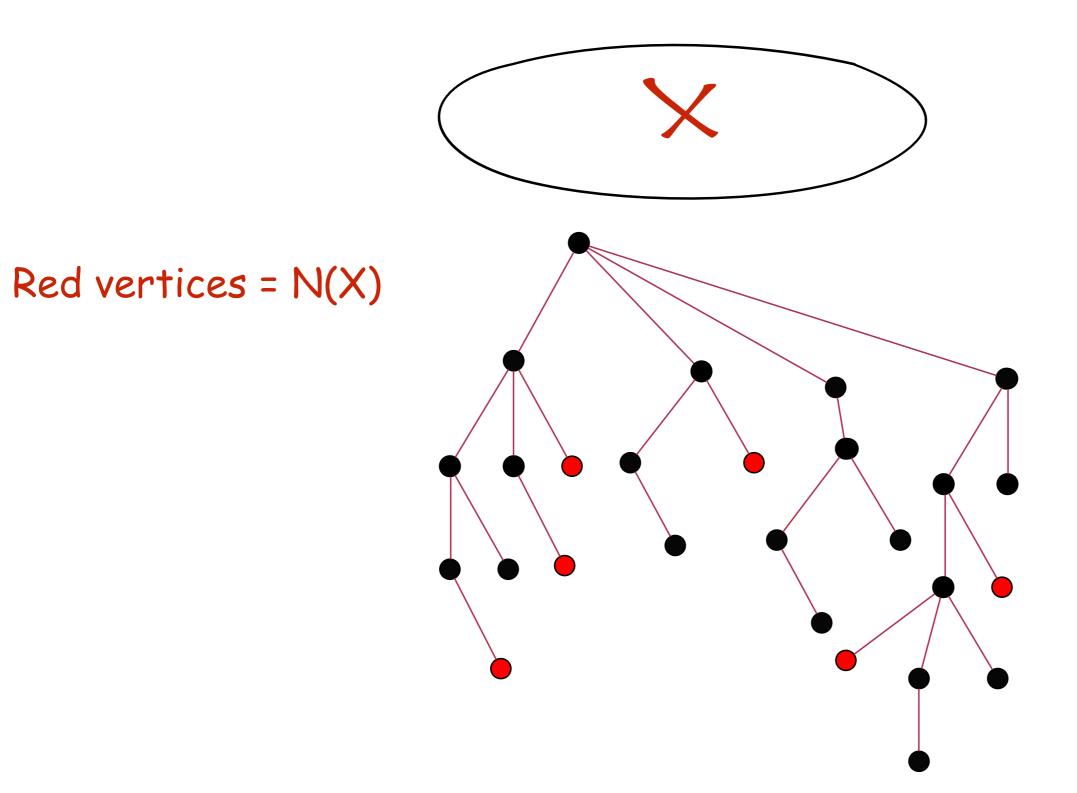
Completes sketch of $O(k^2)$ kernel for FVS

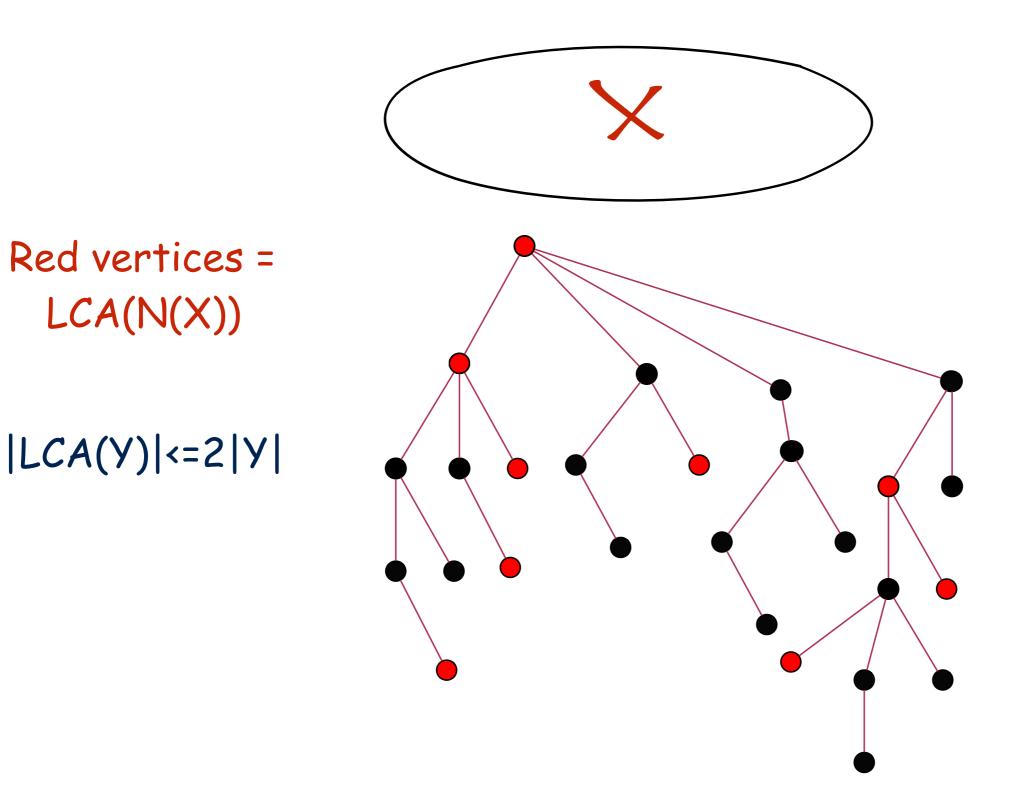


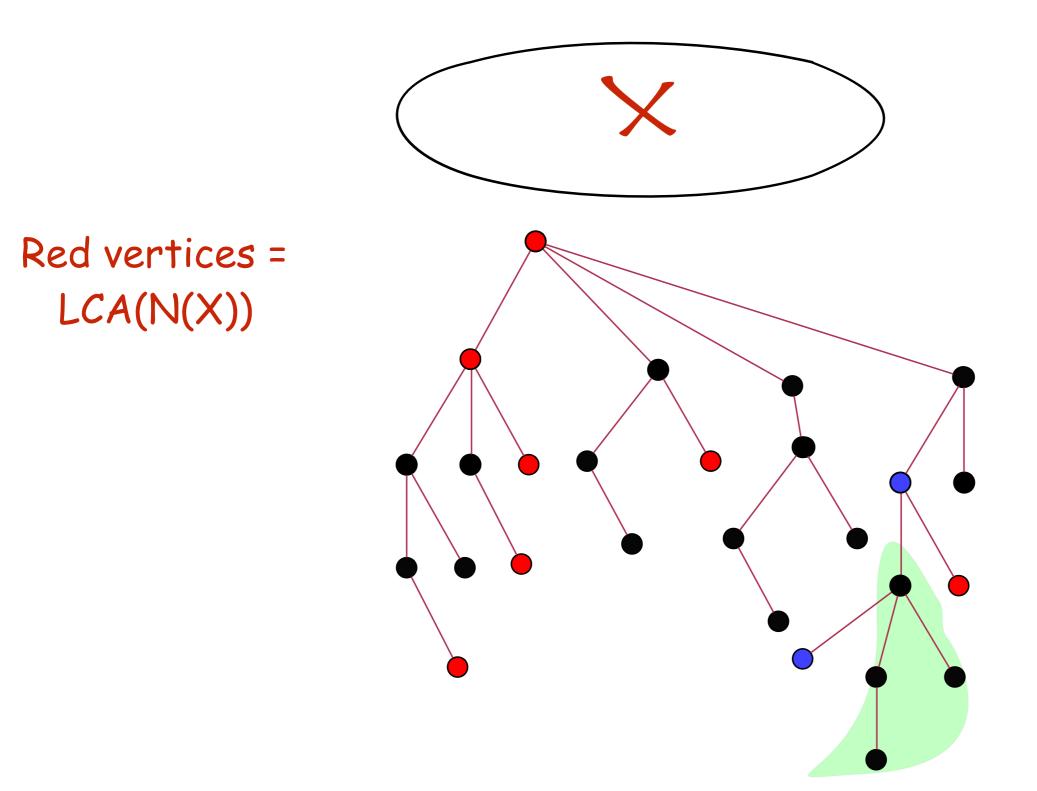
Let us get a different perspective on the reduction rules that we have applied.

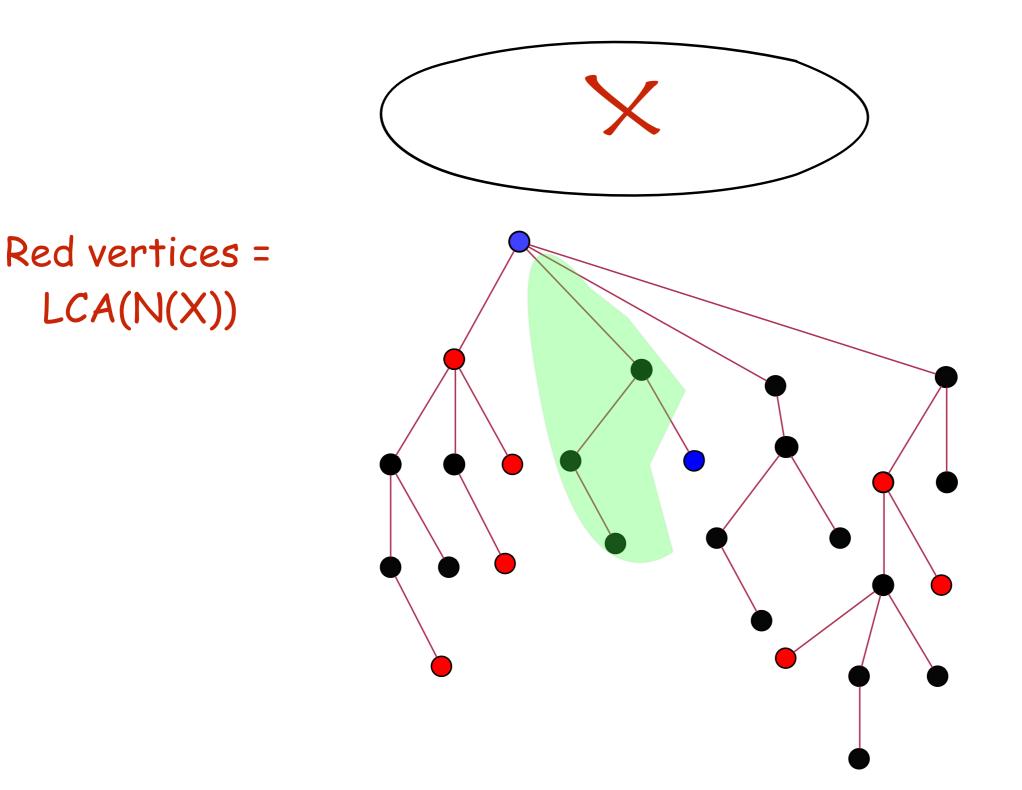
X is a hypothetical feedback vertex set of size at most k. We don't need to compute it, just need it for our arguments.

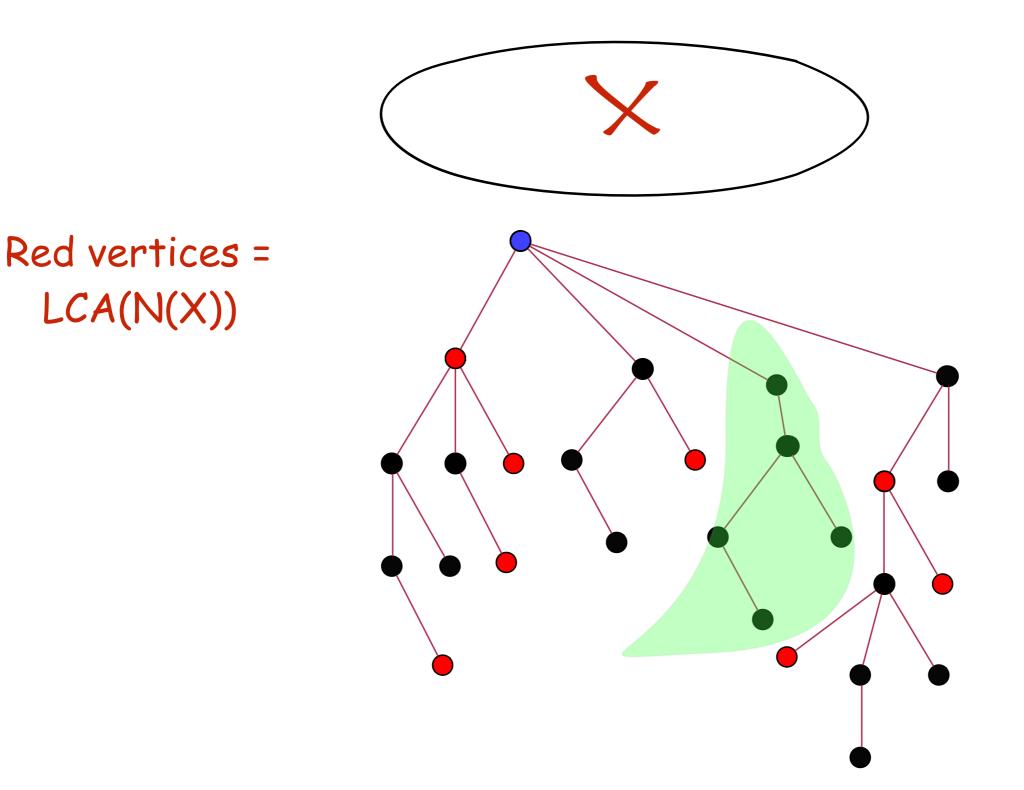


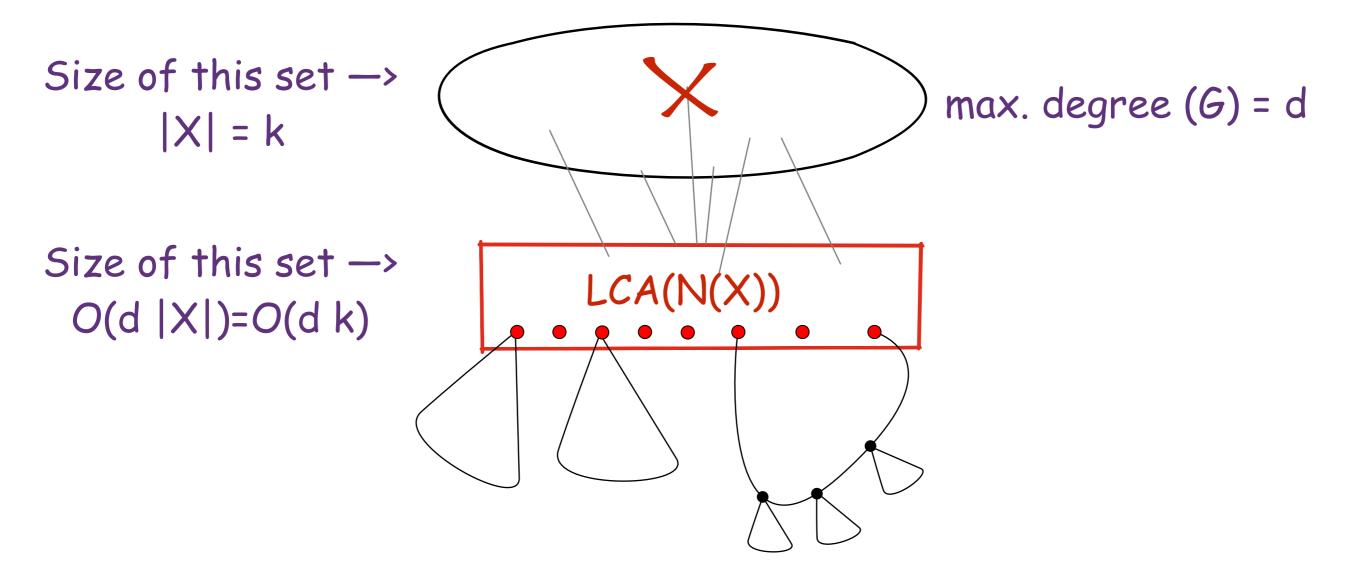


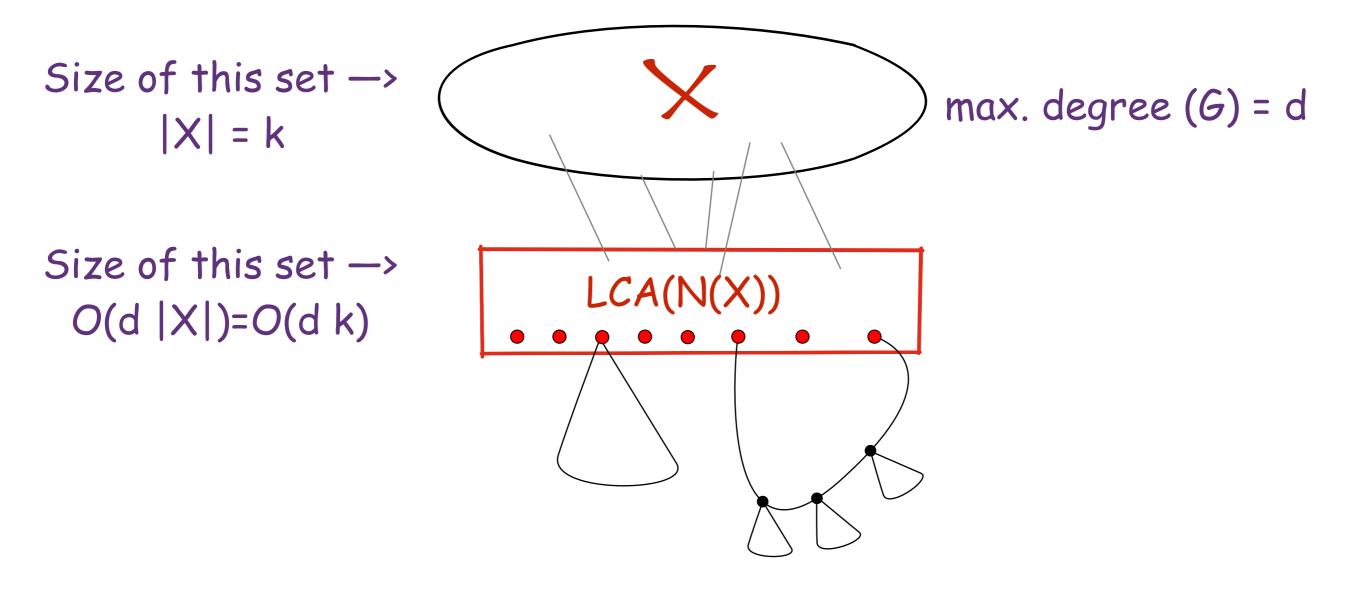


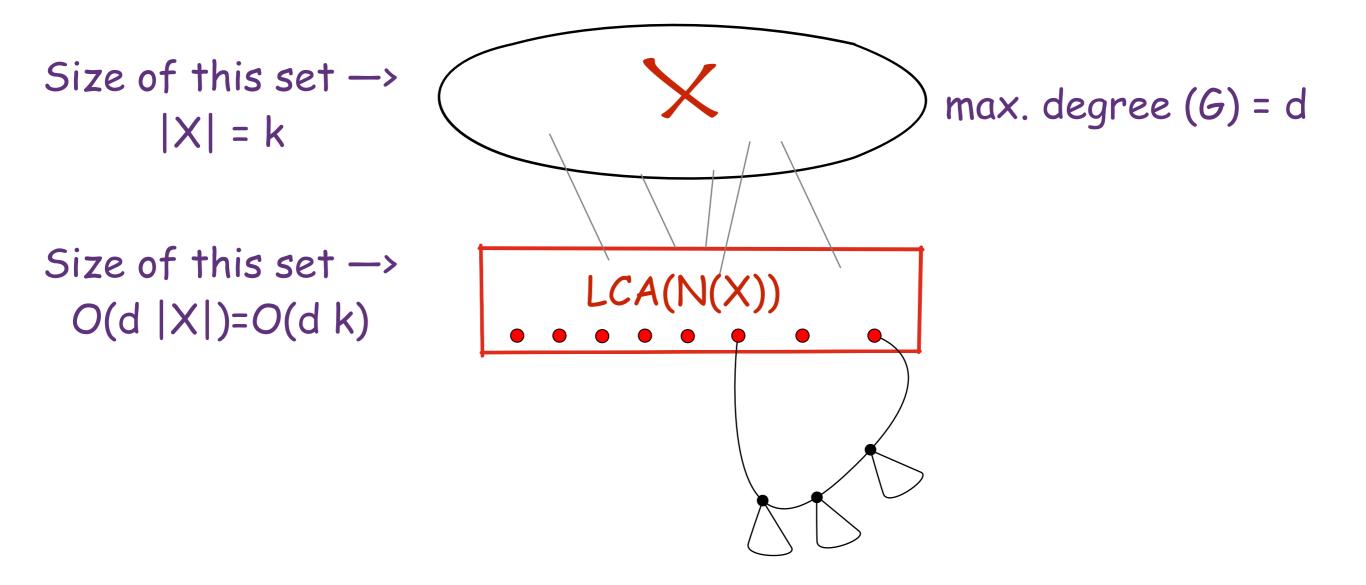


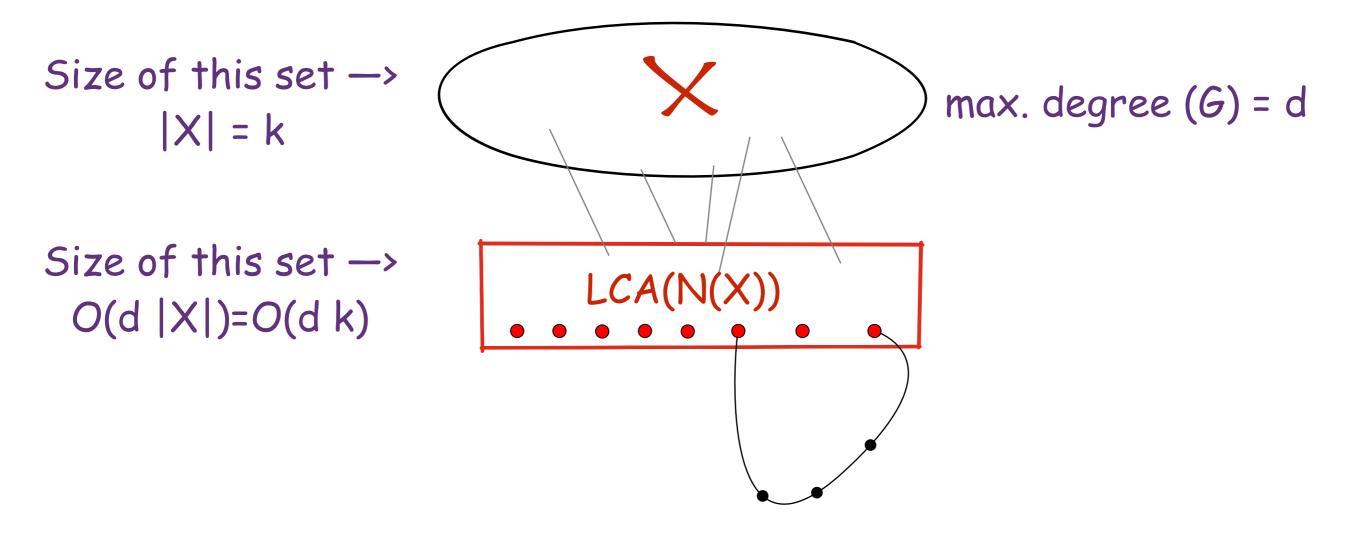


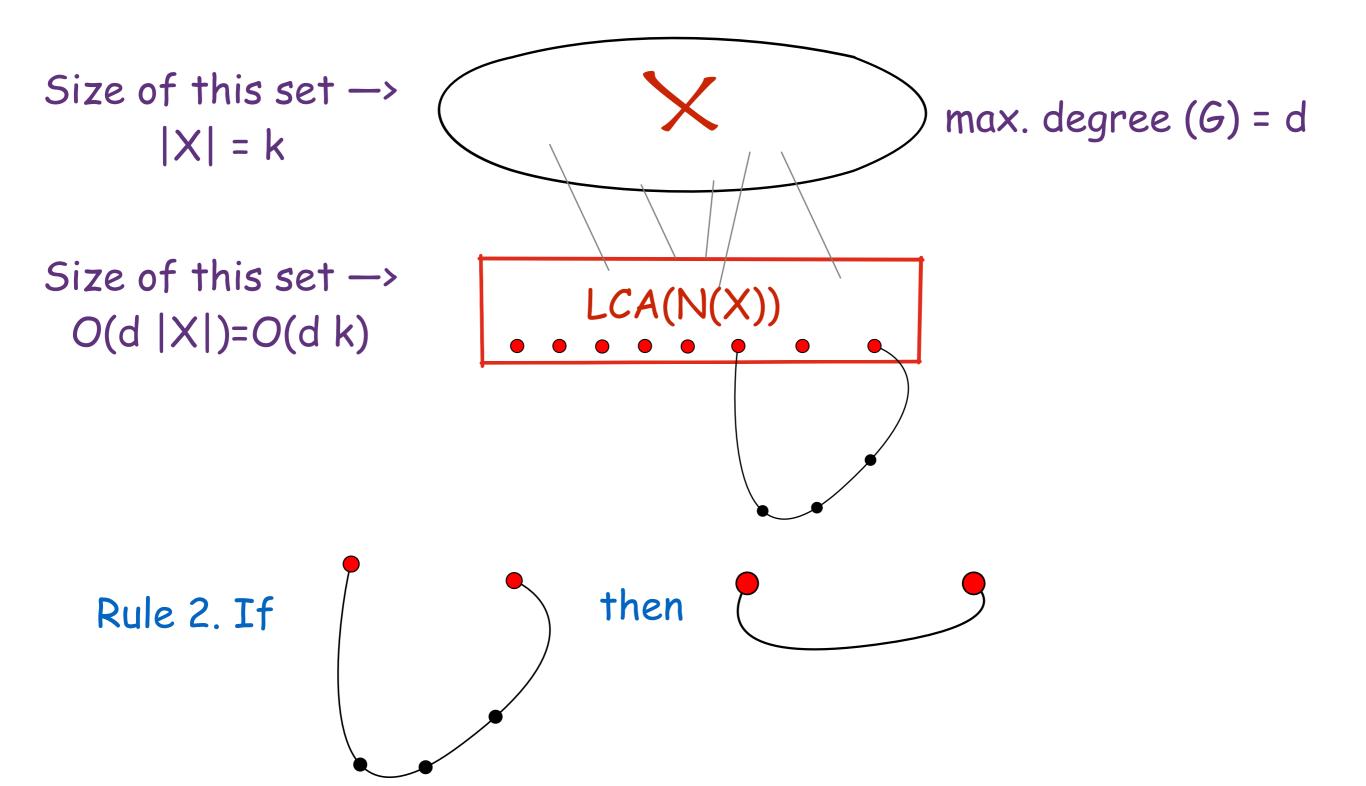


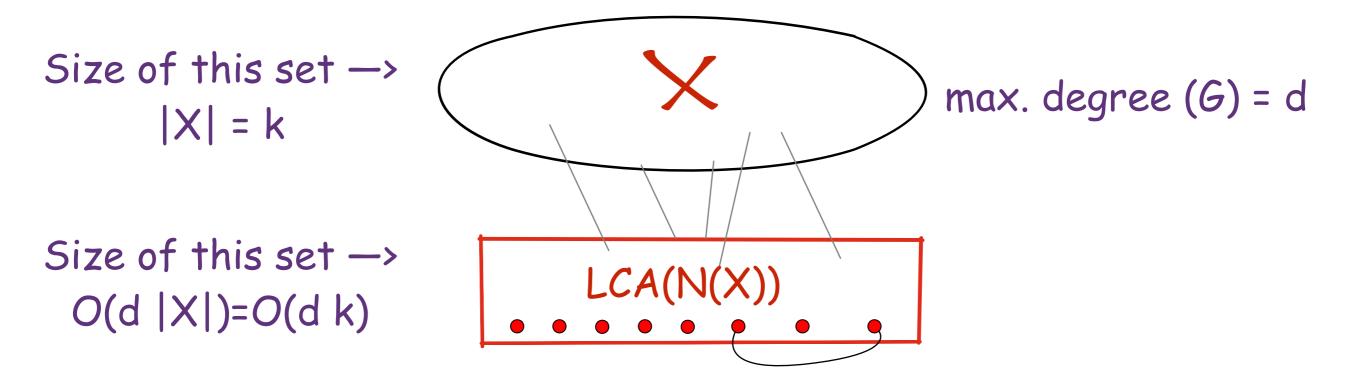


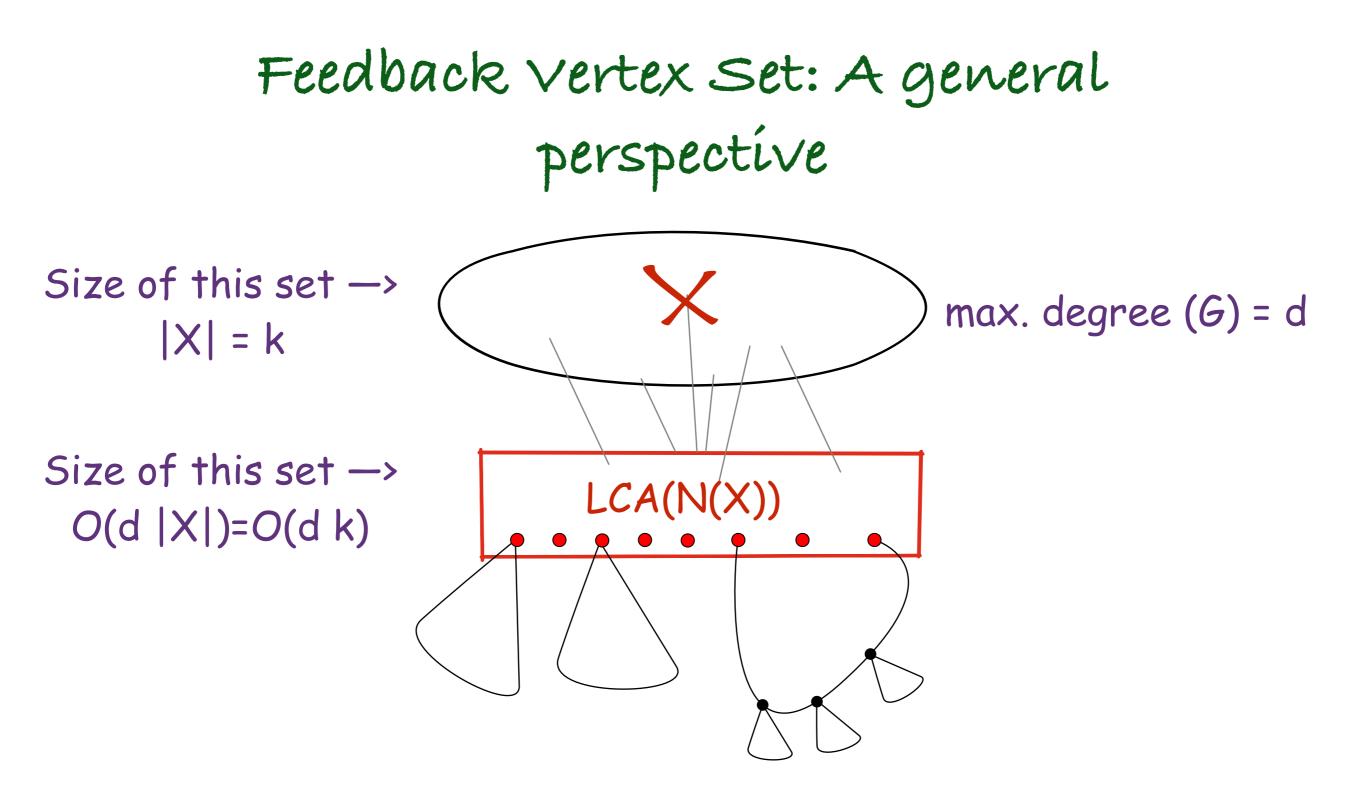






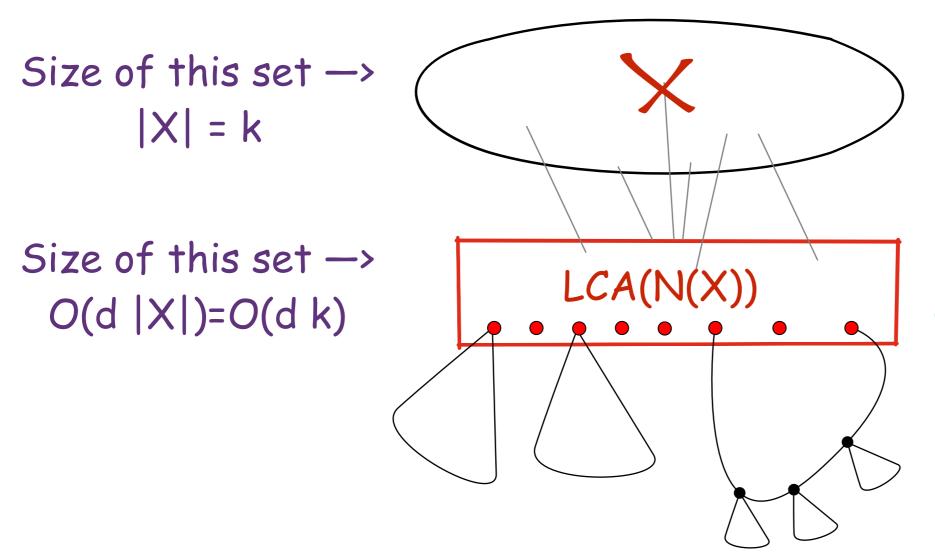






- 1. Easy to describe.
- 2. Easy to `reduce' without changing solution.

Feedback Vertex Set: A general perspective

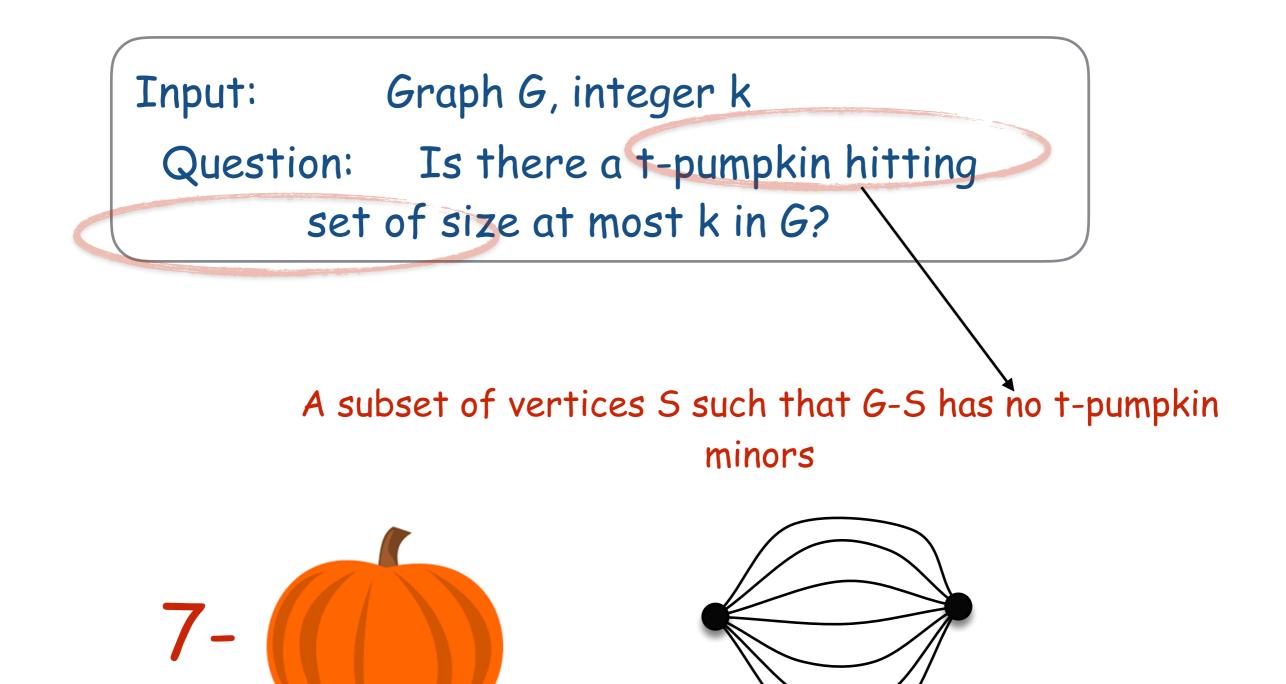


CONSTANT Treewidth subgraph connected to the rest of the graph through a constant number of vertices.

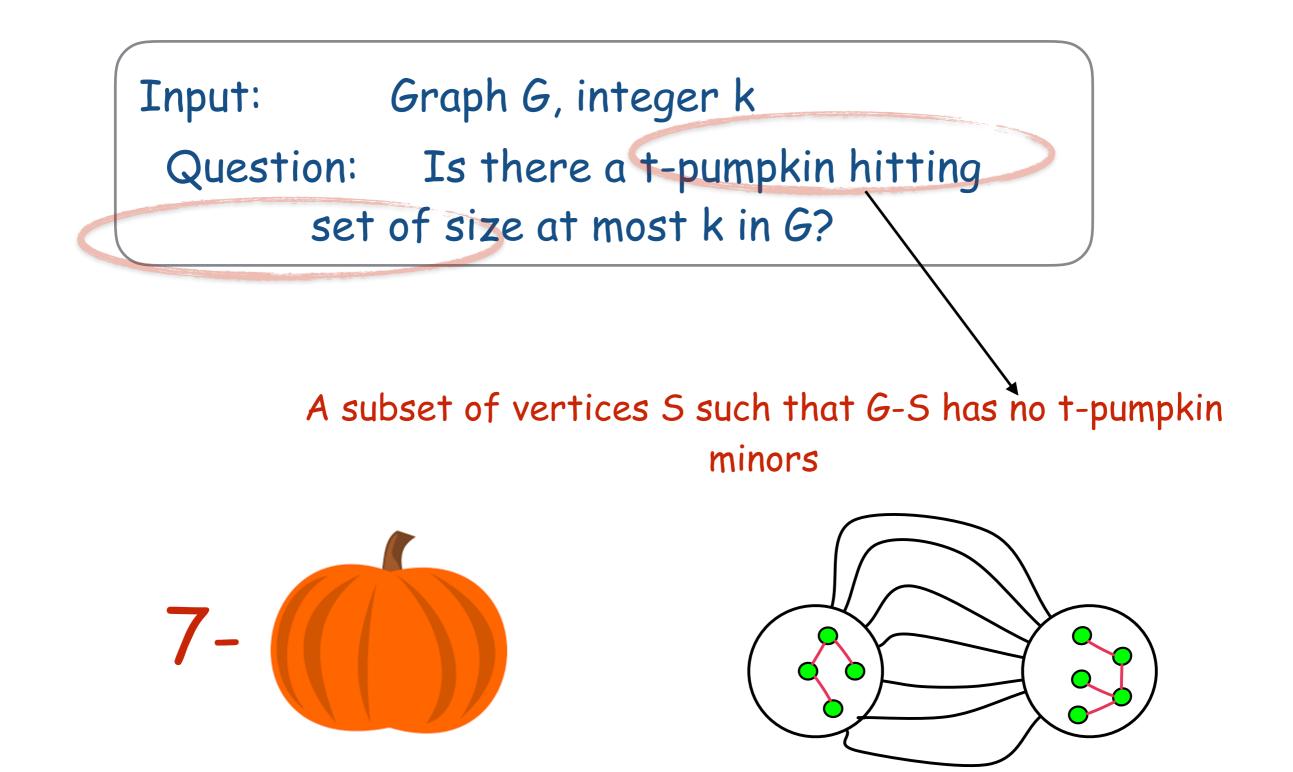
- 1. Easy to describe.
- 2. Easy to `reduce' without changing solution.

Pumpkin Hitting Set

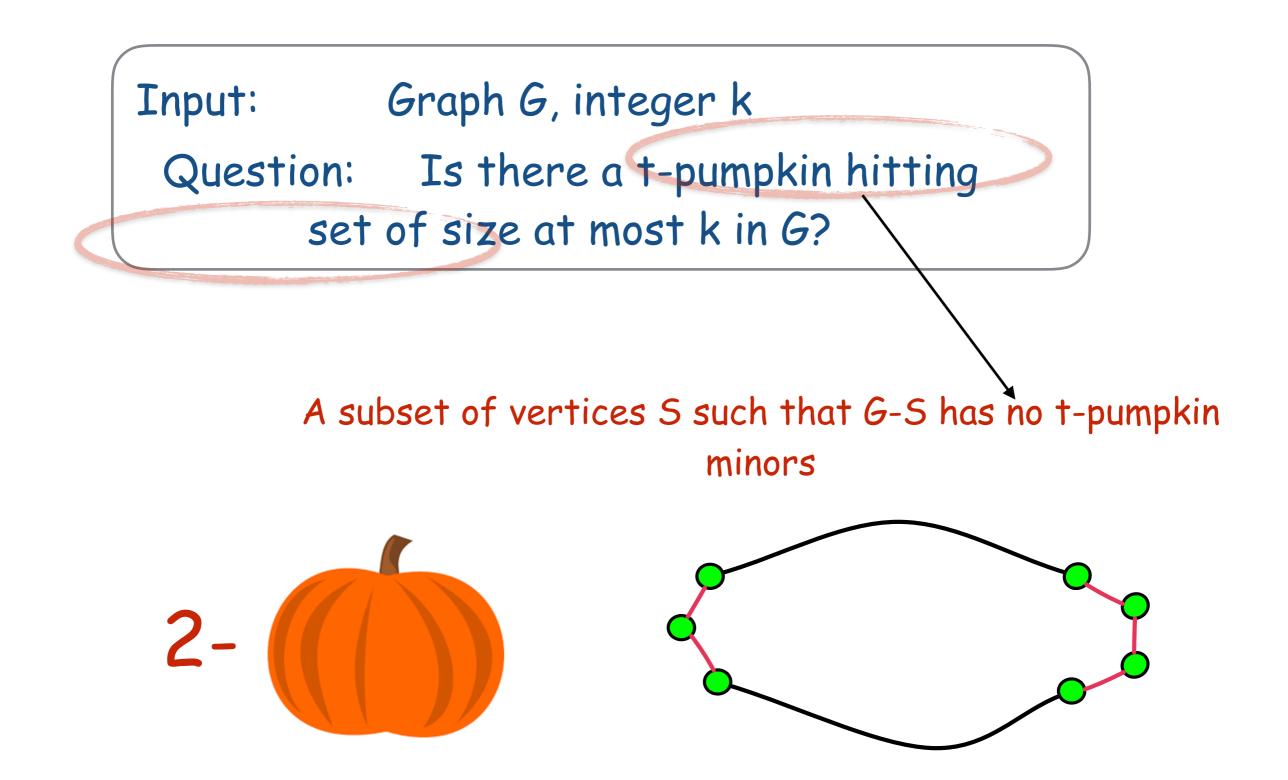
Pumpkin Hitting Set



Pumpkin Hitting Set



Pumpkin Hitting Set



Pumpkin Hitting Set

Input: Graph G, integer k
Question: Is there a t-pumpkin hitting set of size at most k in G?

Template

- 1. Design `protrusion reduction' rules.
- 2. If no rules apply, then bounding the degree is sufficient.
- 3. Design a reduction rule to bound degree.

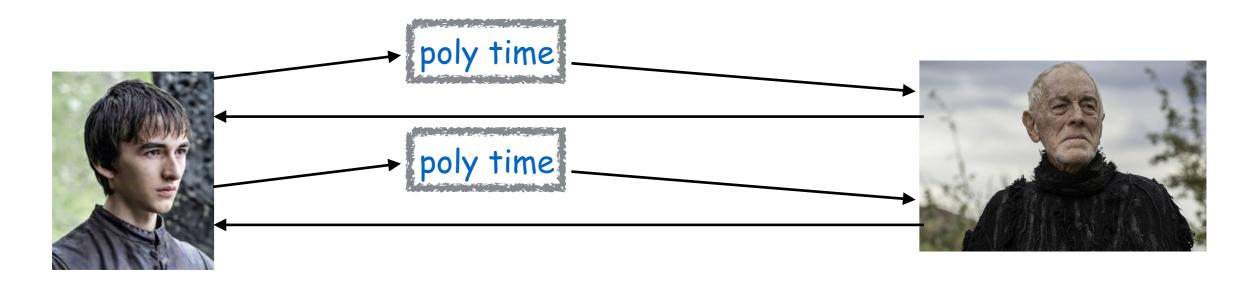
Pumpkin Hitting Set

Input: Graph G, integer k
Question: Is there a t-pumpkin hitting
set of size at most k in G?

EXERCISE: What do the protrusions for hitting 3-pumpkins look like? Find an easy description.

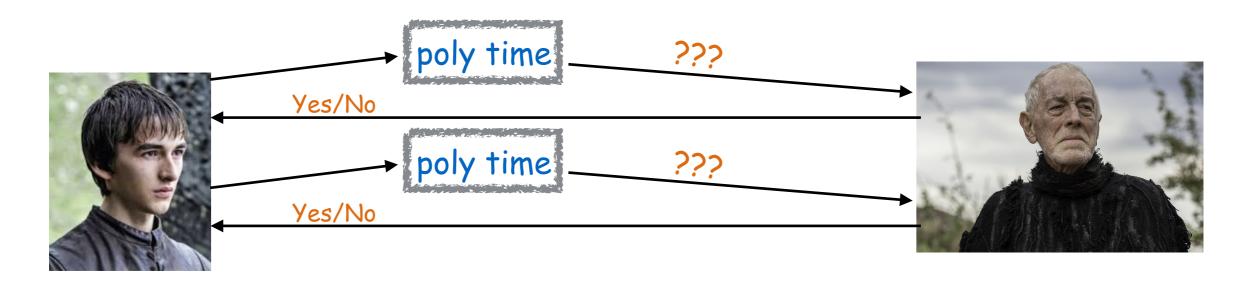
q-expansion lemma : a more powerful crown type reduction.

• Finding and reducing protrusions helps.



You get the input (G,k) for problem P and you can ask polynomially many queries to the oracle where

•

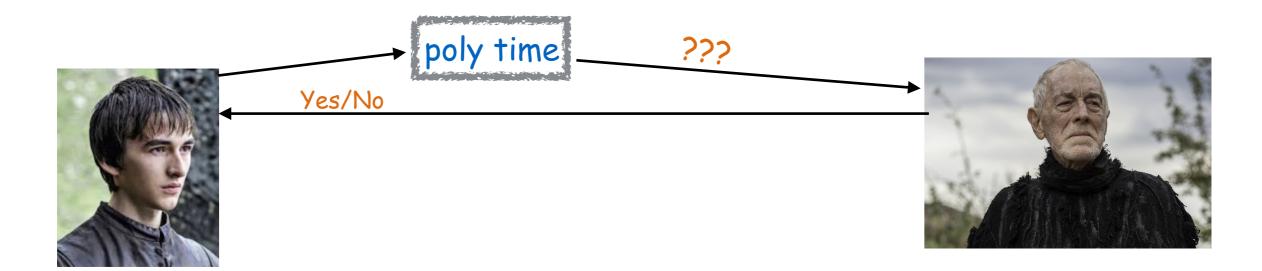


You get the input (G,k) for problem P and you can ask polynomially many queries to the oracle where

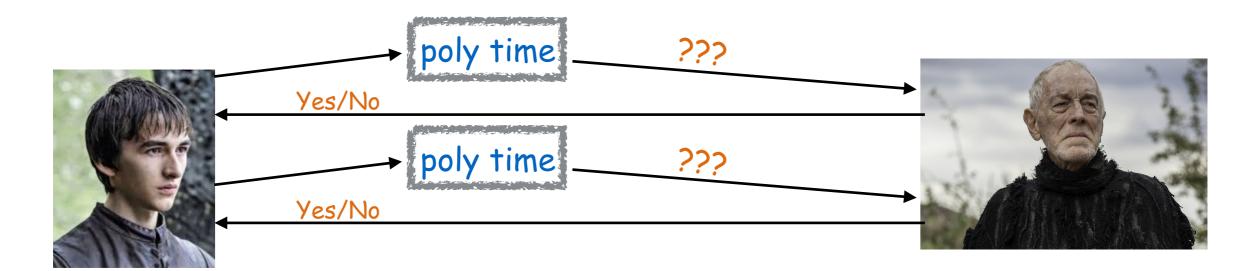
EACH query must have size at most f(k) and looks like this: Oh Great Oracle! Please tell me whether (Q_i,k_i) is a yes-instance of the problem P.

•

In the end, you must solve it.



If problem P has a polynomial kernel, then P also has a polynomial Turing kernel.



There are many interesting problems for which we don't expect polynomial kernels to even exist, but for which we already know polynomial TURING kernels.

General Take home message

- Kernelization is a subfield of Algorithms in its own right.
- Rich theory of upper and lower bounds.
- · Lots and lots of interesting research in this domain.
 - Many many open problems.

•

 Upcoming textbook on Kernelization [Fedor Fomin, Daniel Lokshtanov, Saket Saurabh, Meirav Zehavi]